
2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2021.3063373, IEEE Design
and Test

1

Efficient Privacy-Aware Federated Learning by
Elimination of Downstream Redundancy

Aditya Lohana, Ansh Rupani, Shubham Rai, Graduate Student Member, IEEE, and
Akash Kumar, Senior Member, IEEE

Abstract—Federated Learning is a distributed machine learning
paradigm which advocates training on decentralized data. How-
ever, developing a model centrally involves huge communication/
computation overhead, and presents a bottleneck. We propose
a method that overcomes this problem while maintaining the
privacy of the participants and the classification accuracy. Our
method achieves significant speedups compared to existing meth-
ods that employ Homomorphic Encryption. Even pessimistically,
we achieve a speedup of 4.81x for classification on the ImageNet
dataset with an AlexNet architecture, without compromising the
privacy of the participants and the accuracy.

Keywords: federated learning, neural networks, homomor-
phic encryption.

I. INTRODUCTION

Exposing a machine learning model to large amounts of data
during training makes it more robust to mis-classifying data
samples not encountered during training. However, aggregating
the entire training data at a single location requires considerable
resources to transport and store the data. Institutions are now
becoming aware about the privacy concerns brought about by
sharing data with other partners. DL tasks may employ the
use of data that is sensitive in nature, such as customer data
of various similar organizations [10]. The privacy of such data
should be of utmost importance to DL practitioners.

Federated Learning (FL) [8] has emerged as a viable
means to bridge this gap between the model and data, while
maintaining the privacy of training data. Federated Learning
involves training a single neural network over multiple partner
nodes via global co-operation without exposing the data at
each node. It means that every node maintains a copy of the
entire network, and updates the parameters of the model by
applying backpropagation using its own data as well as updates
from other nodes in the system. This solves the two concerns
raised before, as the data resides on the nodes themselves and
only model updates in the form of gradients are exchanged.

Unfortunately, just localising the training data to the par-
ticipants does not alleviate all of the privacy concerns. It is
possible for information about the training data to ‘leak’ using
only the publicly-shared gradients [12]. Several techniques
have been employed to prevent ‘information leakage’ from the
gradients. A classical approach of obfuscating the gradients
is differential-privacy [4], where Gaussian or Laplacian noise
is added to the gradients before sharing. The symmetry of
the noise prevents the destabilisation of the learning process.

Aditya Lohana, Ansh Rupani, Shubham Rai and Akash Kumar are
with the Chair for Processor Design, Center For Advancing Electronics
Dresden, Technische Universität Dresden, 01169 Dresden, Germany (e-mail:
shubham.rai@tu-dresden.de; akash.kumar@tu-dresden.de).

Differential-Privacy provides a trade-off between the privacy of
the gradients and the convergence of the model and suffers from
sub-optimal performance in terms of accuracy. Researchers
have attempted to solve the problem of data privacy while
guaranteeing convergence by sharing only a small subset of the
local gradients [7]. They show that the model converges even if
only a fraction (top k%) of the gradients are shared. However,
even this scheme is susceptible to attacks. In [11], Phong
et. al. show that it is possible to extract information about
the training data from a small subset (˜3-4%) of the shared
gradients. They proposed a new system that guarantees secure
aggregation by using additive homomorphic encryption (HE).
HE allows for computation on ciphertexts without exposing the
underlying plaintexts. HE adds considerable communication
and computational overheads making it infeasible in practical
settings. In this work, we attempt to mitigate these overheads
by reducing the redundancy in the aforementioned system. The
major contributions of our work are as follows:
• We develop an approach to reduce the communication

costs and training time of Federated Learning (FL) using
additive HE by eliminating transmission and processing
of redundant gradients.

• We show that our approach doesn’t compromise model
accuracy and maintains system security.

• We present a detailed experimental study to demonstrate
the effect of our techniques over different well-accepted
benchmark-datasets across various architectures.

II. PRELIMINARIES

A. Downpour Stochastic Gradient Descent (SGD)

The Parameter-Server (PS) model [6] of FL involves two
classes of nodes:
• PS: The PS is the central orchestrator of the learning

process in FL. The PS is responsible for maintaining the
up-to-date global model, and the aggregation of gradients
received from the participants. The model is stored on the
PS as a collection of (key,value) pairs for constant time
(O(1)) access to each weight in every layer.

• Client: The clients are the nodes where the actual training
of the global model takes place. Each client holds a copy
of the global model and calculates gradients for the model
using the backpropagation algorithm [1] on its share
of the training data. The clients synchronise their local
copies with global model at the PS at regular intervals.

The aim of FL is to minimise the total training loss L calculated
using the data on each client node

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 13:57:22 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2021.3063373, IEEE Design
and Test

2

L =
∑
c∈C

|Xc|
|X|

L(Xc, yc,W
t)

(Xc, yc) form the training data on a client c whereas W t

represents the state of the global model at an iteration t of the
training process. L(Xc, yc) is the training loss calculated using
the data present on client c. The contribution of the local loss
is scaled using the size of the client’s share of the dataset.

Each iteration of training consists of the following atomic
steps:
• Fetch: The clients request for a copy of the global model

from the PS, and receive the entire global model (W t) at
iteration t of the training process.

• Execute: The global model is applied to the local copy
and the gradients are calculated.

∇c =
∂L(Xc, yc,W

t)

∂W t

These local gradients are then pushed to the PS.
• Aggregate: The PS updates the global model using the

gradients received from each client.

W t′+1 =W t′ − α ∗ ∇c

Specifically in Downpour SGD [5], these steps are performed
by each client asynchronously.

B. Paillier – Additive Homomorphic Encryption
Homomorphic encryption is a cryptosystem that aims to

allow calculation on encrypted data. Thus, the confidentiality
of the data can be maintained while it is being processed
by untrusted parties. A homomorphic cryptosystem is an
asymmetric encryption scheme that uses a public key to encrypt
data and allows the decryption only by parties who possess
the private key. Additionally, it allows all parties with a public
key to perform a variety of algebraic operations on the data
while it is encrypted. The Paillier encryption scheme [2] is a
variant of a Partially Homomorphic System, that allows only a
subset of arithmetic operations on ciphertexts, namely addition
and scalar multiplication, as compared to Fully Homomorphic
schemes that allow both addition and subtraction. For more
details on Paillier encryption, interested readers are referred
to [2].

C. FL with Paillier Encryption
In this work, we evaluate our proposed scheme against

the approach suggested in [11]. Phong et al. propose Paillier
Encryption for secure aggregation of gradients received from
the clients. Each (key, value) pair in the collection of model
weights now holds the encrypted weight in the value field. We
assume the presence of a central arbitrator, that is responsible
for the distribution of the private key to each client, as well as
for placing the encrypted weights on all nodes – both the PS
and the clients. Out of the three steps of every iteration, only
the aggregation step needs to be modified, as follows:

W t+1
E =W t

E × Enc(−α∇c)

= Enc(W t) ∗ Enc(−α∇c)

= Enc(W t − α∇c)

(1)

PS

Client

Data

WE(W)
∇WW

-α*∇W∇W
E(-α*∇W)-α*∇W

E(-α*∇W)E(W)

E(w):=E(w)+E(-α*∇W)

Fig. 1: PS-Client interaction for an iteration in Federated
Learning with Additive Homomorphic Encryption

A detailed overview of a single training iteration is described
in Fig. 1. Each client first downloads the model and decrypts
the weights using its private key. The gradients are calculated,
sampled and encrypted before being pushed to the PS. These
operations are highlighted on the directed edges between the
client and the PS.

D. Threat Model
In this work, we consider a threat model with honest clients

and an honest-but-curious PS. This means that the PS is only
interested in passively observing the incoming shared gradients
and does not attempt to tamper with them. This is consistent
with the model assumed in [11]. We also assume the existence
of secure channels between the PS and each client node for
the transmission of the global model and local gradients.

III. MOTIVATION

The use of additive HE in [11] shifts the accuracy/privacy
trade-off in differential privacy to an efficiency/privacy trade-
off. As accuracy is an uncompromisable metric in ML tasks, we
attempt to mitigate this trade-off by improving the efficiency.
Phong et al. incorporated the top-k sparsification method of
Shokri and Shmatikov [7] to reduce the ingress traffic at the
PS. Due to the sampling of the most significant gradients at
the clients, only a small fraction of the gradients are needed
to be encrypted and pushed to the PS.

Looking at Fig. 1, we can identify the source of redundancy
in this system. The entire model is downloaded by the client
during each fetch from the PS. Thus, all the weights in this
fetched model must be decrypted, even if δw is zero i.e. the
weight hasn’t been updated since the last fetch. This ‘skew’
between the size of gradient-uploads and model-downloads can
be exploited to avoid fetching weights that are not important
to the training of the model. We achieve this by selectively
downloading a subset of the encrypted global model during
each local iteration on a client.

IV. PROPOSED SCHEME

Our proposed scheme aims to eliminate redundancy in
downstream fetches from PS by transmitting only a subset of

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 13:57:22 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2021.3063373, IEEE Design
and Test

3

the entire model, which is determined by the weights updated
between successive fetches by the same client. We maintain
dictionaries LastUpdate and LastFetch to keep track of
redundant weights, as we need to monitor the following– (i) the
last time a weight at the PS was updated by a client; (ii) the
last time a client requested the global model. The proposed
scheme requires no modification at the client node, as shown
in Algorithm 1. However, following changes need to be made
to the PS’s interaction with each client node:

1) On receiving a sparsified model update from a client, the
PS applies these updates to the global model using the
rules of Additive Homomorphic Encryption.

2) Apart from aggregation, the PS must also set the
LastUpdate entries for each weight in the sparse update
to the current global iteration.

3) Whenever the PS receives a fetch-request for the global
model from a client, it returns a subset of the weights
containing only weights that have been updated since the
last fetch request by the same client, i.e. the LastUpdate
entry for the weight is greater than the LastFetch entry
for the client.

4) Additionaly, the LastFetch for the client is updated to
the current global iteration.

The modifications mentioned in points 1 and 2 become a
part of the secure aggregation step in Algorithm 2 whereas
the other two are incorporated in Algorithm 3. Each iteration
consists of the following steps:

1) Sparse fetch: The client requests a fetch of the global
model from the PS. The PS responds to this request with
a sparse model consisting of weights updated since its
last fetch (Algorithm 3). At the client node, this sparse
update is applied to the local copy of the model to
synchronise it with the global model. If this is the first
fetch by the client, then it has to download the complete
model. This is because each client’s LastFetch entry is
set to 0 and hence the condition in step 3 of Algorithm
2 (LastUpdate[w] ≥ 0) is satisfied for all weights w in
the model. All subsequent fetches are a subset of the
entire global model.

2) Execute: The gradients are calculated with respect to the
data present on the client using the backpropagation
algorithm. The client selects the largest k% of the
gradients, encrypts them and pushes them to the server.
(Algorithm 1).

3) Aggregate and track update: The gradients received
from the client are used to update the global model. The
LastUpdate entries for the updated weights are set to
the updated global iteration. These weights are available
for other clients to fetch as and when requested.

If we consider n clients and a model W , the dictionaries re-
quired to track the latest update and fetch histories take O(|W |)
and O(|n|) space respectively. The only added overhead in our
system arises from filtering the redundant weights in Algorithm
3. We later show in Section V that this overhead at the PS is
negligible as compared to the advantage we gain in terms of
decrypting fewer weights at each client.

Algorithm 1: Client – Push
Output : Encrypted sparse model WE

1 for wE in WE do
2 w = Dec(wE)
3 Update the local model with the decrypted weight:

wC ←− w
4 Calculate the gradients ∇C using the backpropagation

algorithm
5 Select the largest k% of the gradients: G′

6 Encrypt the sparse update: GE = {Enc(α ∗ g)|g ∈ G′}
7 Push the encrypted update to the Central Server

Algorithm 2: PS – Aggregation
Input : Encrypted sparse update GE

Initialization :
for wE in WE do

Set LastUpdate[wE]←− 0
1 for gE in GE do
2 Update the global model with the encrypted

gradient: wt+1
E ←− wt

E − gE
3 Set LastUpdate[wE]←− t+ 1

A. Impact on Accuracy
Even though each client only downloads a subset of weights

during each fetch, no updated weight is missed during a fetch.
Thus, we do not lose any information that may hamper the
quality of the trained model. When a full fetch is applied to
the local model, it is logically equivalent to applying only the
updated global weights because the changes in other weights
of the global model are zero. Thus, our scheme does not
compromise with the model accuracy achieved in [7, 11]. We
provide evidence for our argument in Section V.

B. Security of the Proposed Scheme
The proposed scheme is semantically secure as the Paillier

cryptosystem, and hence, is secure and resilient against
independent-CPA attacks [3]. Decryption of fetched weights is
only possible with a private key, which resides only on clients.
Additionaly, the data structures in our scheme (LastFetch and
LastUpdate) do not reveal any extra information about the
gradients or weights. The position of the weights in the model
that are updated during the aggregate step are already available
to the PS as the model update from the client is a collection of
(key, value) pairs. We just leverage this information to sparsify
the fetches from the client nodes. Thus, the system is safe
against a honest-but-curious PS, but is susceptible to collusion
between PS and clients – just like any HE cryptosystem.

V. EXPERIMENTS

A. Experimental Setup
We validated our scheme by testing it on the following

datasets – the MNIST handwritten digits database, the CIFAR-
10 dataset and the ImageNet dataset1. We conducted experi-

1The standard ImageNet dataset (www.image-net.org) contains images from
1000 categories. A random sample of 100 classes was selected to build the
dataset.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 13:57:22 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2021.3063373, IEEE Design
and Test

4

Algorithm 3: PS - Service Fetch-Request
Input :
• Client-id c
• Global iteration at request by client: tg
• Parameter update history: LastUpdate
• Client fetch history: LastFetch

Output : Encrypted sparse model
Initialization :
for c in Client-pool C do

Set LastFetch[c]←− 0
Initialise the sparse update W ′E = {}

1 for wE in WE do
2 if LastUpdate[wE] ≥ LastFetch[c] then
3 W ′E =W ′E ∪ {wE}
4 Set LastFetch[c]←− tg
5 Return the sparse encrypted model W ′E

ments for two classes of models – the Multilayer Perceptron and
Convolutional Neural Network. All details about the training
process such as the network architecture, number of trainable
parameters, iterations, learning rate are highlighted in Table 1.
Max-pooling was used to down-sample the intermediate feature
maps in the CNN. Additionally, we built a subset of AlexNet
model2 (to be referred to as AlexNet* from here on) with 20
million parameters and trained it on a subset of the ImageNet
dataset to demonstrate scalability of our approach. All models
were trained for 200 global iterations with a decaying learning
rate to stabilise training near minima. The experiments were
carried out using an extension of the FL framework by Hardy
C. [9] with Tensorflow for backpropagation and a Python
implementation of the Paillier Encryption scheme. The average
time taken for encryption and decryption operations on a 32-bit
floating-point number with a key size of 3072 bits is 0.133
seconds and 0.0383 seconds respectively. We can see that
the decryption operations are 3 times faster than encryption
operations as a random number that is co-prime to the public
key needs to be chosen before encrypting each value.

B. Evaluation

The rationale behind our proposed scheme of sparsifying
fetches from the PS was based on the claim made in [7] that
certain weights are more important for the training of the model
as compared to others. We extended this idea by arguing that
a large fraction of the weights remain unaffected during the
training process and downloading them during each fetch can
be avoided. From Table 1 (Column Parameters Updated), it is
clear that the majority of the weights are updated not even once
in the 200 iterations. This redundancy is especially evident in
the CNN architectures with only 18.4%, 16.65% and 15.44%
of the models’ weights participating in the training process.

Impact of sparse fetches: To investigate the advantage of
our scheme, we measure the scalability of our system for
different number of client nodes in the system. Federated

2In order to perform classification on 100 output classes, the standard
AlexNet model with 80 million parameters was appropriately trimmed to avoid
overfitting

2 5 10 15 20 25
Number of client nodes

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

. o
f w

t.
dl

oa
d

 /i
te

ra
tio

n

MNIST | MLP
MNIST | CNN
CIFAR | MLP
CIFAR | CNN
Linear estimate
ImageNet | AlexNet*

(a)

2 5 10 15 20 25
Number of workers

6

8

10

12

14

16

18

Sp
ee

du
p

MNIST | MLP
MNIST | CNN
CIFAR | MLP
CIFAR | CNN
ImageNet | AlexNet*

(b)

1 2 3 4 5 6 7 8 9 10
Number of classes per client

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Sp
ee

du
p

MNIST | MLP
MNIST | CNN
CIFAR | MLP
CIFAR | CNN

(c)

1 2 3 4 5 6 7 8 9 10
Number of classes per client

0.07

0.08

0.09

0.10

0.11

0.12

Fr
ac

. o
f w

t.
dl

oa
d

 /i
te

ra
tio

n

MNIST | MLP
MNIST | CNN
CIFAR | MLP
CIFAR | CNN

(d)

Fig. 2: (a) Effect of number of clients on relative size of sparse
fetches. The growth in size is sub-linear with respect to the
number of workers which is a consequence of the overlap of
gradients pushed by clients, (b) Effect of number of clients on
speedup achieved for training the model for a fixed number of
iterations, (c) Effect of data-heterogeneity on speedup achieved
for training the model for a fixed number of iterations and
clients (d) Effect of number of classes per client on relative
size of sparse fetches. The sparse fetches become smaller as
the data on each client becomes increasingly homogeneous

Learning leverages parallelism to achieve linear speedup with
respect to number of client nodes. We first look at the number
of parameters that are downloaded by each client during each
fetch as compared to full updates. Fig. 2a demonstrates the
effect of our proposed scheme for a range of client nodes in
the system. As each client only downloads the weights updated
since its last fetch, the expected number of weights downloaded
should increase as the number of clients that push gradients to
the PS increase. However, as seen in Fig. 2a, the size of the
fetched sparse model doesn’t grow linearly. This is due to the
fact that there exists an overlap in the weights updated by the
gradients received from the clients. The upper bound on the
relative size of sparse fetches as compared to the full fetch can
be deduced from the fraction of weights (Column Parameters
Updated in Table 1) that are updated throughout training. The
upper bound of the relative size of the sparse fetch will be
determined by the model architecture and the sparsification
factor k.

Impact on training time: Sparsifying the fetches from the
PS reduces the number of encrypted weights received by the
client. The fetched weights need to be decrypted before they
can be applied to the local copy of the model. Thus, reducing
the number of weights to be decrypted has a direct effect on
training time. Smaller the size of the fetch, faster the decryption.
We shift the overhead of decrypting the weights at the client
to filtering them at the PS. The decryption step at the client
requires |Wsparse| decryption operations whereas building a
subset of the model requires |W | comparison operators. If the
decryption operation takes tdec seconds and comparison takes
tcomp seconds,

Tsparse = |W | ∗ tcomp + |Wsparse| ∗ tdec

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 13:57:22 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2021.3063373, IEEE Design
and Test

5

TABLE 1: An overview of the datasets, models, architecture details, hyperparameters: learning rate and rate of decay, no. of
parameters, fraction of weights updated atleast once during NN training, lowest possible training-time speedup and the test
accuracy achieved by training models with sparse fetches for 200 iterations respectively. The values in the parentheses represent
the number of neurons and the kernel dimensions for the Fully Connected (FC) and Convolutional blocks (Conv) respectively.

Dataset Model Architecture
Learn.
Rate

Rate
of
Decay

Parameters
Parameters
Updated (%)

Decryp.
Time, in Hrs
(10 workers)

Total Train.
Time, in Hrs
(10 workers)

Training
Speedup Acc.

Sparse
dloads

Full
dloads [11]

Sparse
dloads

Full
dloads [11]

10
workers

Lowest
obs.

MNIST
MLP FC(128)–FC(256)–FC(10) 0.010 0.99 136074 23.04 21 2 21 3 7.00 4.34 0.94

CNN
C(3x3x32)–P–C(3x3x64)–P–FC(128)–

FC(10)
0.010 0.99 421642 18.40 100 6 103 10 10.30 5.43 1.00

CIFAR-10
MLP FC(128)–FC(256)–FC(10) 0.005 0.95 428938 44.69 70 8 72 10 7.20 2.24 0.88
CNN C(3x3x32)–P–C(3x3x64)–P–FC(128)–FC(10) 0.005 0.95 545098 16.85 93 8 96 11 8.72 5.94 0.94

ImageNet* AlexNet
C(11x11x96)–P–C(5x5x256)–C(3x3x384)–

C(3x3x384)–C(3x3x256)-PFC(1024)–FC(100)
0.001 0.99 20627940 15.44 1310 203 1355 248 5.46 4.81 0.86

* C - Convolution layer P - Pooling Layer FC - Fully Connected Layer

We know that Tfull = |W | ∗ tdec. Therefore,

Tsparse

Tfull
= |W |∗tcomp+|Wsparse|∗tdec

|W |∗tdec
= tcomp

tdec
+
|Wsparse|
|W |

(2)

As comparisons are multiple orders of magnitude faster than
the decryption operations (tcomp ≈ 1.25 ∗ 10−7s), we can
assume tcomp

tdec
≈ 0 with considerable confidence. Additionally,

as evident from Table 1 (Column Parameters Updated), the
sparse fetch will never be bigger than the full model. Thus,
a fixed number of iterations with sparse fetches will always
be completed faster. Fig. 3 has plots for the time taken (on a
logarithmic scale) to run 200 iterations on the global model for
varying number of clients which clearly show the advantage of
sparse fetches. We can quantify the advantage of sparse fetches
over the full fetches by considering the speedup achieved by
our scheme (= Tfull

Tsparse
). As evident from Fig. 2a, |Wsparse|

(fraction of weights downloaded per iteration) grows as clients
in the system increase. Thus, the speedup drops with increasing
number of clients. The experimental values of the speedup
for a range of workers is depicted in Fig. 2b. As the number
of clients in the system increases, the speedup achieved by
our system drops from around 17x for 2 clients to 6x for 24
client nodes. We can estimate the lower bound of the speedup
achieved by using the fraction of weights that are updated
at every iteration. From Equation 2, we can approximate the
speedup as the inverse of the relative size of the sparse fetches.
These values for the lower bound of the speedup in the case
of different models have been populated in Table 1 (Column
Training Speedup-Lowest Obs.). It is evident that regardless
of the number of clients in the system, the speedup achieved
by our scheme is at least 2x as compared to [11] for each
dataset and model. For the CNN architectures, the speedup
is higher (5.43x, 5.94x and 4.81 for the MNIST, CIFAR-10
and ImageNet datasets respectively) due to a lower fraction of
weights involved in the training.

Impact of data-heterogeneity: We argued that the sub-
linear growth in the size of the sparse fetches observed
in Fig. 2a was due to the overlap of the gradients pushed
by the clients. Now we attempt to present evidence for this
argument and show how the degree of overlap is determined by
the distribution of the data among the clients. By the distribution
of data, we imply whether the data on each client is Independent
and Identically Distributed (IID).

2 5 10 15 20 25
Number of clients

4.0

4.5

5.0

5.5

6.0

6.5

7.0

To
ta

l t
ra

in
in

g
tim

e
(1

0x s
)

MNIST | MLP
MNIST | CNN
CIFAR | MLP
CIFAR | CNN
ImageNet | AlexNet*
Full downloads
Sparse downloads

Fig. 3: Time taken for 200 global training iterations for different
dataset-model configurations

We will restrict the discussion of data heterogeneity to only
the MNIST and the CIFAR-10 datasets for simplicity as both
these datasets have 10 output classes. The training data is
evenly partitioned into 10 clients. Thus, for an IID setting,
each client is randomly assigned a uniform distribution of
training data over 10 classes. For non-IID setting, the data is
distributed among the clients in such a manner that the data
residing on each of them is from a single class. All real-world
scenarios lie somewhere between these two settings, and thus,
we define the degree of heterogeneity of non-IIDness as the
number of classes present on each client (n). This allows us
to quantify the heterogeneity of the data distribution when we
run our experiments.

The experiments that we conduct are similar to previous
section, but with a fixed number of clients (num. of clients =
10). To verify if the relative size of the sparse fetches depends
on the heterogeneity of the data, we present the result of the
experiments in Fig. 2d. It is clearly evident that the fetches
are sparser as the data becomes increasingly homogeneous.
The speedup achieved with respect to full fetches for different
numbers of classes per client can be inferred from the size of
the fetches and is presented in Fig. 2c. The trend matches the
relationship that we derive from Equation 2 i.e. the speedup
varies inversely with the relative size of the sparse fetches.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 13:57:22 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2021.3063373, IEEE Design
and Test

6

2
4

6
8

10
1 3

1 3 5 7 9

2
4

6
8

10

5

1 3 5 7 9

10

0.0

0.2

0.4

0.6

0.8

1.0

Worker

W
or

ke
r

(a) MNIST MLP
2

4
6

8
10

1 3

1 3 5 7 9

2
4

6
8

10

5

1 3 5 7 9

10

0.0

0.2

0.4

0.6

0.8

1.0

Worker
W

or
ke

r
(b) MNIST CNN

2
4

6
8

10

1 3

1 3 5 7 9

2
4

6
8

10

5

1 3 5 7 9

10

0.0

0.2

0.4

0.6

0.8

1.0

Worker

W
or

ke
r

(c) CIFAR-10 MLP

2
4

6
8

10

1 3

1 3 5 7 9

2
4

6
8

10

5

1 3 5 7 9

10

0.0

0.2

0.4

0.6

0.8

1.0

Worker

W
or

ke
r

(d) CIFAR-10 CNN

Fig. 4: Jacard Similarity of sparse updates pushed by clients
to the PS. The titles of the subplot represent the number of
classes of the training data present at each client node.

The gradients pushed to the PS by each client are computed
using the data present locally, and hence the gradients pushed
by any two clients are similar if the data present on the clients
contains samples belonging to common output classes. The
heatmaps in Fig. 4 represent the extent of similarity between
the gradients pushed by clients. For each heatmap, the cell at
(x, y) represents the Jaccard similarity between the gradients
pushed by clients x and y. Mathematically,

sim(x, y) =
|Gx.keys ∩Gy.keys|
|Gx.keys ∪Gy.keys|

We can see that as the number of classes per client increase,
the gradients become increasingly similar and the fetches
become smaller in size. This effect is clear from the cells
turning darker as the local datasets become homogeneous.

Model Accuracy: Through our experiments, we have proved
that sparsifying the model fetches reduces communications
costs and improves training time. As per our argument in
Section 5, no important weight is missed while fetching and
hence the classification accuracy should theoretically be the
same as in [7, 11]. The results of our experiments are presented
in Table 1 (Column Accuracy). The test accuracy after training
each model for 200 iterations gives us excellent results with
94% and 100% classification accuracy for CNN architectures
as well as 86% for AlexNet*.

VI. CONCLUSION AND FUTURE WORK

Sparsifying downstream updates from the server improves
training time and reduces communication cost without de-
grading the accuracy of the model. The proposed system

does not compromise the security of the system in case
of a honest-but-curious aggregator (PS). To combat against
collusion between PS and edge-nodes, we can combine our
proposed approach with other privacy-preserving techniques
like differential privacy. Our approach can be incorporated into
any scheme that uses sparsified gradient updates. We achieved
high speedups, without compromising on the accuracy and
privacy.

REFERENCES
[1] Yann LeCun et al. “A theoretical framework for back-propagation”. In:

Proceedings of the 1988 connectionist models summer school. Vol. 1.
CMU, Pittsburgh, Pa: Morgan Kaufmann. 1988, pp. 21–28.

[2] Pascal Paillier. “Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes”. In: Advances in Cryptology — EUROCRYPT

’99. Ed. by Jacques Stern. 1999, pp. 223–238.
[3] Dario Catalano, Rosario Gennaro, and Nick Howgrave-Graham. “The

Bit Security of Paillier’s Encryption Scheme and Its Applications.” In:
ICTACT. 2001, pp. 229–243.

[4] Cynthia Dwork. “Differential Privacy: A Survey of Results”. In: Theory
and Applications of Models of Computation. Ed. by Manindra Agrawal
et al. 2008, pp. 1–19.

[5] Feng Niu et al. “HOGWILD! A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent”. In: NIPS. 2011, 693–701.

[6] Mu Li et al. “Parameter server for distributed machine learning”. In:
Big Learning NIPS Workshop. Vol. 6. 2013, p. 2.

[7] Reza Shokri and Vitaly Shmatikov. “Privacy-Preserving Deep Learn-
ing”. In: CCS. 2015, 1310–1321. DOI: 10.1145/2810103.2813687.

[8] Jakub Konečnỳ et al. “Federated learning: Strategies for improving
communication efficiency”. In: arXiv preprint arXiv:1610.05492
(2016).

[9] Hardy C. AdaComp. https://github.com/Hardy-c/AdaComp. 2017.
[10] Arthur Jochems et al. “Developing and validating a survival pre-

diction model for NSCLC patients through distributed learning
across three countries”. In: International Journal of Radiation Oncol-
ogy*Biology*Physics (2017). DOI: 10.1016/j.ijrobp.2017.04.021.

[11] Le Trieu Phong et al. “Privacy-Preserving Deep Learning via Additively
Homomorphic Encryption”. In: TIFS (2018), pp. 1333–1345.

[12] Ligeng Zhu, Zhijian Liu, and Song Han. “Deep leakage from gradients”.
In: NIPS. 2019, pp. 14747–14756.

Aditya Lohana is currently working as a Software
Engineer for Microsoft India. He completed his
undergraduate studies with a B.E. (2016-2020) in
Computer Science from BITS Pilani, Hyderabad.
During this time, he spent a semester as Guest
Researcher at Technische Universität Dresden with
the Chair for Processor Design and worked on
privacy-aware distributed Machine Learning. His
research interests include Deep Learning, Natural
Language Processing and Distributed Systems.

Ansh Rupani received the B.E. degree in Electrical
and Electronics Engineering from the Birla Institute
of Technology and Science, Pilani, Hyderabad Cam-
pus, India in 2018. He is currently working toward
the MS degree in Distributed Systems Engineering
from Technische Universität, Dresden, Germany. He
has worked on emerging reconfigurable technologies
and hardware security. He is currently focusing on
carrying out distributed inference on heterogeneous
edge devices.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 13:57:22 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2021.3063373, IEEE Design
and Test

7

Shubham Rai (Graduate Student Member,IEEE)
received the BEng degree in electrical and1electronic
engineering and MSc degree in physics from the
Birla Institute of Technology and Science Pilani,
India, in 2011. He is currently working towards the
PhD degree with Technische Universität, Dresden,
Germany. His research interests include circuit design
for reconfigurable nanotechnologies and their logical
applications.

Akash Kumar (Senior Member, IEEE)received the
joint PhD degree in electrical engineering in embed-
ded systems from the University ofTechnology (TUe),
Eindhoven and National University of Singapore
(NUS), in 2009. He is currently a professor with
Technische Universität Dresden (TUD), Germany,
where he is directing the chair for Processor Design.
From 2009 to 2015,he was with the National Uni-
versity of Singapore, Singapore. His current research
interests include design, analysis, and resource man-
agement of low-power and fault-tolerant embedded

multiprocessor systems.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 13:57:22 UTC from IEEE Xplore. Restrictions apply.

