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Approximate Computing has been proven successful in reducing the energy consumption of Deep
Neural Networks (DNNs) implemented in embedded systems. For efficient DNN approximation at
software and hardware levels, a specialized simulation environment and optimization methodology
are required, to reduce execution and optimization times, as well as to maximize energy savings.
Traditional frameworks for cross-layer approximate computation of DNNs are generally built only for
simulation of convolutional and fully-connected layers, limiting the DNN types to be optimized through
approximations. In this work, we present a specialized simulation environment for approximate DNNs,
which allows for optimization of several DNN architectures built with more complex DNN layers
such as depthwise convolutions and Recurrent Neural Units (RNNs) for time series processing. Low
execution time overhead is achieved hereby through efficient GPU acceleration. Additionally, we
deliver an analysis of approximate DNN and RNN robustness against quantization noise and different
approximation levels. Finally, through specialized approximate retraining, we achieve promising energy
savings and negligible accuracy losses with highly complex DNNs for image classification with

ImageNet, such as MobileNet, and RNNs for keyword spotting with the Speech Commands Dataset.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, several paradigms to optimize the hardware
resources of deep learning applications have been proposed. One
promising approach is cross-layer approximate computing, which
involves the combination of approximation techniques at soft-
ware and hardware level to reduce computational resources in
embedded applications.

Approximations at a software level, such as pruning or quan-
tization, have been thoroughly investigated even for highly com-
plex DNNs dedicated to real-life tasks, such as large-scale im-
age recognition or semantic segmentation for automated driv-
ing [1]. This has been possible thanks to specialized open source
machine-learning frameworks such as Tensorflow Lite [2], or
Ristretto [3], which allow a fast exploration of software-oriented
approximation techniques.

On the other hand, approximations at hardware level are more
difficult to explore, evaluate and optimize, mainly because the
simulation of Approximate Computational Units (ACUs) largely
increases the runtime in traditional frameworks for approxi-
mate computing. Furthermore, specialized cross-layer simulation

* Corresponding author.
E-mail address: cecilia.delaparra@de.bosch.com (C. De la Parra).

https://doi.org/10.1016/j.future.2020.07.031
0167-739X/© 2020 Elsevier B.V. All rights reserved.

frameworks for approximate DNNs are generally implemented for
CPU, which also increases training and validation times, when
compared to exact GPU implementations [4]. In recent works,
GPU-based simulation frameworks for cross-layer approximation,
such as Concrete [5] and ProxSim [6], have been proposed to ac-
celerate the optimization of approximate DNN architectures with
common neural layers such as convolutional and fully-connected
layers. However, more complex operations such as depthwise
convolutions [7] or building blocks for Recurrent Neural Networks
(RNNs) [8] are not available, restricting the architectures that can
be approximated in such specialized frameworks.

In this work, we update ProxSim, presented in [6], by im-
plementing more complex approximate layers, including depth-
wise convolution, Hadamard product and Gated Recurrent Units
(GRUs), as well as more specialized methods for DNN quan-
tization. This variety of layers and quantization methodologies
allows us not only to optimize a wide range of approximate DNNs
for different applications such as image recognition or keyword
spotting, but also to evaluate the accuracy and robustness of such
DNNs against quantization noise at different levels.

In summary, we make the following contributions:

e ProxSimV2: A specialized simulation framework for cross-
layer DNN approximations such as low bitwidth quanti-
zation and approximate hardware, in a variety of layers
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that include depthwise convolution and RNNs composed
of GRUs, besides traditional 1D/2D convolutional and fully-
connected layers.

e Unprecedented exploration of cross-layer approximations in
DNN architectures with specialized layers such as depth-
wise convolutions and GRUs, which perform complex image
and speech recognition tasks. With this, we demonstrate
the versatility of our proposed simulation framework. The
evaluated DNNs include MobileNetV2 [9] for image classi-
fication using ImageNet [10] and two RNNs [11] for speech
recognition using the Speech Commands Dataset (SCD) [12].

e Specialized approximate optimization for accuracy recovery
in lightweight DNNs for image recognition and in RNNs for
keyword spotting, reaching energy savings of up to 36% with
an accuracy loss of less than 5% compared to the 32 bit
Floating Point (FP) accuracy.

2. Related work
2.1. Cross-layer approximations in DNNs

In this subsection, we report a short survey of software and
hardware-related approximation methods for DNNs.

e Low bitwidth quantization of DNNs. Also known as precision
scaling of DNN weights and inputs, quantization leads to a
reduction in memory and computational logic. Through dif-
ferent approaches, DNN parameters and activations can be
generally scaled to 8 bit integers without accuracy loss [1]. A
popular quantization function is the linear quantization [13],
performed as follows:

q(x) = clip (nint [(X) J{=2071 b1 1}]) Ax =X,
Ax

(1)

where nint denotes the nearest integer function, and the
quantization step Ay is computed through traditional meth-
ods, e.g. maximum absolute value:
max(|X|)

AX = Shitwidto1 | (2)
For very large and redundant DNNs such as VGG16 [14],
linear quantization delivers acceptable results. However, for
more challenging DNNs with much less parameters and
more complex architectures e.g. MobileNet [7], linear quan-
tization results in very large accuracy degradation. More ef-
fective quantization methods, for instance quantized thresh-
old retraining [15] or parameter equalization and error bias
correction [16] deliver better results with negligible or no
accuracy loss, even when applied to modern, complex DNNs
such as MobileNet and MobileNetV2 [9].

e Filter pruning. To reduce the number of DNN kernels with-
out accuracy loss, several methods for kernel or filter prun-
ing have been proposed in the literature, based on different
kernel properties. The most popular pruning methods are
presented in [17,18]. In [17], authors propose to prune least
significant filters based on the weight sum of each kernel.
In [18], it is proposed to prune filters that are similar to
more significant ones, selected by k-means clustering, until
the accuracy decreases beyond a pre-determined threshold.

e ACUs in DNN layers. Combined with low bitwidth quanti-
zation, the use of ACUs in the DNN computation leads to
higher energy savings when compared to its accurate coun-
terpart. Partial approximation methods have been proven
effective for reducing the energy consumption in complex

DNNs for image classification. Examples of partial DNN ap-
proximation are presented in [19] and [20], where approxi-
mate multipliers are used in error-resilient neurons selected
either by analysis of the error back-propagation or by com-
puting the derivative of the approximation error. Another
partial approximation method based on genetic search [4],
has been proposed for efficient partial DNN approximation
without retraining. Nonetheless, better energy savings can
be achieved by full approximation, which involves the use of
approximate hardware on all DNN neurons. Through ade-
quate optimization techniques, full DNN approximation can
also lead to smaller accuracy losses. The viability of applying
full approximation to DNNs of different complexity was
proved recently in [6,21], and is our focus in this research
work. An overview of the characteristics and a graphical
representation of partial and full approximation techniques
is presented in Fig. 1.

2.2. Simulation frameworks for cross-layer DNN approximation

The recent exploration of cross-layer approximation tech-
niques in DNNs has lead to the introduction of various simulation
frameworks for approximate DNN computation. Authors in [22]
introduced AxDNN, a novel pre-RTL simulation framework for
comparison of different approximate strategies such as preci-
sion and voltage scaling, approximate multipliers and activation
pruning. Specialized frameworks oriented towards optimization
of approximate DNNs, such as ALWANN [4], deliver efficient
optimization of partial DNN approximation. However, a notable
disadvantage of these frameworks is the large execution times
compared to accurate DNN computation, as these are imple-
mented only for CPU. Another recently proposed cross-layer
approximation framework for GPU simulation is Concrete [5],
based on Caffe [23], which incorporates specialized blocks for
simulation of ACUs, such as approximate multipliers, in common
DNN layers (convolutional and fully-connected) with small time
overhead compared to the accurate counterpart. Lastly, Prox-
Sim [6], based on Tensorflow [2], is oriented not only towards
GPU-accelerated ACU simulation for partial and full DNN approxi-
mation, but also towards efficient approximate DNN optimization
to achieve higher energy savings with negligible accuracy losses.

3. Preliminaries
3.1. DNN quantization

3.1.1. Quantization step optimization

In this work, we quantize activations, kernels and biases to 8
bit integers, as in (1). For this, we compute the quantization step
A using two methods:

e Maximum Absolute Value (MAV), as in (2).
e Minimization of the Propagated Quantization Error (Min-
PropQE), as presented in [1]:

Ay = argmin |J — yell2 3)
Ax

where y; represents the accurate output of the kth layer, and

yy refers to the approximate output of the same DNN layer.

This method has a larger computational overhead com-

pared to MAV. However, it results in lower DNN accuracy

degradation [1].
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Fig. 1. Paradigm of approximate computing for DNNs. Approximated elements are marked with green, accurate operations are marked with gray. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.1.2. Optimization of quantized DNN weights

The use of MAV or MinPropQE for quantization of highly com-
plex DNNs results in large DNN accuracy degradation. Therefore,
in this work, additional DNN parameter retraining is performed.
We only train the quantized DNN weights and biases; quantiza-
tion steps are not optimized. Although efficient retraining of the
quantization step leads to no accuracy losses [15], we find that
our approach is sufficient when combined with approximations at
hardware level, e.g. approximate multipliers: As additional DNN
retraining is required after incorporating hardware approxima-
tions into the DNN computation, the quantization error is further
compensated in this stage.

3.2. Approximate multipliers

For exploring the use of ACUs in the DNN computation, we
implement 18 different 8 bit approximate multipliers from the
following open sources:

e SMApprox [24]. Library with more than 200 approximate
multipliers optimized for FPGA.

e EvoApprox [25]. Library with 471 approximate multipliers
designed through cartesian genetic programming.

All implemented multipliers were randomly selected from the
Pareto front of MRE and energy savings of their corresponding
libraries. We select the MRE as primary metric because it is
directly proportional to the final DNN accuracy degradation, as
we will demonstrate in our experiments.

In Table 1, we report the relative energy savings of all se-
lected multipliers in their corresponding platforms, as reported
in [24,25], as well as their Mean Relative Error (MRE), formally
computed for every possible output as follows:

lg(i, j) — g, )l
MRE_ZZ ma“g”)) . (4)

i=0 j=0

where g(i, j) is the accurate multiplication of i and j, g is the
approximate counterpart, n = 2"Width _ 1 and the max function
is applied to avoid divisions by 0.

4. Simulation of application-specific layers

In ProxSimV2, each layer can be computed either accurately
or using ACUs. In this section, we present our analytical approach
for the implementation of each approximate DNN layer for GPU
acceleration.

Table 1
Approximate multipliers used in this work.

Library Multiplier Energy savings [%] MRE [%]

SMApprox 1000 35.47 0.50

1100 35.76 2.08

2200 36.05 3.78

3300 36.05 3.63

1110 36.10 3.96

2220 36.34 6.66

3330 36.34 6.39

1111 36.63 9.00

2222 37.21 16.56

3333 36.92 13.63

EvoApprox 470 0.90 0.29

365 6.36 0.83

42 12.07 1.87

305 15.81 2.44

231 22.14 4.94

10 26.83 5.08

467 32.62 6.06

63 42.13 8.59

4.1. Implementation of approximate computational units

In ProxSimV2, two possible implementations of Approximate
Computational Units (ACUs) are allowed:

e As Look-up Table (LUT). The behavioral simulation of ap-
proximate multipliers (8 bit or smaller) can be loaded as a
128 KB LUT. To avoid shared memory overflow (generally
the GPU shared memory has a size of 48 KB), the framework
copies this LUT to the GPU global memory. This is then
accessed by the shared memory of each GPU block that will
compute the Multiply-and-Accumulate (MAC) operations in
the corresponding layer, as in Fig. 2, for efficient memory
allocation. The advantage of this implementation is that
any new ACU of 8 bits or smaller can be directly utilized
in the DNN computation without having to re-compile the
approximate layers, and moreover, the computation is much
faster compared to directly implementing the behavioral
code in the DNN layers. Therefore, in this work we focus on
this ACU implementation.

e As behavioral code. For simulation of approximate mul-
tipliers or adders with operands larger than 8 bits, the
behavioral code of such ACUs can be directly integrated into
the approximate layers, which should be then re-compiled,
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Fig. 2. Loading the behavioral simulation of an ACU in ProxSimV2.

with a performance decrease in the execution time, de-
pendent on the complexity of the corresponding behavioral
code.

4.2. Convolutional and fully connected layers

A 2D Convolution takes as input a tensor X of shape (H;,, Wiy,
Cin), where H is the height, W the width and C the number of
channels, and outputs a tensor Y of shape (Hyyr, Wout, Cout ). The
convolution is parameterized by a tensor K or kernel, which con-
tains trainable weights. This kernel has a shape of (Hy, Wk, G,
Cout)- The tensor Y is then computed as follows:

Yein = Zl(i,j,m,n “Xiri-ll-1m > (5)
ij,m
where i, j, m, n correspond to the dimensions of K.
A fully connected (FC) layer takes as input a tensor X of shape
(Hin, Win) and multiplies it with a kernel K of shape (Wi, Woyut)
to output a tensor Y of shape (Hj,, Woy), as follows:

n
Yij= > XuWi; (6)
K

We simulate convolutional and FC layers through General Matrix
Multiplication (GEMM). The motivation is two-fold: first, it allows
for a faster execution of the convolution, and second, it facilitates
the implementation of both layers and their corresponding gra-
dient, as we only need to define the derivative of one operation,
the GEMM, w.r.t. its inputs.

For computing FC layers, no transformation is needed. For
convolutional layers, we transform the kernel K into tensor K’
with shape (Hx x Wi x Cin, Coyt ). The input X is then transformed
into a 2D tensor X'. The shape of this tensor is dependent not
only on its initial shape but also on the stride and padding of the
convolution. For example, in case of a convolution with stride of 1
and padding, the tensor X’ has a shape of (Wj, x Hi;,, Hx X Wy x Cip).
Then, an operation equivalent to (6) is performed. The output Y’
is finally reshaped to (Hyyut, Wout, Cout)-

4.3. Depthwise separable convolution

In modern DNN architectures, to reduce computational costs
in 2D convolutional layers, 2D convolutions can be factorized into
a depthwise convolution and a 1 x 1 convolution, as in Fig. 3.
This factorization is known as depthwise separable convolution,
and is used in state-of-the-art DNN models such as MobileNet [7]
and MobileNetV2 [9]. In Fig. 3, a graphical description of our
approach to implement this operation is presented. Details about
the computation of a depthwise convolutional layer in ProxSimV2
are given in the following subsection.

4.3.1. Depthwise convolutions
Depthwise convolutions apply a single filter per input channel,
and are computed as in (7) [7].

Yiim = Z Kijm * Xitiz1,14j—1,m (7)
ij
The factorization of traditional 2D convolutions into depthwise
separable convolutions is efficient in reducing the computational
costs from:
Win X Hijp x Hg x Wy x G X Coye to:
Win X Hin X Hg X Wy X Cipy 4 Cin X Coue X Wiy, X Hi, multiplications.

. . ] 1
This corresponds to a computational decrease of aon T AW [7].

Similarly to the implementation of depthwise convolutional
layers in Tensorflow, in ProxSimV2, our implementation for ap-
proximate depthwise convolution with ACUs dynamically loads
input and kernel tiles into the GPU shared memory and only
a single channel of each kernel is loaded in each thread. This
implementation is characterized by:

e More efficient execution compared to the GEMM implemen-
tation. Depthwise convolution is performed just with one
filter per input channel, which reduces data transfer times
and memory occupation.

e Better data alignment and thread synchronization per block.

4.4. Recurrent neural networks

Recurrent Neural Networks (RNNs) are a type of neural net-
works with internal states or memory, which allows to dynami-
cally process temporal sequences. RNN architectures are there-
fore commonly used for time series processing tasks such as
speech recognition or keyword spotting.

RNNs consist of a hidden state h and an output y, and receive
an input of variable length x = (xq,...,x,) [8]. At time ¢, h;
is updated according to (8), where f is a non-linear function,
with complexity varying from a single sigmoid operation to a
Long-Short-Term Memory (LSTM) unit [26].

h = f(he_q, %) (8)

In RNNs, a common non-linear function f which serves as gating
mechanism to store previous states is the Gated Recurrent Unit
(GRU).

4.4.1. Gated recurrent units

At each time step t, GRUs receive two tensors: an input tensor
X, and a previous state h;_q, and output a tensor h;. Auxiliary
tensors or gates are computed inside a GRU to regulate the in-
formation flow to the output. Generally, a GRU is composed of
an update gate z, which works as regulator for input values, and
a reset gate r, which functions as control for the previous states.
As proposed in [8], the output h; is determined according to the
following steps:

Step 1. The reset gate r is computed as in (9), where o is a
sigmoid function, W;, U, are learned weights and b, is
the reset bias.

r= Gg(WrX + Urhe—1 + by) 9)

Step 2. The update gate z is computed as in (10), where W,, U,
are learned weights and b, the update bias.

z = 0g(W,x + Ushe_q + b,) (10)
Step 3. The final activation h; is computed by:
hh=z0h_1+(1-2)0h |, (11)
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where the hidden state E is determined by (12). In (12),
o denotes an activation function, typically the hyper-
bolic tangent, and ® denotes the Hadamard product.

hy = on(Wix 4 Up(r © he_1) + by) (12)

In ProxSimV2, r and z are computed as a single tensor v of size
[n, m] as in (14), where:

_ W U ~_ | X _|br
K, = |:Wz Uz] , X= |:ht—li| , b= |:bz] (13)

V= 0:g(Kr,z}?‘i‘ br,z) (14)
The result is then split accordingly:

Z = (vij) ien (15)

7<j§m

r= (vi,j)liig% )
For the computation of Ft, a similar grouping of variables is
performed according to (16). Then, h; is computed by (17).

~ X
Ky =[Wn U], X= |:r®h[_1] (16)

E[ = O’h(Kh/X\—F bp) (17)

To explore the incorporation of quantization and ACUs in the RNN
computation, we propose three approximation levels:

Level 1. Approximation of tensor v (14). Only the multiplication
between the matrices K, , and X is approximated. For
this, only tensors x;, h;—; and K;, are quantized. If a
bias by ; is used, it is quantized as well. The consequent
operations are computed with FP accuracy.

Level 2. Approximation of v and E. In this approach, matrix
multiplications between K; , and X, and between K, and
X are approximated. For this, K, and X are quantized as
well. Biases b, ; and by, are also quantized, if bias addition
is used.

Level 3. Full Approximation. All multiplications involved in the
computation of h; are approximated, including Hada-
mard products. This requires the additional quantization
of the update gate z.

The graphical representation of each approximation level in a
GRU is depicted in Fig. 4.

5. Approximate DNN retraining

After applying cross-layer approximations to a DNN, the accu-
racy suffers certain degradation, proportional to the introduced
approximation error. Approximate retraining is an effective ap-
proach for recovering such accuracy losses [6,21], and therefore
we adapt this optimization method to be applied in more com-
plex DNNSs, approximated by quantization and ACUs. We perform
retraining by stochastic gradient descent algorithms, following
the optimization scheme presented [6], and depicted in Fig. 5. In
this optimization flow, w; are the weights at iteration t, Aw;q
is the weight update policy with a learning rate n, and C(y) is
the loss function used to train the original DNN. For all DNNs
implemented in this work, we use the cross-entropy loss, defined
in (18) either for image or speech classification. In (18), p denotes
the input label, ¥ denotes the DNN output and n represents the
number of possible classes. During retraining, the loss function
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Table 2
Characteristics of evaluated DNNs.
DNN Dataset Top1 Acc. Params. [x10°] MAC Ops. [x10]
MobileNetV2 ImageNet 71.83 3487.80 300
RNN1 Speech Commands 94.24 75.79 15
RNN2 Speech Commands 94.35 189.49 3.8
Table 3 Stride = 1 Stride = 2
Approximate MobileNet V2 — retraining times.
DNN Time per epoch [s] Time overhead [%]
8 bit accurate 1250 -
8 bit approximate 3930 314

C)

™
>
R
X
>
™
>
s
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Gradient computation

oCH)
Jdw,

ICG) _ 9C@) 9y 9y W, Aw,,, =—-n
ow, 05 af oW, ow r+l

Fig. 5. Approximate DNN inference (forward pass) and gradient computation
(backward pass) during retraining in ProxSimV2.

C(y) is minimized at each iteration by gradient back-propagation.
n

C(x) == _ pilogi (18)
i=1

All approximate layers, as well as some quantization functions
such as the nearest integer function, have undefined gradients
because of their non-differentiable nature. During back-
propagation, to deal with the undefined gradients of these op-
erations, a Straight-Through Estimator (STE) [27] is adapted and
implemented for all approximate layers as follows:

o o

STE — ~
oW, oW,

; (19)

where f is the accurate layer and T is the approximate layer
computed with ACUs [6].

6. Evaluation

In this section we present the evaluation results of ProxSimV2
using three different DNNs: MobileNetV2 for image classification
and two RNNs for speech recognition. The characteristics of each
DNN are given in Table 2, and each DNN is detailed in the
followings subsections. For both tasks, the accuracy is computed
with the validation dataset.

6.1. MobileNet V2

This is a lightweight DNN for image classification using Im-
ageNet [10]. This network is composed by several bottleneck
residual blocks as depicted in Fig. 6. Note that when the convolu-
tional stride is equal to 1, a shortcut from input to output is added
to improve the gradient propagation across multiple layers [9].
Thanks to this residual shortcut, further optimization techniques
for avoiding vanishing gradients, such as alpha regularization [6],
are not necessary.

Depthw. Conv 3x3

Depthw. Conv 3x3

¥

¥

¥

Linear

=}
| < | - -
=
X
-

Linear
Add

Fig. 6. MobileNetV2: Bottleneck residual blocks.

6.1.1. Quantization

To quantize all parameters of MobileNetV2 to 8 bits, we first
estimate the corresponding step sizes A using MinPropQE. We
then obtain an initial 8 bit accuracy of 61.48%. To recover from
this accuracy drop of more than 10%, we apply the training
scheme presented in Section 5. We retrain the quantized DNN
for one epoch with stochastic gradient descent, a batch size of
128 and a learning rate of 1e-4, using 20% of the training dataset.
We reach a new 8 bit accuracy of 70.69%. Note that we do not
merge the parameters of the batch normalization layers with the
ones of the precedent convolutional layers, as these improve the
consequent approximate DNN retraining.

6.1.2. Optimized approximation

Due to the complexity of MobileNetV2, we propose two accu-
racy tolerances: for low approximation levels (multipliers with an
MRE smaller than 2%), an accuracy drop of 1% w.r.t. the quantized
8 bit accuracy is allowed, and for larger approximation levels, a
maximum accuracy degradation of 5% is proposed. We retrain
the MobileNetV2 for 5 epochs with all 18 different approximate
multipliers from Table 1, using the gradient computation method
from Fig. 5. The results are presented in Fig. 7 (for multipliers
with an MRE smaller than 2%), Fig. 8 (for multipliers with an MRE
between 2% and 4%), and Fig. 9 (for multipliers with an MRE larger
than 4%).

When using ACUs, retraining times are 3.14x longer, inde-
pendently of the utilized ACU, compared to the 8 bit accurate
retraining times. This is shown in Table 3, where the reported
retraining times were averaged over 5 epochs using 5 different
approximate multipliers. This represents an improvement com-
pared to the first version of ProxSim, which required up to 11x
longer inference and retraining times [6].

Regarding DNN accuracy optimization, we observe that after
the first epoch, the largest accuracy improvement is reached.
Afterwards, the DNN accuracy slowly converges to the maximum
possible value, which strongly depends on the approximation er-
ror. Furthermore, we observe that our proposed accuracy degra-
dation limits cannot be reached using approximate multipliers
with an MRE larger than 4%.
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MobileNet V2 - Approximate multipliers with MRE <= 2%
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epochs. Accuracy tolerance of 1% is reached.
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Fig. 8. MobileNetV2 accuracy with medium approximation levels, over 5
retraining epochs. Accuracy tolerance of 5% is reached.
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Fig. 10. RNNs for keyword spotting using the Speech Commands Dataset.

Table 4
Relative energy savings in MobileNetV2.
Library Multiplier Energy savings [%] DNN Acc. [%]
SMApprox 1000 35.47 69.55
1100 35.76 67.81
2200 36.05 67.63
3300 36.05 67.62
1110 36.10 65.97
EvoApprox 470 0.90 70.38
365 6.36 69.86
42 12.07 69.36
305 15.81 68.93

6.1.3. Evaluation of energy savings

For this evaluation, we estimate the relative energy savings
at the multiplications performed in depthwise convolutions, in
traditional convolutions and in FC layers using the energy savings
of a single approximate multiplier. In Table 4, all multipliers
that are within the proposed DNN accuracy tolerance of 5% are
presented. We further include the final accuracy after retraining
and the relative energy savings. We are able to reach relative
energy savings of 15% using the EvoApprox library (multiplier
305) and of 36% using the SMApprox library (multiplier 1110).

6.2. Recurrent neural networks

We implement two RNNs from [11] for keyword spotting
using the Speech Commands Dataset [12]. These DNNs classify
input keywords in 12 different classes, including one class for
unknown words. The general architecture of each RNN is depicted
in Fig. 10.

6.2.1. Quantization

As explained in sub Section 4.4.1, we evaluate the impact of
8 bit quantization at three different approximation levels. For
each level, we compute all quantization steps using MAV (2). The
quantized accuracy for these three different approximation levels
is given in Table 5, as well as the percentage of approximated
MAC operations in the GRU blocks. We observe that an approxi-
mation level 3 leads to a large accuracy drop of more than 50% for
both RNNs, even though the additional number of approximated
operations is less than 1% of the total MAC operations, according
to Table 5. Note that for level 1 and 2, a better quantized accuracy
is reached with RNN1, despite RNN2 having better FP accuracy.
This is a result of the utilized quantization method, which is
straightforward and does optimize the quantization parameters.
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Table 5
RNNs for keyword spotting quantized to different approximation levels.
Approximation level RNN1 RNN2
Accuracy [%] Approximated MAC ops. [%] Accuracy [%] Approximated MAC ops. [%]
FP - no approximation 94.24 0 94.35 0
8 bit levell 92.35 66.31 91.81 66.47
8 bit level2 92.13 99.46 91.83 99.73
8 bit level3 38.69 100 41.28 100
&, &,
> 80 B - FP accuracy N 80 _ - FP accuracy
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— —
= N T T R 1% tolerance > L e 1% tolerance
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(b) RNNT1 - Approximation level 3.

Fig. 11. 8 bit approximate RNN1, retrained over 5 epochs using 8 different
approximate multipliers.

6.2.2. Optimized approximation
We focus on optimizing the quantized RNNs with approxima-

tion levels 2 and 3, to maximize energy savings. The retraining
time per epoch for each RNN is reported in Table 6. Note that the
time overhead is very small, compared to the computation of the
approximate MobileNetV2. This is due to the following reasons:

1. The implemented RNNs have fewer layers, and thus the
approximate computation is called in fewer occasions.

2. In ProxSimV2, the time required for building the GRU
blocks and the corresponding dynamic RNN calls is more
significant than the time needed for computing the approx-

imate operations.

(b) RNN2 - Approximation level 3.

Fig. 12. 8 bit approximate RNN2, retrained over 5 epochs using 8 different
approximate multipliers.

For level 2 approximations, we propose an accuracy tolerance
of 1% w.r.t the quantized 8 bit accuracy. In the case of level 3
approximations, we do not use the 8 bit quantized accuracy as
reference, because the accuracy drop in the 8 bit RNNs is very
large. Instead, we propose a tolerance of 5% w.r.t. the FP accu-
racy. For each approximation level, we retrain the corresponding
RNN with 8 different approximate multipliers from Table 1. We
use Adam optimizer [28], which has a better performance for
this task, compared to stochastic gradient descent. We retrain
for 5 epochs with a learning rate of 1e-3, a batch size of 256
and no background noise, following the retraining methodology
presented in Section 5. The results are plotted in Figs. 11 and 12.
From these plots, we conclude that the initial quantization error
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Table 6
Approximate RNNs — retraining times.
8 bit DNN Time per epoch [s] Time overhead [%]
RNN1 accurate 41.29 -
RNN1 approximate 45.05 9.11
RNN2 accurate 41.14 -
RNN2 approximate 45.30 10.11
Table 7

Relative energy savings in RNNT.

Multiplier Approx. level 2 Approx. level 3
Acc. [%] Savings [%] Acc. [%] Savings [%]
1100 91.68 35.55 89.88 35.76
1110 91.83 35.88 89.79 36.10
2220 91.09 36.12 88.36 36.34
3333 91.65 36.70 36.9 36.92
470 92.17 0.89 91.79 0.90
365 91.65 6.32 90.78 6.36
10 91.40 26.67 90.03 26.83
63 87.18 41.88 86.39 42.13
Table 8

Relative energy savings in RNN2.

Multiplier Approx. level 2 Approx. level 3
Acc. [%] Savings [%] Acc. [%] Savings [%]

1100 91.99 35.65 91.50 35.76
1110 91.9 35.99 91.23 36.10
2220 91.87 36.23 90.64 36.34
3333 91.74 36.81 43.58 36.92
470 92.15 0.90 91.36 0.90
365 91.74 6.34 91.65 6.36
10 91.83 26.75 90.91 26.83
63 87.11 42.00 87.69 42.13

can be almost fully compensated after the approximate retrain-
ing, and therefore this training step is useful to compensate not
only the approximation error introduced by ACUs but also the
quantization error. However, in most cases, we observe a better
performance with the same approximate multiplier when using
an approximation level 2.

As observed in Figs. 11 and 12, the corresponding accuracy
tolerances are reached after just 5 epochs in most cases, ex-
cept when computing with approximate multipliers with an MRE
larger than 10% (SMApprox 3333).

6.2.3. Evaluation of energy savings
We estimate the relative energy savings at multiplications
performed in GRUs, in convolutions and in FC layers, based on:

e The energy savings of a single approximate multiplier.
e Percentage of approximated MAC operations according to
the approximation level (see Table 5).

In Table 7, we present the final accuracy of RNN1 after retraining,
as well as the relative energy savings with each evaluated approx-
imate multiplier. The multipliers SMApprox 3333 and EvoApprox
10 deliver the best trade-off between accuracy and energy savings
while maintaining the accuracy tolerance of 5%. The same results
are observed with RNN2, where multipliers SMApprox 3333 and
EvoApprox 10 deliver the most optimal results regarding accuracy
and energy savings, according to Table 8.

Conclusion and outlook
Approximate computing in DNN architectures for different

perception tasks can lead to promising computational savings.
In this work we present ProxSimV2, a specialized simulation

framework for approximate DNNs with complex layers such as
depthwise convolutions and recurrent units such as GRUs. Fur-
thermore, we propose an efficient combination of cross-layer
approximation techniques such as low bitwidth quantization and
the use of approximate multipliers. This is achieved by imple-
menting a variety of approximate DNN layers in our simulation
framework, as well as an optimized retraining approach for ap-
proximate DNN computation. Through extensive evaluation of
state-of-the-art DNNs such as MobileNetV2, and two RNNs for
keyword spotting, we demonstrate the versatility of ProxSimV2,
and the effectiveness of our proposed optimization method for
efficient cross-layer DNN approximation, delivering minimum
accuracy loss and maximized energy savings. To the best of our
knowledge, we are the first to present such an extended analysis
of cross-layer approximations in highly complex DNNs like Mo-
bileNetV2 for ImageNet and RNNs for keyword spotting with the
Speech Commands Dataset.
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