
DeMAS: An Efficient Design Methodology for Building
Approximate Adders for FPGA-Based Systems
Bharath Srinivas Prabakaran1, Semeen Rehman1, Muhammad Abdullah Hanif1, Salim Ullah2,

Ghazal Mazaheri3, Akash Kumar2, and Muhammad Shafique1
1Vienna University of Technology (TU Wien), Austria

2Technische Universität Dresden, Germany
3University of California, Riverside, United States of America

Contact Persons’ Email: bharath.prabakaran@tuwien.ac.at, muhammad.shafique@tuwien.ac.at

Abstract—The current state-of-the-art approximate adders are mostly
ASIC-based, i.e., they focus solely on gate and/or transistor level approx-
imations (e.g., through circuit simplification or truncation) to achieve
area, latency, power and/or energy savings at the cost of accuracy loss.
However, when these designs are synthesized for FPGA-based systems,
they do not offer similar reductions in area, latency and power/energy due
to the underlying architectural differences between ASICs and FPGAs. In
this paper, we present a novel generic design methodology to synthesize
and implement approximate adders for any FPGA-based system by con-
sidering the underlying resources and architectural differences. Using our
methodology, we have designed, analyzed and presented eight different
multi-bit adder architectures. Compared to the 16-bit accurate adder,
our designs are successful in achieving area, latency and power-delay
product gains of 50%, 38%, and 53%, respectively. We also compare our
approximate adders to state-of-the-art approximate adders specialized for
ASIC and FPGA fabrics and demonstrate the benefits of our approach.
We will make the RTL and behavioral models of our and state-of-the-
art designs open-source at https://sourceforge.net/projects/approxfpgas/
to further fuel the research and development in the FPGA community
and to ensure reproducible research.

Index Terms—Approximate Computing, FPGA, Adders, LUTs, Opti-
mization, Design Flow, Efficiency, Area, Power, Performance, CAD.

I. INTRODUCTION

FPGAs serve as an excellent platform for a wide range of applications
from small-scale embedded devices to high-performance comput-
ing systems due to their short time-to-market, enhanced flexibility
and run-time reconfigurability. However, despite supporting special-
ized hardware accelerators and co-processors, FPGA-based systems
typically consume more power and/or energy, compared to their
ASIC counterparts. Therefore, besides employing traditional energy-
optimization techniques, there is a need for exploring new avenues
in energy-efficient computing solely for FPGA-based systems. One
such attractive trend is the Approximate Computing paradigm, which
is re-emerging due to the breakdown of Moore’s law and Dennard
scaling, and the ever-increasing demand for high-performance and
energy efficiency.

Approximate computing trades the accuracy and precision of inter-
mediate or final computations to achieve significant gains in critical
path delay, area, power and/or energy consumption. This trade-off
becomes beneficial for applications exhibiting inherent application
resilience [1], i.e., the ability to produce viable output despite some
of its computations being inaccurate because of approximations. A
wide range of applications like image and video processing, data
mining, machine learning, etc., in the recognition, mining and syn-
thesis domains exhibit this property. Existing approximate computing
techniques and principles can be applied to different stages of the
computing stack, ranging from logic and architectures at the hardware
layer all the way up to compiler and programming language at the
software layer [2]. There is an extensive amount of research related
to approximations at both hardware and software layers [3], [4].
Voltage over-scaling [5], [6] and functional approximation [7] are the
two major approximate computing knobs employed at the hardware
level. Approximations at the software level can be classified into two
major categories: (i) loop perforation, function approximation [8], [9]
and (ii) programming language support [10], [11]. Approximations
at the hardware level are focused on basic computation modules like
adders [12]–[14] and multipliers [15], [16]. Research works like [17],
[18] focus on modeling the error probability of the existing state-
of-the-art ASIC-based adders and recursive multiplier architectures.
More recent works focus on architecture-level approximations tar-

geting application-specific domains like video processing [19] to
achieve energy efficiency. Major industrial players like Intel, IBM and
Microsoft have also explored the approximate computing paradigm,
and have demonstrated case studies on the design of energy-efficient
hardware and software systems using approximation techniques [20]–
[22].

There has been a lot of research in the field of approximate
computing, focusing mostly on ASIC-based systems. However, due to
the underlying architectural differences between ASICs and FPGAs,
these approximate computing principles are not directly applicable
to FPGAs for achieving similar gains. In the following, we present
a motivational analysis to elaborate on this source of inefficiency.

A. Motivational Analysis
In this section, we illustrate that the ASIC-based approximate com-
puting principles and components, when synthesized and imple-
mented on FPGAs, are not efficient in achieving proportional area,
power, latency and/or energy reductions compared to when these
components are synthesized for ASICs. We utilize state-of-the-art ap-
proximate adder architectures present in the open-source lpAClib [23]
and ApproxAdder [24] libraries. These adder architectures have been
synthesized for a Xilinx Virtex-7 FPGA using the Xilinx ISE 14.7
tool-flow. Fig. 1 illustrates the analysis for area (LUTs), delay
and power-delay product of the state-of-the-art ASIC-based adders.
The Add1, Add2 and Add4 are the ASIC-based approximate adder
versions proposed in [12], these adders are obtained by truncating
and modifying transistors present in a ripple carry adder circuit to
achieve latency, area and energy gains. On the other hand, the “GeAr”
adder focuses on increasing the performance at the cost of accuracy
and area [13].

0

0.5

1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

30

ACC Add1 Add2 Add4 GeAr

30

0

10

20

0

1

2

A
re

a[
S

li
ce

 L
U

T
s]

/D
el

ay
 [

n
s]

P
o

w
er

-D
el

ay
 P

ro
d

u
ct

 [
x

1
0

-9
]

3Area Delay PDP

Add1[12] Add2[12] Add4[12] GeAr[13]Acc. Adder

Fig. 1: FPGA Implementations of State-of-the-Art ASIC-based
Approximate Adders [12], [13]

As can be observed in fig. 1, compared to the accurate version,
the state-of-the-art ASIC-based approximate adders show asymmetric
reductions in area and Power Delay Product (PDP), and an increase
in critical path delay. However, when synthesized for ASIC-based
systems, these approximate adders offer latency, area and power
reductions of at least 41%, 46% and 74%, respectively, for bigger
adder blocks, as per the studies shown in [16]. Proportional reductions
in area, power and latency are not achieved as these approximations
target transistor or gate-level truncations, leading to significant effi-
ciency gains in ASICs but not in FPGAs. The most important factor
in distinguishing ASICs and FPGAs is the way logic functions are

mailto:bharath.prabakaran@tuwien.ac.at
mailto:muhammad.shafique@tuwien.ac.at
https://sourceforge.net/projects/approxfpgas/


realized. The basic building blocks for generating the required logic,
in case of ASICs, are the logic gates, whereas in case of FPGAs, they
are the lookup tables (LUTs) made of SRAM elements. Therefore,
the approximations techniques for FPGAs should be amenable to the
LUT structures instead of aiming at reducing the logic gates.

B. Novel Contributions
We address the above challenges through our following novel con-
tributions:
• Generic Design Methodology: We propose DeMAS, a generic

methodology to design approximate adder architectures by analyz-
ing the architectural features and resources of the target FPGA.
This enables the reader to design multiple architectural versions
of the approximate adder which could be used as per requirement,
based on the platform and constraints. Furthermore, various ap-
proximate versions can be analyzed as trade-off points with diverse
area, latency, energy, and output quality properties.

• Approximate Adders for Xilinx 7-series FPGAs: Using our novel
methodology we were able to design 8 unique adder architectures
which are implemented using various lookup table primitives,
offered by Xilinx, employing different kinds of approximations
based on the logic which can be compacted in these primitives.
These adders have also been characterized in terms of area, latency,
energy, avg. error magnitude, and avg. relative error.

• Open-source Library: We release the source codes (both hardware
RTL in VHDL and behavioral models in MATLAB) of the approx-
imate adders customized for the Xilinx 7-series FPGAs as an open-
source library accessible on-line at https://sourceforge.net/projects/
approxfpgas/. Moreover, we have also added all the scripts and
constraint files to ensure reproducible results and fair comparison
for future works by other researchers.

Paper Organization: Section II presents our generic design method-
ology, DeMAS, for designing the approximate adders, our proposed
adder designs, the technique for building larger approximate adder
blocks and an overview of our experimental setup. Section III presents
the results, followed by conclusion in Section IV.

II. OUR DEMAS METHODOLOGY FOR
APPROXIMATE COMPUTING IN FPGAS

There are four key steps in our methodology to design approximate
adders for FPGA-based systems. Fig. 2 presents an overview of
DeMAS, our novel generic design methodology.

A. Extracting Architectural Features of Target FPGA Platform
As explained in section I-A, the reason why ASIC-based designs
do not offer significant reductions is because they do not take into
account the architectural differences between ASICs and FPGAs.
Hence, as the first step, we need to analyze the FPGA type and
its architectural features for which the approximate adders are being
designed. In this paper, as an example, we target the Xilinx 7-series
FPGA family of devices, namely, the Virtex-7 device 7VX330T.

The basic building block of an FPGA are the Configurable logic
blocks or CLBs. They are used to implement any kind of logic
function using the switching/routing matrix. Each CLB consists of
two slices as shown in Fig. 2(a). Xilinx Virtex-7 family arranges all
the CLBs in columns by deploying Advanced Silicon Modular Block
(ASMBL) architecture. Each slice in this device consists of four 6-
input LUTs, eight flip-flops and an efficient carry chain logic. The
slices act as the main function generators of any FPGA and in the
Virtex-7 family they are categorized as SLICEL or logic slices, and
SLICEM or memory slices.

The lookup tables present in these slices are 5x2 LUTs. This
LUT6_2 is fabricated using two LUT5s and a multiplexer as shown in
fig. 2(b). These LUT5s are the basic SRAM elements which are used
to realize the required logic function, by storing the output sequence
of the truth-table in 1-bit memory locations, which are accessed using
the address lines acting as inputs. These LUTs are made accessible
using a wide range of lookup table primitives offered by the Xilinx
UNISIM library [25], ranging from LUT1 to LUT6. These LUT
primitives are instantiated with an INIT attribute, which is the truth

A B Cin S Co ut

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

A B C in S Co ut

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

✘
✘

LUT3

A B S

0 0 0

0 0 1

0 1 1

0 1 0

LUT2
A B S

0 0 0

0 0 1

0 1 1

0 1 1

LUT4

LUTN

…

III. BUILDING LARGER 

ADDER BLOCKS

CinFA

A0B0

S0

FA

A1B1

S1

FA

AkBk

Sk

… FA

A2B2

S2Cout

Slice0 Slice1 Slice1

Slice0 Slice1 Slice0 Slice1

C
L

B
0

C
L

B
1

C
L

B
2

C
L

B
3

CoutCoutCoutCout

Structure & Routing of CLBs

(b) Structure of the Lookup Table(a) CLB: Configurable Logic Block

Slice0

LUT6_2

O6

O5

I5

I4
:I

0
I4

:I
0

LUT5

LUT5

Fig. 2: Overview of DeMAS Showing Key Steps
table of the function required based on the input logic. The LUT
primitives are used to implement the required logic function which
are then compacted and mapped onto the fabric resources available on
the FPGA. Each of these LUT primitives take in an equivalent number
of 1-bit inputs, and produce a unique 1-bit output. However, at the
hardware level, each of these primitives are physically mapped to one
of the two LUT5s present in the four LUT6_2 fabrics in a given slice
of the CLB. As per studies shown in [26], the use of LUT primitives
allows for Xilinx to efficiently optimize the combining and mapping
of LUT primitives to reduce the area and latency of the synthesized
designs. We use these LUT primitives to achieve significant area and
performance gains for the approximate adder designs.

B. LUT-Based Truth-table Optimizations
To compact the logic function into the truth table and reduce the
critical path delay and area of the adders, we implement the simple
carry chain truncation technique. We analyze the truth tables of 1-
and 2-bit full adders, and try to simplify and reduce them to occupy
lesser number of lookup tables. Table I presents the 1-bit FA truth-
table.

TABLE I: Truth Table for the 1-bit Full Adder

Optimized

Sk Cout

0 0 ✔

1 0 ✔

1 0 ✔

1 0 ✘

0 1 ✘

0 1 ✔

0 1 ✔

1 1 ✔

Inputs

Ak Bk Cin

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truncated

Sk Cout

0 0 ✔

1 0 ✔

1 0 ✔

0 0 ✘

1 1 ✘

0 1 ✔

0 1 ✔

1 1 ✔

Accurate

Sk Cout

0 0 ✔

1 0 ✔

1 0 ✔

0 1 ✔

1 0 ✔

0 1 ✔

0 1 ✔

1 1 ✔

First, we eliminate the carry chain by equating the Cin of a given
stage with one of the inputs (A, in our case) of the previous stage.
This generates an error in 2 of the 8 possible cases, with a constant
error magnitude of 2. However, the error magnitude can be further
reduced to 1 by modifying the Sk bit for the error cases. Similarly,

https://sourceforge.net/projects/approxfpgas/
https://sourceforge.net/projects/approxfpgas/


we draw multiple 1-/2-bit half-/full- adder truth tables, approximate
them by truncating the carry chain and equating Cin of the kth stage
with Ak-1, followed by modifying the sum bits to reduce the error
magnitude.

For the above example, an LUT3 primitive, with inputs A, B
and Cin, needs to be instantiated with the INIT value of ‘96’, the
hexadecimal equivalent of ‘10010110’, to compute the sum-bit for
the carry truncated adder design. INIT attribute is modified to ‘8E’
for the error-optimized adder. These values are the data stored in 1-
bit SRAM cells with inputs acting as the address lines to procure the
required data. Using this methodology, we have designed 8 different
approximate adders as shown in fig. 3. We discuss these designs in
the following sub-sections.

1) Approximate Adder-1: This design utilizes a single LUT2
primitive to implement a half-adder circuit. The sum bit of a given
stage depends solely on the two inputs of the same stage and the carry
is neither computed nor taken into account when the computations
are being performed as shown in Fig. 3(a). The LUT2 primitive is
instantiated with the INIT value ‘E’.

2) Approximate Adder-2: The truth table approximation shown
in Table I is implemented in this design. As explained before, a single
LUT3 primitive is used to implement an approximate FA circuit.
This adder uses the simplest approximation technique in which the
carry computation circuit is eliminated, and the sum-bit is modified
to reduce the error magnitude. Fig. 3(b) depicts the adder design. S0
is computed accurately using the inputs A0, B0, and Cin, whereas Cout
is equated to the input A0. The INIT value for the LUT3 is ‘8E’.

3) Approximate Adder-3: Adder-3 is a 2-bit adder circuit using
LUT2 and LUT4 primitives that compute both S0 and S1 as depicted
in Fig. 3(c). The carry is neither utilized nor computed. This archi-
tecture differs from the Adder-1 as the computation of every Sth

n+1 bit
is performed with a higher accuracy, with the intermediate carry-out
from the previous stage taken into account. The INIT value for the
LUT2 and LUT4 are ‘E’ and ‘80EC’, respectively.

4) Approximate Adder-4: Approximate Adder-4 is also a 2-
bit adder design implemented using LUT2 and LUT5 primitives.
However, the Sth

2n+1 bit’s computational accuracy is further increased
by accounting for the carry-in as shown in Fig. 3(d). The INIT value
for the LUT2 and LUT5 are ‘E’ and ‘E080FEF8’, respectively.

5) Approximate Adder-5: This architecture, using LUT3 and
LUT4 primitives, is designed as a 2-bit adder circuit. In the previous
design, accuracy of S1 was increased, whereas in this adder design
the accuracy of S0 is increased by using an LUT3 primitive instead
of an LUT2 as shown in Fig. 3(e). The INIT value for the LUT3 and
LUT4 are ‘8E’ and ‘80EC’, respectively.

6) Approximate Adder-6: This adder architecture utilizes the
LUT3 and LUT5 primitives to efficiently exploit the LUT6_2 fabrics
present in the slice. This adder’s accuracy is the highest of all the ap-
proximate adder designs presented in this paper as the computational
accuracy of both S0 and S1 are increased by accounting for the Cin
as shown in Fig. 3(f). The INIT value for the LUT3 and LUT5 are
‘8E’ and ‘E080FEF8’, respectively.

7) Approximate Adder-7: In this adder design, the LUT5 prim-
itive is used to compute S1 which is further equated to S0 (i.e.,
S2n = S2n+1) as depicted in Fig. 3(g). A single LUT5 primitive is
used in this design with Cout equated to A1. The INIT value for
LUT5 is ‘E080FEF8’.

8) Approximate Adder-8: Like adder-7 architecture, a single
LUT4 primitive is used to compute both S1 and S0 with S2n = S2n+1,
as shown in Fig. 3(h). The INIT value for LUT4 is ‘80EC’.

C. Building Larger Adder Blocks
The designed half/full adder circuits can be extended to build larger
8-, 16-, 32-, or N-bit adders. Without loss of generality, for illustrative
reasons, we use the carry adder design to implement and/or extend
the smaller adder blocks. There are two techniques through which the
adders can be approximated. Either the adder can be built solely using
the designed approximate blocks (i.e., adders-1 to 8) or a mixture of
accurate MSB and approximate LSB can be implemented, to avoid
high error magnitude at the output. When implementing half adder
circuits in the LSBs, the Cin for the next stage is equated to one of

Ak

Bk

Cin

Cout

SkLUT3

I2
I1
I0

(a) Adder-1 (b) Adder-2

(c) Adder-3 (d) Adder-4

(e) Adder-5 (f) Adder-6
(g) Adder-7 (h) Adder-8

Ak

Bk

SkLUT2

I1

I0

Ak

Bk
SkLUT2

I1

I0

LUT4Bk+1

Ak+1

I2
I3

I0
I1

Sk+1

Ak

Bk
SkLUT2

I1

I0

LUT5Bk+1

Ak+1

I3
I4

I1
I2 Sk+1

Cin
I0

Cout

Ak

Bk SkLUT3
I2

I1

LUT4Bk+1

Ak+1

I2
I3

I0
I1

Sk+1

Cin
I0

Cout

Ak

Bk SkLUT3
I2

I1

LUT5Bk+1

Ak+1

I3
I4

I1
I2 Sk+1

Cin
I0

Cout

I0

Ak

Bk Sk
LUT5Bk+1

Ak+1

I3
I4

I1
I2

Sk+1

Cin

Cout

I0

Ak

Bk Sk

LUT4Bk+1

Ak+1

I2
I3

I0
I1

Sk+1

Fig. 3: Eight Different Designs for Approximate Adders
Customized for Xilinx 7-series FPGAs
the inputs (A) of the current stage. For simplicity, we use a single
type of approximate adder design instead of a combination of 2 or
more types.

D. Hardware Synthesis & Characterization
The approximate adders obtained in the previous stage can then
be categorized and analyzed for two different aspects, resource
consumption and the quality of output. To obtain the resources
consumed by the adder designs, we utilize the Xilinx ISE 14.7
design framework to synthesize and implement these designs on
the Virtex-7 family device 7VX330T, i.e., our target platform. The
maximum compression flag was enabled with the optimization goal
set to latency, so as to reduce area and delay, simultaneously. They are
characterized based on metrics like area (number of LUTs), latency,
and energy consumption. An in-depth error analysis is performed
using the MATLAB level behavioral models of the designed adders
to understand the output quality of the adder designs, using metrics
like average error magnitude and relative error. Fig. 4 illustrates
our experimental setup and tool-flow for developing and analyzing
the adder designs. Besides providing the results for our proposed
approximate adders, we also provide the results for the existing state-
of-the-art approximate adder designs to ensure a fair comparison.

ADDER 

MODELS

RTL
VHDL Codes

RESOURCE CONSUMPTION

Logic Synthesis, 
Place & Route

(Xilinx ISE – 14.7)

Post-PAR 
Reports

Logic
Netlists

VCD File

XPower 

Analyzer

Logic Simulation

 (ISim - Xilinx)

Power 
Report

QUALITY 

ANALYSIS

Test Cases

 Error 
Analysis

MATLAB 
Behavioral 

Codes

Compiled 

Executables

Fig. 4: Tool-flow and Experimental Setup

III. RESULTS & DISCUSSION

We simulated the proposed approximate adders along with the state-
of-the-art ASIC-based designs and the FPGA-based approximate
adder architecture presented in [27]. These designs were evaluated
for a 16-bit system, with either 8 or 16 LSBs approximated. Fig. 5
presents the area, latency, power-delay product and quality of all the
approximate adder designs.

Adders {B1, B4}, {B2, B5} and {B3, B6} represent the approxi-
mate adders presented in [12] with {8, 16} LSBs approximated. Note
that the {B3, B6} adder design employs no logic, i.e., the outputs
are directly connected to the inputs of the given stage, and hence
require no logic or LUTs. Adder B7 is the LUT-based approximate
adder design proposed in [27]. This technique truncates the carry
chain in the middle, with two segments computing the output bits
simultaneously, thereby reducing the latency of the design. Designs
C1 – C8 depict the proposed approximate adders-1 to 8, with 8 LSBs
approximated, whereas adders D1 – D8 employ approximation in all
16 LSBs.



0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

14

16

18

Acc. Add1-8 Add1-16 Add2-8 Add2-16 Add4-8 Add4-16 SOA LA1-8 LA1-16 LA2-8 LA2-16 LA3-8 LA3-16 LA4-8 LA4-16 LA5-8 LA5-16 LA6-8

PDP Area

1

2

3
A

re
a
[#

L
U

T
s]

/L
a

te
n

cy
[n

s]

4

8

16

0 0

12

A B1 B4 B2 B5 B3 B6 B7 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6

Latency

P
o

w
er

-D
el

a
y

 

P
ro

d
u

ct
 [

x
1

0
-9

]

D6 C7 D7 C8 D8

A: Accurate Adder

B1: Add1[12], 8 LSBs

B2: Add2[12], 8 LSBs

B3: Add4[12], 8 LSBs

B4: Add1[12], 16 LSBs

B5: Add2[12], 16 LSBs

B6: Add4[12], 16 LSBs

B7: LUT-Based Adder[27]

C1: Approximate Adder-1, 8 LSBs

C2: Approximate Adder-2, 8 LSBs

C3: Approximate Adder-3, 8 LSBs 

C4: Approximate Adder-4, 8 LSBs 

C5: Approximate Adder-5, 8 LSBs

C6: Approximate Adder-6, 8 LSBs

C7: Approximate Adder-7, 8 LSBs 

C8: Approximate Adder-8, 8 LSBs

D1: Approximate Adder-1, 16 LSBs

D2: Approximate Adder-2, 16 LSBs

D3: Approximate Adder-3, 16 LSBs 

D4: Approximate Adder-4, 16 LSBs 

D5: Approximate Adder-5, 16 LSBs

D6: Approximate Adder-6, 16 LSBs

D7: Approximate Adder-7, 16 LSBs 

D8: Approximate Adder-8, 16 LSBs
0

0.1

0.2

0.3

0.4

0.5

0.6

0

5000

10000

15000

20000

25000

Add1-16 Add2-16 Add4-16 LA1-16 LA2-16 LA3-16 LA4-16 LA5-16 LA6-16 LA7-16 LA8-16

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0

10

20

30

40

50

60

70

80

90

100

Acc. Add1-8 Add2-8 Add4-8 SOA LA1-8 LA2-8 LA3-8 LA4-8 LA5-8 LA6-8 LA7-8 LA8-8

Avg. Rel. Error

3

6

A
v
g

. 
E

r
ro

r

40

80

0 0
A B1 B2 B3 B7 C1 C2 C3 C4 C5 C6 C7 C8

Avg. Error

A
v

g
. 
R

e
l.

 E
r
ro

r
[x

1
0

-1
]

B4 B5 B6 D1 D2 D3 D4 D5 D6 D7 D8A
v
g

. 
R

e
l.

 E
r
ro

r
[x

1
0

-3
]2

1

A
v
g
. 
E

rr
o
r[

x
1
0

3
]

10

0

20

Fig. 5: Area, Latency, PDP and Quality of 16-bit Approximate Adders
Compared to the existing state-of-the-art approximate adders,

which provide menial and/or asymmetrical reductions in PDP, latency,
and area, our adders are successful in achieving area, latency and PDP
reductions of up to 50%, 38% and 53%, respectively, when all the
bits are approximated. Among all the adder designs presented, the
adder B7 produces the least amount of average or relative error. It
is, however, not successful in achieving any significant reductions
in area, latency and PDP. On the other hand, the proposed adder-1
produces the highest average error due to the type of approximation
employed. The proposed approximate adders cover a wide range of
the design space, with adders like C2 – C7 outperforming the ASIC-
based designs, in terms of accuracy and quality of output, as well as
reducing the resources consumed.

The number of lookup tables occupied by all the proposed adder
designs are the same, as the LUT primitives are mapped to the
same LUT6_2 fabric available on the FPGA. However, the use of
LUT primitives enables the user to exploit the underlying Xilinx
optimization mechanisms to reduce the delay of the adder designs.
As can be observed in fig. 5, the use of underlying LUT primitives
offers different delays for the eight adder designs proposed in this
paper, similar to the findings presented in [26]. As expected, Xilinx
optimizes the latency and area by combining and mapping the
LUT primitives, this is most prevalent in the proposed adder-1,
which when configured implicitly leads to sum bits {S0, S1} being
computed in one LUT, {S2, S3} being computed in another, and so
on. Whereas when using LUT primitives like LUT-2, the Xilinx tool-
flow optimizes, combines and maps different sum bits like {S0, S11}
to be computed in a single LUT, thereby reducing the delay of the
adder. The adder designs D7 and D8 are quite similar, of which
the former is implemented using LUT5 and the latter using LUT4
primitives. However, the design D7 has a higher critical path delay as
compared to the D8 adder design. This difference in delay is observed
because of the truncated inputs, and the optimal mapping of the LUT
primitives by Xilinx, which changes the critical path and the delay
of the system.

IV. CONCLUSION

In this paper, we have proposed a novel generic methodology to
design approximate adder components based on the target FPGA’s
system resources. Using this methodology we have designed eight
novel 1-/2-bit approximate adder architectures for the Xilinx 7-series
FPGAs. These adders are successful in achieving reductions of 50%,
38% and 53%, in the area, latency and PDP, respectively. Most of
the errors exhibited by these approximate adders have comparatively
low value concentration and can replace accurate adders for a
wide-range of error-resilient applications. Our work is open source
and the approximate adder library, along with behavioral models,
is accessible on-line at https://sourceforge.net/projects/approxfpgas/.
We further plan to explore the reconfigurable nature of FPGAs to

exploit approximate architectures and their utilization in higher order
accelerators to achieve energy-efficient applications.

REFERENCES

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and
characterization of inherent application resilience for approximate computing,” in
ACM/IEEE DAC, 2013.

[2] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel, “Invited: Cross-
layer approximate computing: From logic to architectures,” in ACM/IEEE DAC,
2016.

[3] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing
Surveys, 2016.

[4] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE
Design Test, 2016.

[5] M. Imani, A. Rahimi, and T. S. Rosing, “Resistive configurable associative memory
for approximate computing,” in DATE. ACM/IEEE, 2016.

[6] K. V. Palem, L. N. Chakrapani, Z. M. Kedem, A. Lingamneni, and K. K. Munti-
madugu, “Sustaining moore’s law in embedded computing through probabilistic
and approximate design: Retrospects and prospects,” in CASES. ACM, 2009.

[7] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant applica-
tions,” in ACM/IEEE DATE, 2010.

[8] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel: Reliability-
and accuracy-aware optimization of approximate computational kernels,” SIGPLAN
Not., 2014.

[9] W. Baek and T. M. Chilimbi, “Green: A framework for supporting energy-conscious
programming using controlled approximation,” SIGPLAN Not., 2010.

[10] D. Mahajan, K. Ramkrishnan, R. Jariwala, A. Yazdanbakhsh, J. Park, B. Thwaites,
A. Nagendrakumar, A. Rahimi, H. Esmaeilzadeh, and K. Bazargan, “Axilog:
Abstractions for approximate hardware design and reuse,” IEEE Micro, 2015.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for
disciplined approximate programming,” SIGPLAN Not., 2012.

[12] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal
processing using approximate adders,” IEEE TCAD, 2013.

[13] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy
configurable adder,” in ACM/IEEE DAC, 2015.

[14] M. A. Hanif, R. Hafiz, O. Hasan, and M. Shafique, “Quad: Design and analysis of
quality-area optimal low-latency approximate adders,” in DAC. ACM, 2017.

[15] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an
underdesigned multiplier architecture,” in 2011 24th International Conference on
VLSI Design, 2011.

[16] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel, “Architectural-
space exploration of approximate multipliers,” in ACM ICCAD, 2016.

[17] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel, “Probabilistic error
modeling for approximate adders,” IEEE TC, vol. 66, 2017.

[18] S. Mazahir, O. Hasan, R. Hafiz, and M. Shafique, “Probabilistic error analysis of
approximate recursive multipliers,” IEEE TC, vol. 66, 2017.

[19] W. El-Harouni, S. Rehman, B. S. Prabakaran, A. Kumar, R. Hafiz, and M. Shafique,
“Embracing approximate computing for energy-efficient motion estimation in high
efficiency video coding,” in DATE, 2017.

[20] A. K. Mishra, R. Barik, and S. Paul, “iACT: A software-hardware framework for
understanding the scope of approximate computing,” in WACAS, 2014.

[21] R. Nair, “Big data needs approximate computing: technical perspective,” Commu-
nications of the ACM, 2015.

[22] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<T>: Abstractions for
uncertain hardware and software,” IEEE Micro, 2015.

[23] Open-source low-power approximate computing library. [Online]. Available:
https://sourceforge.net/projects/lpaclib/

[24] Open-source approximate adder library. [Online]. Available: http://sourceforge.net/
projects/approxadderlib/

[25] Xilinx. (2013) Xilinx 7 Series FPGA Programmable Guide for HDL Designs.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_7/7series_hdl.pdf

[26] A. Ehliar, “Optimizing xilinx designs through primitive instantiation,” in 7th
FPGAworld Conference. ACM, 2010.

[27] A. Becher, J. Echavarria, D. Ziener, S. Wildermann, and J. Teich, “A lut-based
approximate adder,” in FCCM. IEEE, 2016.

https://sourceforge.net/projects/approxfpgas/
https://sourceforge.net/projects/lpaclib/
http://sourceforge.net/projects/approxadderlib/
http://sourceforge.net/projects/approxadderlib/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf

