
AMAH-Flex: A Modular and Highly Flexible Tool
for Generating Relocatable Systems on FPGAs

Najdet Charaf*, Christoph Tietz*, Michael Raitza§, Akash Kumar§, and Diana Göhringer*
*Chair of Adaptive Dynamic Systems, §Chair for Processor Design

Technische Universität Dresden, Germany
E-mail: {najdet.charaf, michael.raitza, diana.goehringer, akash.kumar}@tu-dresden.de, {christoph.tietz}@mailbox.tu-dresden.de

Abstract—In this work, we present a solution to a common
problem encountered when using FPGAs in dynamic, ever-changing
environments. Even when using dynamic function exchange to
accommodate changing workloads, partial bitstreams are typically
not relocatable. So the runtime environment needs to store all
reconfigurable partition/reconfigurable module combinations as
separate bitstreams. We present a modular and highly flexible
tool (AMAH-Flex) that converts any static and reconfigurable
system into a 2 dimensional dynamically relocatable system. It
also features a fully automated floorplanning phase, closing the
automation gap between synthesis and bitstream relocation. It
integrates with the Xilinx Vivado toolchain and supports both
FPGA architectures, the 7-Series and the UltraScale+. In addition,
AMAH-Flex can be ported to any Xilinx FPGA family, starting
with the 7-Series. We demonstrate the functionality of our tool in
several reconfiguration scenarios on four different FPGA families
and show that AMAH-Flex saves up to 80% of partial bitstreams.

Index Terms—Field programmable gate arrays (FPGA), Floor-
planning, bitstream relocation, dynamic partial reconfiguration,
dynamic relocatable system

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have become an
attractive platform for many real-time applications that work
in changing environments. The devices themselves deliver a
performance that makes them usable for real-world applications.
The development of FPGAs has taken hardware flexibility, in
general, one step further. In the end, the toolchain to build
applications on these devices also has improved significantly,
which makes these devices used by a wider engineering
audience. Recently, FPGAs are advertised as the "one-takes-
it-all" standard embedded platform with the ability to start
developing with traditional embedded software design and
calling out to specialized hardware accelerators, if needed
[1]. Current toolchains steer the development process into the
direction of perceiving special hardware call-outs as calls into
a software library. And this is, indeed, an effective metaphor.
Combined with powerful microprocessors on which the software
runs, this leads to the expectation that multiple embedded
applications can be consolidated on a single system. Modern
operating systems are capable of dynamically managing the
required working set of application code and data without the
need for detailed planning at development time. The exact
working set does not even need to be known at development
time, as long as all real-time and power requirements will be
met in the end; mixed-critical systems [2] are a well-known
representative in this development direction. Two main concepts

make the management of software resources transparent to the
developer and the user: runtime library loading and virtual
addressing; the software simply works, and it easily integrates
with other software. This is in strong contrast to the way
hardware accelerators are currently handled. They usually still
become part of the fixed hardware platform on which the
embedded applications run. All resources and all access to shared
resources must be planned in advance and immediately thought
through to the end. Here is where the metaphor of calling an
external library breaks down. The concept of transparent runtime
resource management breaks down and almost everything is
left for the application developer to solve.

Current toolchains and FPGA designs do not yet support the
concept of virtual addressing or bitstream relocation at runtime.
Each loaded partial bitstream (PB) represents the functionality of
a specific location defined at synthesis time and not at runtime.
However, if this location is occupied by another accelerator, we
have an unsolvable resource conflict. Besides, it takes a long
time to generate all partial bitstream possibilities of a design
with several reconfigurable functions. This is very critical for
designs with a large number of reconfigurable functions since the
storage resources are limited. One approach to overcome these
problems is the so-called bitstream relocation [3]. It consists
of having a PB that can be manipulated to load into any other
compatible reconfigurable region. This technique helps to reduce
the memory needed to store all PBs and the time required to
generate all PBs. The concept has been around for quite a while.
However, there is still a lack of automated and highly flexible
tools to transform the current designs into a dynamic relocatable
system and make it accessible to a wider audience.

With our proposed work, we present a modular and highly
flexible tool that consists of an automated design flow for
floorplanning and generating a 2-D relocatable design for
different Xilinx FPGAs using Vivado. Moreover, we have closed
the remaining gap between synthesis and bitstream generation to
relocate partial bitstreams on all Xilinx FPGA families starting
from the 7-Series. Our contributions include:

• Accepting different design sources, enabling Isolation
Design Flow, and supporting all Xilinx 7-Series and
UltraScale+ families (Vivado versions as of 2017.2)

• Automatically find, floorplanning, and place reconfigurable
partitions

• A modular and very highly flexible tool that can be adapted,
extended, and used separately for individual other purposes

 



Setting-up the
Design Flow

Preparatory
Phase

Floorplanning
Phase

Make Identical
Phase

Implementation
Phase

Bitstream
Generation

These phases automatically organize, 
prepare, calculate, and synthesize both 
static and reconfigurable designs

This phase allows the 
user without prior 
knowledge to perform 
the floorplanning 
automatically

This phase converts
the design into a 
2D dynamically 
relocatable system

These phases implement all possible 
configurations and generate the 
corresponding partial bitstreams 
that can be relocated at runtime 

Partial Bitstream

Full Bitstream

Modularity
(in case using only

some phases)

AMAH-Flex
Library (.tcl)

Reconfig.
Design

Static
Design

Config. File

Different Design
Sources (IP, HDL, BD etc.)

Fig. 1: On the upper half a general overview of the design flow of our tool and its phases. On the bottom page, a general description of modularity, in case the
subphases are used separately.

This paper is organized as follows: Section II discusses the
related work and the comparison with them. Section III and
IV give a detailed overview of the proposed tool. Section V
summarizes the experimental setup and provides a detailed
overview of the applied scenarios. In Section VI, we summarize
the paper and give an outlook on future work.

II. STATE OF THE ART

In the last years, several works [4]–[8] been presented
for placing RPs automatically. They discussed and proposed
approaches to efficiently find and place dynamic regions
on FPGAs. However, these solutions are not applicable for
partitioning FPGAs so that it is possible to relocate bitstreams,
since: these works do not fulfill all the major requirements of the
bitstream relocation technique that are mentioned and explained
in Section III. Further approaches have addressed the integration
of bitstream relocation. An automated design flow for bitstream
relocation is presented in [9]. This design flow automatically
performs the floorplanning phase. The possibility to relocate in
1-D and/or 2-D is not presented. This approach uses ISE and
the PlanAhead PRIVATE constraint to prevent the static part
from using resources inside the reconfigurable partition (RP).
Therefore, the approach can not be used by Vivado Design
Suite and is not applicable to newer and future devices. A novel
approach to relocate partial bitstreams was presented in [10].
In this work, a technique called RePaBit is developed, which
can relocate in a vertical and horizontal direction. RePaBit is
a partially automated design flow that uses the Vivado Design
Suite. The proposed technique avoids feed-through routes, which
are the connections between static resources that cross the
RPs, by using Isolation Design Flow (IDF). RePaBit adds two
additional look-up-tables (LUTs) to the netlists in both, static and
reconfigurable logic, this is called "bus macro". However, using
this approach comes along with more LUTs overhead, since for
each I/O signal of a reconfigurable module (RM) two LUTs are
required, one in the static part and one in the RP. Additionally,
the user still has to perform the floorplanning manually and the
approach is developed only for Xilinx Zynq FPGAs. Similar to
the prior approach an automated design flow using Vivado was
presented in [11]. This work proposes a technique using TCL
scripts. In order to guarantee a consistent interface between the
static logic and the reconfigurable logic, the proposed technique
adds an additional partition called Connection Partition (CP).
This partition is a complementary partition to each RP for all
partition pins to tie to. Unlike the prior approach, this approach
inserts for each I/O signal of an RM only one additional
LUT, which will be placed in the static part. However, the

prevention of feed-through routes and the facilitation to relocate
vertically and horizontally is not presented, and like RePaBit,
the user still has to perform the floorplanning manually. A
newer approach is called IMPRESS [12]. This is a TCL script-
based tool that automatically generates bitstreams for bitstream
relocation under Vivado. This approach supports IP blocks
specially generated with Vivado HLS for the implementation
of reconfigurable systems. Besides, this approach enables
reconfigurable-to-reconfigurable communication and hierarchical
reconfiguration. In the paper, however, it was not clear what
the user must provide to the tool and what the tool generates
automatically. Furthermore, an automatic floorplanning phase
was not presented. Therefore, the user still has to perform this
phase manually. Also, the used blocker macro for avoiding static
nets within RPs needs a lot of time for realization and cannot
be easily transferred to other boards.

Accordingly, and to the best of our knowledge, our proposed
tool is the first developed solution that enables 2-D bitstream
relocation for all FPGA families of both 7-Series and UltraScale+
architectures, including the Isolation Design Flow (IDF) and
using a flexible interface. AMAH-Flex provides the necessary
framework to automatically apply the floorplanning phase and
transform any system into a dynamic relocatable system. The
proposed solution contributes to the current motivation to make
reconfigurable systems increasingly flexible in adaptive, ever-
changing hardware systems.

III. REQUIREMENTS AND TOOL OUTLINE

Our design flow differs from the classic Dynamic Function
Exchange Flow by having three layers (two additional layers and
one extended layer). The two additional layers: one to build the
design flow and one to make all RPs identical so the functions
can be relocated at runtime. The extended layer improves
the classical synthesis phase by automatically calculating the
resource utilization and preparing the design flow for the used
architecture. Figure 1 shows a detailed overview of our design
flow and describes each phase separately, in case the user uses
the sub-phases separately.

A. Definitions

In this work, we use the following terminology to describe
the parts and relations of our floorplanning and implementation
flow.

Dynamic Function eXchange (DFX): The Dynamic Partial
Reconfiguration (DPR) technique from Xilinx is now called
DFX [13].

 



Reconfigurable Module (RM): The function to be imple-
mented as a relocatable hardware accelerator.

Reconfigurable Partition (RP): The partition on the FPGA
that can hold a certain set of compatible RMs.

Relocation Group (RG): A set of RPs. Each RM that fits
into any RP in the relocation group can be relocated to any
other RP as well.

AMAH-Flex Library: The framework of the tool which
includes all necessary functions for building the 2D relocation
design flow.

Configuration File (Config File): Contains the part of the
used FPGA, the names of RMs and RPs in the design as well
as the names and the paths of all folders.

B. Requirements for relocatable partial bitstreams

Candidate reconfigurable partitions have to meet a set of
requirements to be suitable for bitstream relocation. All RPs
that are used for bitstream relocation must be identical and
fulfill the following characteristics:

Resource footprint: The underlying hardware resources must
have the same arrangement.

Interface compatibility: Partition pins and nets which are
connected to the partition pins must have the same relative
placement, number and routing respectively.

Avoiding of Feed-Through: A static net that crosses a
Reconfigurable Partition (without a connection) is called Feed-
Through net. These nets are not allowed.

C. Extended Isolation Design Flow (EIDF)

Safety-critical and security-critical systems often have special
requirements. In the programmable logic domain, it is the
encapsulation of modules to enable independent operation.
Xilinx addresses this with their IDF, which allows the isolation
of modules on a single FPGA. Since both DFX’s baseline and
relocation design flow do not actively avoid implementation
networks, it is an additional task to implement this feature.
Furthermore, there is no toolchain from Vivado that performs
automatic floorplanning while preserving IDF rules. As of
Vivado version 2020.2, a combination of IDF and DFX is only
supported for Zynq UltraSacle+ MPSoC devices [14]. Support
for 7-Series FPGAs is not available and will not be in the future
according to [15]. For all other UltraScale and UltraScale+
FPGAs, Xilinx may support this combination in future releases
[[14], p. 80]. Using AMAH-Flex, it is still possible to fulfill
the primary goal of avoiding feed-through paths by switching
between these flows during the relocation design flow. With
this workaround, it is possible to apply it for different FPGAs.
To enable this functionality, the HD.ISOLATED attribute must
be set for each hierarchical module that is to be isolated. By
restricting Pblocks for each module, isolated regions are created
that contain only the logic of their module and the top-level
logic. The latter is an important fact: any logic that is not
hierarchically within an isolated module is considered top-level
logic and can even be placed in isolated regions. Routing of
top-level networks can be from, to, or through isolated regions.
Communication between isolated modules is implemented with

so-called trusted routes. For more information about IDF, see
[14].

D. Design Sources and AMAH-Flex Library

To maximize the flexibility of the proposed tool, we im-
plemented an approach that accepts all the different design
sources that Vivado supports. For now, AMAH-Flex supports
the design sources: prj, sysvlog, vlog, vhdl, ip, bd, cores with
the file name extensions: prj, sv, v, vhd, xci, bd, tcl, ngc,
edn, edif, edf, dcp. Other naming extensions can be easily
added. Moreover, there are additional options which can be
applied for each source. AMAH-Flex supports the design source
options: includes, generics, vlogHeaders, vlogDefines, ipRepo,
xdc, synthXDC, implXDC, synth_options, synthCheckpoint. The
library is the framework of the AMAH-Flex tool. It is a TCL
script-based library and contains 62 functions. Most of the
functions are implemented in a modular and highly flexible way
to be used and extended in other projects.

E. Connection Partition

We employ a connection partition (CP) to ease the task
of meeting the resource arrangement and routing constraints.
The CP allows for decoupling an RP before reconfiguration
managed by the static logic. Using a CP infers an additional
set of LUTs in the number of I/O connections to the RP. The
overhead introduced by connecting to the RP via a separate
CP is negligible (see [11]). By decoupling the RP from static
logic, it frees the designer to individually implement decoupling
themselves. Another advantage is that routes connecting signals
that cross the RP boundary are guided towards the CP, further
constraining their placement. This makes it easier to find
solutions for placing the partition pins but might rarely cause
difficulties to find a viable solution for an RP implementation,
as it might exhaust routing resources in a particular region of
an RP.

IV. DESIGN FLOW OF AMAH-FLEX IN DETAIL

The tool starts reading the information from the config file
(e.g. Vivado version, FPGA architecture, organization of output
folders) and collects all related files into the design. Each
different design source has a specific file name extension. This
property is used to add the source correctly. A core function
called simple_add_module remembers all the various design
sources that exist in the specified directory. Then for each type
of source found, it adds all the files according to their extension
to the module attribute. This approach allows us to use mixed
design sources. This phase is called setting up. The result of
this phase is a static design, a reconfigurable design, and setting
up all parameters related to the synthesis and implementation
process. After this phase, the preparatory phase begins.

The preparatory phase finds, separates, and stores all RMs
as well as the associated FPGA board information and prepares
all needed variables for the next phases. The static part and
all RMs are synthesized separately. The synthesize process is
performed by Vivado. Then, the report results are saved in the
Synth folder. Another essential step is to collect all necessary
information regarding the available resources on the used FPGA

 



Floorplanning
 Phase

Make Identical
Phase

 

Ultr
aS

ca
le

+ 7-series

generate

Classify

Find whicn clock region
contains enough resources

Resources of max. RM

Number of inserted LUTs

Set column definition
for UltraScale+

Set column definition
for 7-Series

Find posibilities
Resources of max. RM

Number of inserted LUTs

Pre-defined variables

CP side (left or right)

Select class & place RPs

Apply extended IDF

Constraint file

Ready for the
make identical phase

Fig. 2: A general overview of the floorplanning phase.

board. AMAH-Flex writes them to a generated ARCH file. The
ARCH file is generated only once and the step can be skipped
if the FPGA information is already available. Once the file
is generated, an implemented algorithm sorts and divides its
contents into three main groups: Tiles, I/O pins, and clock ranges.
Each tile in the tile group is then assigned to a column within
a particular clock region. The clock regions are divided into
columns and rows, and each column has an individual position
number and contains only one type of resource. In this context,
it is important to note that the naming of some resource names
differs between the UltraScale+ and 7-Series architectures. After
the preparatory phase was passed successfully, the design flow
continues with the floorplanning phase.

In general, the floorplanning phase aims to find a valid
placement for all needed RPs on the FPGA, so that it is possible
to assign the RMs to them and the communication between the
static part and these regions is faultless. The placement of RPs
requires extensive knowledge of FPGAs and the common design
tools from Xilinx do not take over the task of placing them
automatically. That means the user has to manage it manually,
which can take a long time and be error-prone. With AMAH-
Flex, we offer an automatic floorplanning phase that frees the
user from this difficult and demanding task. Figure 2 illustrates
the steps of the developed floorplanning phase. In this phase, all
placement possibilities of RPs on the FPGA are found, which
have enough resources to host the largest RM. The floorplanning
phase begins by checking each clock region if it contains enough
resources to host at least the maximum RM plus the related
CP. The algorithm then checks whether the FPGA architecture
used is a 7-Series or an UltraScale+ architecture. This check
is essential because the UltraScale+ (US+) architecture differs
from the 7-Series (7S) in terms of elements notation, elements
arrangement, and the number of elements within one clock
height column (7S: 50 CLBs; US+: 60 CLBs). The algorithm
continues with the main sub-phase find possibilities, in which
all possible positions within each clock region are found. Figure
3 shows the process of the find possibilities in details, including
the related states for the case where the connection partition is
placed on the right side. The find possibilities starts with state
Init, where all relevant parameters are set. Find possibilities
completes the first stage when all required resources of the

Start

Idle Needed Find 
next

 Reduce
region

Still
enough?

Is enough
LUT? Find CP

Init Found all
resources?

RP CP

Finish first
stage

Finish middle
stage

Finish end
stage

Add 
possibility

Clock Region

Clock Region Clock Region

Clock Region

Fig. 3: A detailed overview of the find possibilities procedure including the
three stages and their states. Example of a placing possibility: 3 CLB columns
(blue) and 1 DSP column (red). Gray are the interconnections.

requested RM have been found.
Then, in the middle stage, the RP found is reduced, since

resources could be included that are not used because the
arrangement of an element type on the FPGA is not successive.
In the end stage, the correct CP to its RP is searched, which
contains only slices as element type. At the end when the
suitable CP is found this combination of RP + CP is saved as
a “possibility”. This is repeated until all clock regions have
been searched. Once all possibilities are found, the design
flow algorithm classifies them into separate groups. Each
group consists of identical RPs that contain the same resource
arrangement as well as identical CPs that contain the same
slice type. Further, the distance between the CP from the RP
is equal within one relocation group. This step is required,
since the design flow proposed in this work considers only
relocation between identical resource arrangement within RPs

Algorithm 1: Classify RPs & CPs into relocation groups
1 Classify ();

Input : All possible positions of RPs + CPs on FPGA
Output : The relocation group array

2 check IsPossiblePositions not_empty;
3 forall Clock Regions do
4 PrepareAllRelevantVariables;
5 StoreRPCPPairwise;
6 end
7 while AllPossibilities not_empty do
8 switch 𝑠𝑡𝑎𝑡𝑒 do
9 case Init do

10 SelectNewFootprint(𝑅𝑃 𝑓 +𝐶𝑃 𝑓 );
11 case Compare do
12 AreAllClockRegionThrough;
13 AreAllPossibilitiesWithinClockRegionThrough;
14 SelectNewPossibility(𝑅𝑃𝑝 +𝐶𝑃𝑝);
15 if (𝑅𝑃 𝑓 +𝐶𝑃 𝑓 )Equal(𝑅𝑃𝑝 +𝐶𝑃𝑝) then
16 CalculateDistance;
17 if DistanceIsEqual then
18 SavePossibilityInTheClassList;
19 end
20 end
21 else
22 SavePossibilityInTheTempList;
23 end
24 case No more entries do
25 IsTempListEmpty;
26 case Finish do
27 GenerateRelocationGroup;
28 otherwise do
29 end
30 end
31 end

 



RAMB18_X5Y70
RAMB18_X5Y71

RAMB36_X5Y35
Switchbox

DSP48_X5Y51

DSP48_X5Y50

SLICE_X50Y150

SLICE_X49Y150

CLBLL_X25Y150

Switchbox

Make 
Identical

RP1 CP1

RP2 CP2 RP2 CP2

Used Resource

Fig. 4: Example of the result of our make identical algorithm on Xilinx Virtex7.

and CPs. The procedure for classifying the RPs and CPs into
relocation groups is shown in Algorithm 1. Consequently, the
class is selected from the classify list, which contains at least the
number of resources the user needs for RPs. Afterwards, the RPs
are placed as many times as the user requires. Once all RPs and
all CPs are successfully placed, a constraint file is generated
containing the necessary information needed for the Frame
Address Register (FAR) value for each RP. Now the design flow
continues with the extended IDF. The IDF DRC checker are
enabled with hd.enableIDFDRC = true. Running the isolation
DRC can help to avoid consequential errors. Once the extended
IDF is successfully completed, AMAH-Flex continues with
the make identical phase. The make identical phase makes
the content of all RPs identical. This means that, it makes the
logical and physical position of the used resources and I/Os as
well as the routes between RPs and the static part identical. The
aim of this phase is to fulfill all the requirements mentioned and
explained in Section III. Figure 4 illustrates the make identical
phase on Xilinx Virtex7. In this phase the algorithm copies all
used resources (e.g. DSP, CLB, BRAM) from the template RP
to the target RP as well as from the template CP to the target
CP. The implementation phase routes the static design to all
RPs. It also loads all other RMs into the design and saves each
complete design/configuration as a checkpoint which is used
for generating PBs. AMAH-Flex loads these checkpoint files
separately and creates a full bitstream and a partial bitstream
for each RM. This is the last phase and the design flow ends.
AMAH-Flex leaves a note on the Vivado terminal at the end
that states: You need the following information (column address,
row address, etc.) to calculate the FAR value that is essential
for manipulating and relocating partial bitstreams.

V. EVALUATION

We evaluated various design flow stages to show the viability
of our approach. In the preparatory phase, we tested whether
we were able to collect all resources from different FPGA
architectures. The tested devices were Virtex 7 485t, Artix 7
200t, Kintex 7 325t and Zynq UltraScale+ 9eg. As these resource
files are device-specific and do not need to be recreated, they
could in principle be delivered as libraries along with our
tool. We were able to correctly determine the resources on
all architectures so that working RPs could be instantiated on
all architectures in the later process. The floorplanning phase
successfully determined placements for all RPs on every tested
architecture. The algorithm successfully worked with both, left-
placed CPs and right-placed CPs. Our tool was able to make the
resource and routing content of all RPs identical in the make

Feed-Through
No

Feed-Through

Trusted 
Routes

Fig. 5: The final result of AMAH-Flex on UltraScale+. Left, an example of
a feed-through as an ornage colored dashed arrow (without AMAH-Flex or
without IDF). Right, using trusted routes and free of feed-throughs (using
AMAH-Flex).

identical phase. This shows, that the resource identification and
floorplanning steps worked correctly for both, the 7-Series and
UltraScale+ architectures. Full and Partial bitstream generation
worked equally reliable. All generated partial bitstreams could be
relocated by manipulating the FAR to suitable values targeting
RPs within the same relocation group.

A. Mixed Design Sources

We test the usability of mixed sources on a design with
two reconfigurable modules containing different FFT designs.
The design itself contains various design sources: for the static
design, a block design created in TCL containing the following
components: Zynq US+ Core, System Reset, AXI GPIO, AXI
Interconnect; for the reconfigurable design we used Verilog files
describing a FFT block. The whole design used 1471 LUTs, 7
BRAMs, 9 DSP blocks, with 1300 LUTs, 4 BRAMs and 9 DSP
blocks used by the reconfigurable FFT block. In the preparatory
phase, the AMAH-Flex tool adds all design sources. The static
module and the two RMs have been successfully synthesized
and the necessary design reports generated.

B. Use-Cases

The designs contain four RPs and respectively two RMs
and use the aforementioned FPGAs. In case of four RPs, the
algorithm processes three RPs in 1-D, which differ only in
Y axis and the fourth to the left of them, which differs in
X and Y axis. This scenario indicates that the algorithm is
successfully completed and can be used on the one hand for
2-D relocation and on the other hand for different FPGA boards.
Moreover, this scenario shows that the algorithm can also be
used to find and place more than two RPs. All scenarios were
tested with two applications, first, one 16-bit multiplier and one
16-bit adder, and second, a shift-left register and a shift-right
register. In both applications the RMs were relocated among
the available RPs and their inputs and results recorded. Each
RP, when it contained an RM, worked flawlessly and produced
correct results according to its loaded module. Figure 5 shows
the final placement result of the four RPs szenario on the Xilinx
Zynq UltraScale+ FPGA. On the left side of the figure we can
see there is no more feed-through routes using AMAH-Flex.

C. Results

Table I summarize the maximum number of reconfigurable
regions within a relocation group based on 7 different benchmark
designs with different sizes on different Xilinx FPGAs. From
the table, we can see that the larger the region, the less the
possibility of finding an identical one. Furthermore, the more

 



TABLE I: An overview of the placement results for maximum number of
reconfigurable regions on both Xilinx 7-Series and UltraScale+ architecture.

Architecture
Resource Utilization

of Different Applications
7-Series UltraScale+

Artix7
200t

Kintex7
325t

Virtex7
690t

Virtex7
485t

Zynq
ZU9EG

CLB
Tile

BRAM
Tile

DSP
Tile

Maximum number of reconfigurable regions
within a relocation group

200 0 0 19 28 100 107 43
[300-1200] [0-20] [0-40] [8-3] [27-7] 20 21 15

[1400-3500] [0-30] [0-140] 3 [7-6] 10 7 4

7
10

16

4 4 4

13

19

31

7 7 7

17

25

41

9 9 9

23

34

56

12 12 12

0

10

20

30

40

50

60

Reconfig. partitions: 2 Reconfig. partitions: 3 Reconfig. partitions: 5

N
um

be
r

of
pa

rt
ia

l b
it

st
re

am
s

DFX - RMs: 2 AMAH-Flex - RMs: 2 DFX - RMs: 5 AMAH-Flex - RMs: 5
DFX - RMs: 7 AMAH-Flex - RMs: 7 DFX - RMs: 10 AMAH-Flex - RMs: 10

Savings 75% - 79%Savings 60% - 65%Savings 43% - 48%

Fig. 6: An detailed overview of savings with AMAH-Flex compared to DFX.

heterogeneous the FPGA is, the less possibility there is to find
several identical RPs. Nevertheless, in the 7-Series, AMAH-Flex
finds mostly at least as many RPs as the number of vertical clock
regions within an FPGA. In the UltraScale+ it is a little different
since vertical clock regions also differ. Overall, we show that our
design flow algorithm successfully completed and all phases of
the design flow were executed successfully. Moreover, its design
overhead and memory resource requirements are significantly
better compared to the normal DFX: in the case of the previously
mentioned use case with 2 RMs and 4 RPs for the same design,
DFX would generate a total of 13 bitstreams, which can be
computed using this equation:

𝑃Bitstreams, DFX = 1full+𝑀RP(blanking) + (𝑀RP ∗𝑁RM)partial (1)

In contrast, AMAH-Flex generates seven during design time:

𝑃Bitstreams, Relocation: design-time = 1full+𝑀RP(blanking)+𝑁RM, partial (2)

and requires only four during runtime:

𝑃Bitstreams, Relocation: run-time = 1full + 1blanking + 𝑁RM, partial (3)

Considering only the sums of the partial bitstreams (PBs)
(including the blanking bitstreams, since they are only a special
partial bitstream of the same size), there is a saving of 75%.
This saving even increases with a higher number of RPs or RMs.
Figure 6 illustrates the savings with AMAH-Flex compared to
DFX in terms of max. generated PBs of a design with N RMs
and M RPs.

VI. CONCLUSION

This work presented a new tool to create 2-D relocatable
bitstreams. The design flow algorithm runs automatically and
the user no longer needs to manually perform the floorplanning
phase. Moreover, the design flow uses TCL scripts and was
developed for the Xilinx Vivado Design Suite. It supports any
kind of FPGA board from Xilinx starting with the 7-generation.

AMAH-Flex can be used for 1-D and 2-D relocation as well
as for designs with a large number of RPs. In this work, the
RPs heights were one clock region. Placing one RP into the
upper half and one into the lower half showed promising results,
which will allow us to merge two half-heighted RPs into a
single clock region for improved resource utilisation in a future
extension of our approach. The AMAH-flex tool is published
as an open source tool and is available at [16].

VII. ACKNOWLEDGEMENT

This work is funded by the European Social Fund in Germany
ESF and co-financed by tax funds based on the budget approved
by the members of the Saxon State Parlament as part of the
ReLearning project under grant agreement number 100382146.

REFERENCES

[1] “Xilinx solutions,” Xilinx. (), [Online]. Available: https://www.xilinx.
com/products/silicon-devices.html (visited on 07/29/2021).

[2] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks
with multiple criticality specifications,” in 20th Euromicro Conference
on Real-Time Systems (ECRTS 2008), Los Alamitos, CA, USA: IEEE
Computer Society, Jul. 2008, pp. 147–155.

[3] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, “REPLICA: A bitstream
manipulation filter for module relocation in partial reconfigurable
systems,” in 19th IEEE International Parallel and Distributed Processing
Symposium, Apr. 2005.

[4] C. Bolchini, A. Miele, and C. Sandionigi, “Automated resource-aware
floorplanning of reconfigurable areas in partially-reconfigurable FPGA
systems,” in 2011 21st International Conference on Field Programmable
Logic and Applications, Sep. 2011, pp. 532–538.

[5] C. Beckhoff, D. Koch, and J. Torreson, “Automatic floorplanning and
interface synthesis of island style reconfigurable systems with GoAhead,”
in Architecture of Computing Systems – ARCS 2013, ser. Lecture Notes
in Computer Science, Berlin, Heidelberg: Springer, 2013, pp. 303–316.

[6] A. Montone, M. D. Santambrogio, D. Sciuto, and S. O. Memik,
“Placement and floorplanning in dynamically reconfigurable FPGAs,”
ACM Transactions on Reconfigurable Technology and Systems, vol. 3,
no. 4, pp. 1–34, Nov. 2010.

[7] T. D. Nguyen and A. Kumar, “PRFloor: An automatic floorplanner for
partially reconfigurable FPGA systems,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey California USA: ACM, Feb. 21, 2016, pp. 149–158.

[8] C. E. Neely, G. Brebner, and W. Shang, “ReShape: Towards a high-level
approach to design and operation of modular reconfigurable systems,”
ACM Transactions on Reconfigurable Technology and Systems, vol. 6,
no. 1, pp. 1–23, May 2013.

[9] A. Lalevée, P.-H. Horrein, M. Arzel, M. Hübner, and S. Vaton,
“AutoReloc: Automated design flow for bitstream relocation on xilinx
FPGAs,” in 2016 Euromicro Conference on Digital System Design (DSD),
Aug. 2016, pp. 14–21.

[10] J. Rettkowski, K. Friesen, and D. Göhringer, “RePaBit: Automated
generation of relocatable partial bitstreams for xilinx zynq FPGAs,”
in 2016 International Conference on ReConFigurable Computing and
FPGAs (ReConFig), Nov. 2016, pp. 1–8.

[11] R. Oomen, T. Nguyen, A. Kumar, and H. Corporaal, “An automated
technique to generate relocatable partial bitstreams for xilinx FPGAs,”
Sep. 2015, pp. 1–4.

[12] R. Zamacola, A. García Martínez, J. Mora, A. Otero, and E. de La Torre,
“IMPRESS: Automated tool for the implementation of highly flexible
partial reconfigurable systems with xilinx vivado,” in 2018 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
Dec. 2018, pp. 1–8.

[13] Xilinx, “Vivado design suite tutorial: Dynamic function eXchange,”
p. 153, 2020.

[14] ——, XAPP1335 - Isolation Design Flow for UltraScale+FPGAs and
Zynq UltraScale+ MPSoCs. Mar. 9, 2021, Version Number: v2.1.

[15] Xilinx Forum, Isolated design flow (idf) and partial reconfiguration (pr)
possible for zynq 7000? Nov. 9, 2018.

[16] N. Charaf, C. Tietz, M. Raitza, A. Kumar, and D. Göhringer, Amah-flex,
https://github.com/TUD-ADS, 2021.

 


