
Improving the Timing Behaviour of Mixed-Criticality
Systems Using Chebyshev’s Theorem

Behnaz Ranjbar∗†, Ali Hoseinghorban†, Siva Satyendra Sahoo∗, Alireza Ejlali†, and Akash Kumar∗
∗Chair for Processor Design, CFAED, Technische Universität Dresden, Dresden, Germany

†Embedded System Research Laboratory (ESRLab), Sharif University of Technology, Tehran, Iran
{behnaz.ranjbar, siva_satyendra.sahoo, akash.kumar}@tu-dresden.de, hoseinghorban@ce.sharif.edu, ejlali@sharif.edu

Abstract—In Mixed-Criticality (MC) systems, there are often
multiple Worst-Case Execution Times (WCETs) for the same
task, corresponding to system operation mode. Determining the
appropriate WCETs for lower criticality modes is non-trivial;
while on the one hand, a low WCET for a mode can improve
the processor utilization in that mode, on the other hand, using
a larger WCET ensures that the mode switches are minimized,
thereby maximizing the quality-of-service for all tasks, albeit at
the cost of processor utilization. Although there are many studies
to determine WCET in the highest criticality mode, no analytical
solutions are proposed to determine WCETs in other lower
criticality modes. In this regard, we propose a scheme to determine
WCETs by Chebyshev theorem to make a trade-off between the
number of scheduled tasks at design-time and the number of
dropped low-criticality tasks at runtime as a result of frequent
mode switches. Our experimental results show that our scheme
improves the utilization of state-of-the-art MC systems by up to
85.29%, while maintaining 9.11% mode switching probability in
the worst-case scenario.

Index Terms—Mixed-Criticality, Mode Switching Probability,
Resource Utilization, Schedulability, WCETs’ Analysis.

I. INTRODUCTION

NOWADAYS, Mixed-Criticality (MC) systems are widely
used in embedded real-time systems to meet cost, space,

timing, and power consumption requirements [1]–[4]. A wide
range of safety-critical applications found in medical devices,
automotive, and avionics industries are evolving into MC
systems. These systems consist of tasks with multiple criticality
levels. At runtime, the system must guarantee the successful
execution of all high-criticality (HC) tasks to prevent catas-
trophic damages while ensuring that the processor utilization
and Quality-of-Service (QoS) are maximized (execute a higher
number of low-criticality (LC) tasks) [3]–[5].

In conventional real-time systems, the tasks are sched-
uled based on their pessimistic Worst-Case Execution
Time (WCET). Many approaches like what presented in [6],
[7] and tools like OTAWA [8] are used to determine the
pessimistic WCET of a task by analyzing the task’s control
flow. These tools provide a safe and conservative execution
time-bound so that no task’s execution time exceeds it under
any circumstances. However, Fig. 1 [6] depicts that most
samples’ execution time is significantly shorter than such a
conservative WCET, which leads to poor processor utilization
and QoS in conventional real-time systems.

To this end, in MC systems, there are usually multiple
WCETs, corresponding to the multiple criticality levels and

This work is supported in part by the German Research Foundation (DFG)
within the Cluster of Excellence Center for Advancing Electronics Dresden
(CFAED) at the Technische Universität Dresden.

d
is

tr
ib

u
ti
o
n
 o

f
ti
m

e
s

WCETBCET

time0
measured execution times

possible execution times

Minimal
observed
execution

time

Maximal
observed
execution

time

The actual WCET
must be found or
upper bounded

ACET

Fig. 1: Execution time distribution for a real-time task [6]. The figure shows
the large gap between the WCET and the ACET.

the on-going mode of operation [2], [9]–[11]. This ensures
that the processor utilization (and correspondingly, the QoS)
is maximized in the low-criticality mode (LO mode), while
the guarantees are preserved in the high-criticality mode (HI
mode). MC systems, in the beginning, execute tasks based
on the schedule with optimistic WCETs at runtime. If the
execution time of at least one HC task exceeds its optimistic
WCET, the system switches to the HI mode. In this mode, the
pessimistic WCETs of HC tasks are considered to guarantee
the correct execution of HC tasks, and the system has to drop
all or some LC tasks [1]–[4], [11], [12]. Therefore, when the
gap between the optimistic and pessimistic WCETs is large,
more tasks, especially LC tasks, are scheduled at design-time.
However, it may cause frequent system mode switches, and
consequently, drop more LC tasks at runtime. When this gap
is small, it reduces processor utilization due to the scheduling
of fewer tasks at design-time.

Optimistic WCETs play an important role in designing the
MC systems. Most state-of-the-art research works [2], [4], [9],
[10], [12] set optimistic WCETs as a percentage of the pes-
simistic WCETs. However, Fig. 1 shows that most tasks’ exe-
cution time is close to Average-Case Execution Time (ACET).
Furthermore, most studies have not analyzed the probability of
exceeding the optimistic WCETs in system design.

To the best of our knowledge, there is no method to deter-
mine optimistic WCETs for MC tasks to provide a reasonable
trade-off between the number of LC tasks that can be guaran-
teed to meet the deadlines at design-time and the probability
of mode switching at runtime to improve the system utilization
and QoS. This paper proposes a novel scheme for MC systems
to determine the appropriate optimistic WCETs for tasks. We
focused on MC systems with two criticality levels, but our
scheme could be used for MC systems with several criticality
levels.

Contributions: The main contributions of this paper are:
• Introducing a novel scheme to obtain the optimistic

WCETs by Chebyshev theorem in MC systems and show-
ing the relation between the optimistic WCETs and mode
switching probability.

• Formulating and solving (using Genetic Algorithm (GA))
an optimization problem for improving the resource uti-
lization and reducing the mode switching probability.

• Evaluating our proposed scheme for various state-of-the-
art MC systems to investigate their timing behaviour and
system schedulability.

The rest of the paper is organized as follows. In Section II,
we review related works. In Section III, we introduce MC tasks
and system operational modes. The motivational example and
our proposed method are presented in Section IV. Finally, we
analyze the experiments and conclude in Sections V and VI,
respectively.

II. RELATED WORKS

A significant number of papers have been published in the
last decade about designing the MC systems. Vestal [13],
presented the MC task model and introduced different WCET
levels for the first time. However, the author has not discussed
how these WCETs are obtained and how often the system
switches to the HI mode based on the design. Most of the
approaches, such as [2], [4], [9], [10], [12], [14], generally
set the optimistic WCETs (WCET opt) as a percentage of the
pessimistic WCETs (WCET pes). This policy may waste the
system utilization, or cause frequent mode switches, which dis-
turbs the LC tasks. Although the efficiency of these approaches
has been evaluated for different percentages of WCET pes,
there is no scalable approach for determining the WCETs for
all criticality levels. A few studies [15], [16] have determined
the WCET opt of tasks at runtime, based on their overall
processing requirements and actual execution times. However,
there is no guarantee at design-time on optimal use of the
system utilization and LC tasks’ execution.

Besides, a few studies such as [17], [18], have focused
on probability distributions in MC systems by exploiting
Extreme Value Theory (EVT) for timing analysis. Applying
these estimation methods causes some open challenges, such
as the required number of execution times for a sample and
its incomplete representativity identification and evaluation,
that make it uncertain and unreliable [19]–[21]. Researchers
in [21] have recently exploited this probabilistic information
and proposed a technique to optimize the energy consumption
of MC systems by finding the optimum core speed in the LO
mode and based on that, obtaining the WCET opt. However,
their system operational model definition for running the LC
tasks is different from the popular MC model.

Some research works such as [22] have addressed mode
switching probability in MC systems and how to have the safe
mode switching at runtime. However, the relation between the
HC tasks’ WCET opt and mode switching probability has not
been discussed.

Therefore, an appropriate WCETs analysis of MC tasks in
LO mode is needed to reduce the use of WCET estimation
methods and improve the confidence in the WCET’s values [3].
In this work, we propose a scheme to not just determine the
WCETs in the LO mode, but also exploit them to optimize the
system utilization, schedulability, and mode switching proba-
bility.

III. MIXED-CRITICALITY TASK MODEL

We consider a dual-criticality system analogous to [1], [9],
[21], in which multiple periodic tasks with two criticality levels
are executed upon the same platform. Each system has a finite
number of MC tasks, {τ1, τ2, ..., τt}. In addition, DO-178B [23]
is an industrial standard that is used in the avionic industry and
has introduced five levels of safety, i.e., A, B, C, D, and E,
(A and E provide the highest and the lowest levels of safety,
respectively), in which, a failure/deadline miss in tasks with
various criticality levels has a different impact on the system,
from no impact to catastrophic consequences. Each task has
one of these criticality levels. We characterize a task τi as
(ζi, C

LO
i , CHIi , Pi, Di), where:

• ζi denotes the criticality level of τi 1.
• CLOi (CHIi) denotes the WCET of task τi in LO (HI) mode.
• Pi denotes the period of task τi, which is the minimum

amount of the time between two released instances.
• Di denotes the deadline of task τi, Di = Pi [2], [9].

Although the proposed scheme is independent of the prece-
dence relationship, we consider an independent periodic task
model to analyze the schedulability. Further, since we have
dual-criticality systems, we have two levels of WCET for each
HC task τi where CHIi ≥ CLOi , CHIi = WCET pesi , and
CLOi = WCET opti . Since we use the utilization bound to
schedule the MC tasks, the utilization of task τi at criticality
mode l is defined as uli =

Cl
i

Pi
where l ∈ {LO,HI}.

System Operational Model: At first, the system starts oper-
ation in LO mode, where all tasks (LC and HC) are executed
correctly before their deadlines. If the execution time of at least
one HC task exceeds its lowest WCET (CLOi), the system
switches to the HI mode, and all HC tasks continue their
execution by their largest WCET (CHIi). In this mode, since
the HC tasks are supposed to execute longer, compared to
the LO mode, the LC tasks are degraded to guarantee the
correct execution of HC tasks before their deadlines and prevent
catastrophic consequences. The system switches back to LO
mode if there is no ready HC task in the processor’s queue.

IV. PROPOSED SCHEME

In this section, at first, a motivational example is presented in
Section IV-A. Then, we propose our scheme for determining the
optimistic WCETs. In the end, we discuss about the scheduling
policy and optimization problem in Section IV-C.

A. Motivational example
In this example, we executed 20000 instances of five appli-

cations, and the ACET and WCET of them in terms of cpu
clock cycle are presented in TABLE I. WCET pes of each
application is determined by OTAWA [8]. For each applica-
tion, TABLE I also shows how many instances violate their
WCET opt when it is set to ACET, or fraction (14 , 18 , 1

16 , 1
32 , 1

64)
of the WCET pes [2], [4], [12]. The important point that the
table shows, is by increasing the input size of an application, the
ACET and WCET pes growth are not the same. For instance,
the growth of WCET pes and ACET for ‹qsort›, a known algo-
rithm for sorting arrays, is O(k2) and O(k log k), respectively,
where k is the size of the input array. Therefore, the WCET pes

1Since we only consider two criticality levels in the paper, (ζi ∈ [LC,HC])

TABLE I: Comparison between ACET and WCET of different applications

Application ACET
(Cycle)

Pessimistic-
WCET (Cycle)

Standard-Deviation
(Cycle)

Percentage (%) of Samples that Overruns if the Optimistic WCET is set to:

ACET WCETpes

4
WCETpes

8
WCETpes

16
WCETpes

32
WCETpes

64

qsort-10 2.3× 102 1.9× 103 3.9× 101 50.52 0.00 45.52 99.98 100.00 100.00
qsort-100 1.8× 104 4.1× 105 1.2× 103 50.22 0.00 0.02 0.02 99.98 99.98

qsort-10000 1.8× 108 1.0× 1010 1.1× 106 43.86 0.00 0.00 0.02 0.02 99.98
corner 5.6× 105 9.4× 106 6.2× 104 53.27 0.00 0.00 47.71 100.00 100.00
edge 9.8× 105 1.1× 107 1.1× 105 54.88 0.00 0.00 99.84 100.00 100.00

smooth 1.9× 107 4.9× 108 5.1× 106 54.31 0.00 0.00 1.41 78.85 97.25
epic 1.1× 107 7.0× 108 1.9× 106 52.85 0.00 0.00 0.00 0.00 52.20

of ‹qsort› application for three different array sizes with 10,
100, 10000 elements, are 8.1, 22.7, and 59.0 times higher
than the ACET of them, respectively. This table shows that
WCET pes is not an appropriate parameter to set WCET opt.
For example, by setting WCET opt to WCETpes

16 , the mode
switching probability for ‹edge›, and ‹qsort-10› is more than
99%, while for ‹smooth›, ‹epic›, ‹qsort-100›, and ‹qsort-10000›,
it is less than 2%. So, it is not feasible to determine a general
formula to find WCET opt based on WCET pes. On the
other hand, the mode switching probability behavior is more
predictable when the WCET opt is set to ACET. However,
simply setting WCET opt equal to ACET leads to many system
mode changes (almost half of the instances).

In this paper, we introduce a scheme that provides a general
formula to choose a suitable WCET opt based on ACET
to make a reasonable trade-off between the mode switching
probability and the time that a core becomes idle because of
the gap between its actual execution time and the WCET opt

to improve the utilization of the system.

B. Determining optimistic WCET and overrunning probability

As mentioned earlier, determining the appropriate
WCET opt for HC tasks is a major problem when designing
the MC systems. To address this challenge, the proposed
scheme designs the MC systems and analyzes the MC tasks
of the application in the offline phase, and chooses a suitable
WCET opt for each HC task based on their ACET, which
improves the task schedulability and executes more LC
tasks due to the big gap between the ACET and WCET. To
determine WCET opt, we introduce the following theorem
based on the Chebyshev’s theorem.

Theorem 1: Given a task τi, for any positive integer n, the
rate of exceeding the execution time level (ACETi + n× σi)
for task τi is bounded with 1

1+n2 .
Proof: We use Chebyshev’s theorem to prove Theorem 1:
One-Sided Chebyshev [24]: For any non-negative random

variable X , if E[X] is the mean and V ar = σ2 is its
variance, then, for any positive real number a > 0, we have
the theorem (1):

Pr[X − E[X] ≥ a] ≤ σ2

σ2 + a2
(1)

In this theorem, if a is equivalent to n× σ (a ≡ n× σ):

Pr[X − E[X] ≥ n× σ] ≤ 1

1 + n2
(2)

Now, assuming m samples of task τi (ji,1, ji,2, ..., ji,m) with
execution time Ci,1, Ci,2, ..., Ci,m, the expected value E[X] of
task τi is:

E[X] = ACETi =
1

m

j=m∑
j=1

Ci,j (3)

By using the expected value ACETi, the standard deviation
execution time σi of task τi is calculated as follows:

σi =

√√√√ 1

m

j=m∑
j=1

(Ci,j −ACETi)2 (4)

If the execution time of a task is considered as a random
variable, by using the Chebyshev’s theorem, we can show
that less than 1

1+n2 of samples execute more than n standard
deviation (n× σ) of the mean execution time (ACET=E[X]).

Pr[X ≥ ACETi + n× σi] ≤
1

1 + n2
(5)

Therefore, the rate of exceeding the execution time level
(ACETi + n× σi) for task τi is bounded with 1

1+n2 . �
This theorem provides a general upper bound on the proba-

bility of exceeding each execution time level for any task, in-
dependent of its distribution. To determine WCET opt, Cheby-
shev’s theorem can be applied, which requires mean (ACET)
and standard deviation of the execution time (σ) of each task.
Thus, we compute WCET opt of task τi, as shown in Eq. 6,
by determining the efficient value of n, while the probability
of exceeding it, is PMS

i = 1
1+n2 . Hence, our proposed method

does not determine the WCET at the HI mode (WCET pes),
which has been studied in many works [6].

CLOi =WCET opti = ACETi + ni × σi (6)

In Section V, we evaluate the impact of different values of
n in computing the WCET opt and the probability of system
mode switching (PMS

sys).

C. Schedulability analysis and optimization problem
To schedule MC tasks in the uni-processor, we apply the

existing MC scheduling technique, EDF-VD algorithm, which
has been used in many studies since the last decade such as [1],
[2], [4]. Here, when the system switches to the HI mode, all
LC tasks are dropped. If Ukl denotes total utilization of tasks
with the same criticality level l in the mode k, then:

ULOHC =
∑

ζi=HC

ACETi + ni × σi
Ti

and UHIHC =
∑

ζi=HC

CHIi
Ti

(7)

To choose a suitable WCET opt for each HC task, the
optimum ni (used in Eq. 6) for each HC task τi must be
determined that minimizes the mode switching probability and
maximizes the resource utilization by assigning more utilization
to LC tasks, while all HC tasks are scheduled. To solve this,
we formulate the optimization problem to find the optimum
ni for each task τi and determine its WCET opti . From the
perspective of task schedulability, Eq. 8 must be satisfied
to guarantee schedulability by EDF-VD at runtime [1]. This
equation presents the necessary and sufficient conditions to
guarantee the task schedulability in both LO and HI modes, and
deadline meeting of running tasks while the system switches
to the HI mode [1].

ULOHC + ULOLC ≤ 1 and UHIHC +
ULOHC × ULOLC
1− ULOLC

≤ 1 (8)

Execution Time Constraint: Besides, WCET opti of each
HC task τi must not be more than WCET pesi .

ACETi + ni × σi ≤WCET pesi (9)

There are two main objectives to optimize the system:
Objective 1: Mode Switching Probability: If the LC tasks
are dropped frequently due to the HC tasks overrunning, it
may negatively impact the performance or functionality of MC
systems. Therefore, one of the most significant objectives is
mode switching probability minimization. Let PMS

Sys denotes
the probability of system mode switching. If PnoMS

Sys is the
probability that no HC task overruns and consequently, no
mode switches happens, therefore, PMS

Sys = 1− PnoMS
Sys . Since

tasks are independent, PMS
Sys is computed as shown in Eq. 10,

where PMS
i is the probability of task overrunning for task τi.

According to our discussion in Section IV-B, PMS
i = 1

1+n2
i

. The
higher the ni, the less the mode switching probability.

PMS
Sys = 1−

∏
ζi∈HC

(1− PMS
i) = 1−

∏
ζi∈HC

(1− 1

1 + n2i
)

(10)

Objective 2: Resource Utilization: The second objective is
to improve the resource utilization by a significant gain in
terms of the utilization that can be allocated to LC tasks in the
LO mode (ULOLC). Although maximizing ULOLC is desired, but it
is upper-bounded by the schedulability constraints, which are
written in Eq. 8. In this equation, the maximum amount of ULOLC
depends on the values of ni for each HC task. The lower the
ni, the higher the ULOLC . Therefore, the second objective can be
bounded as follows.

ULOLC ≤ 1− ULOHC = 1−
∑

ζi=HC

ACETi + ni × σi
Ti

(11)

ULOLC ≤
1− UHIHC

1− UHIHC + ULOHC
=

1− UHIHC

1− UHIHC +
∑
ζi=HC

ACETi+ni×σi

Ti

(12)

Hence, if PMS
Sys =1, it means the system is always in the

HI mode, and all LC tasks are always dropped. If PMS
Sys =0,

it implies all LC tasks are always executed with no dropping.

Therefore, by having these two objectives, we maximize the
following equation.

maximize{(1− PMS
Sys)× ULOLC } (13)

Problem Solving: We used Genetic Algorithms, a commonly
used randomized search method, to solve the optimization
problem (Eq. 13). The population constituted a collection of
individuals made of randomly sampled ni values for each task
τi, in the benchmark. Two-point cross-over and single-point
mutation were used to generate the feasible individuals for the
next generation. Tournament selection was used to select the
final set of individuals of the new generation.

V. EXPERIMENTS

In this section, we present the experiments to evaluate the
effectiveness of our proposed scheme in terms of utilization,
schedulability and mode switching probability. We evaluate our
scheme by real benchmarks, and synthetic dual-criticality task
sets similar to the state of the art studies [1], [10], [14]. The
synthetic task sets are generated for various system utilization
bounds (Ubound) in line with the previous works [1], [10],
[12], [14]. The algorithm adds tasks to the task set randomly
to increase the Ubound until it reaches a given threshold. We
evaluate different approaches for Ubound in the range of [0.05,
1] with steps of 0.05. For each Ubound, 1000 task sets are
generated, and the periods of tasks are selected in the range of
[100, 900]ms.

For solving the formulated problem with GA, we set the
mutation probability to 0.2 and the cross-over probability to 0.8.
We also used five individuals in the tournament selection pro-
cess. The optimization methods were implemented in Python
using the DEAP [25] package.

A. Analyzing the mode switching probability

First, we evaluate the mode switching probability, and
TABLE II shows the percentage of overruns for both anal-
ysis and experiments. In the analysis, we proved that the
probability of overrunning for task τi with WCET opti

(WCET opti =ACETi + ni × σi), is less than PMS
i = 1

1+n2
i

.
In the experiments, we execute five applications with 20000
different inputs with MEET [26], an arm-based simulator, to
achieve their execution times. TABLE II shows that the PMS

i

for each task in the experiments is much less than the analysis.
These results were expected because the analysis provides an
upper bound which is valid for any task with any execution
time distribution.

B. Effect of varying uniform n on maximum assigned utilization
to LC tasks and mode switching probability

We further evaluate the effects of varying the parameter n,
used to determine WCET opt for each HC task, on system
properties. In this experiment, for the sake of presentation, we
considered only one n (uniform) for all HC tasks. However,
in further experiments, we find an independent n for each
task with the help of the GA algorithm. As mentioned, we
improve resource utilization by a significant utilization that can
be allocated to LC tasks in the LO mode. Fig. 2 shows the
results for an example task set with UHIHC = 0.85. Eq. 9 shows
that by increasing the value of n, the WCET opt of HC tasks,

TABLE II: The effect of n on task overrunning

Analysis qsort-100 corner edge smooth epic
n=0 100% 50.22% 53.27% 54.88% 54.31% 52.85%
n=1 50% 15.78% 9.88% 9.8% 9.40% 8.32%
n=2 20% 2.36% 3.07% 3.07% 2.97% 3.02%
n=3 10% 0.22% 0.01% 0.01% 0.06% 0.0%
n=4 5.88% 0.02% 0.0% 0.0% 0.0% 0.0%

and consequently HC tasks’ utilization in the LO mode are
increased, which reduces the number of scheduled LC tasks at
design-time (max(ULOLC)). On the other hand, Eq. 10 shows
that by increasing the value of n, the probability of mode
switching (PMS

sys) is decreased, which means fewer LC tasks
are dropped at runtime. Fig. 2a depicts that, by increasing the
value of n, both PMS

sys and max(ULOLC) are decreased, while to
achieve the best utilization, we need to maximize max(ULOLC),
and minimize PMS

sys . As shown, if n = 5, then PMS
sys = 0.65

and max(ULOLC) = 0.84 and for n = 10, PMS
sys = 0.24 and

max(ULOLC) = 0.80. Indeed, PMS
sys is decreased at a great rate

by increasing n, compared to max(ULOLC) decrements. Now,
consider n = 20 where PMS

sys = 0.07 and max(ULOLC) = 0.71.
It can be seen that the rate of PMS

sys reduction is decreased by
increasing n, while the rate of max(ULOLC) reduction is less.
Therefore, max(ULOLC) becomes more important than PMS

sys in
this case. We used Eq. 13, to find a proper n which make
a trade-off between PMS

sys and max(ULOLC) and improve the
system utilization. Fig. 2b shows, the optimum n is 18 for our
case study task set that max(ULOLC) = 73% and PMS

sys = 0.08.
Now, we evaluate the effects of parameter n and different

utilization of HC tasks on system properties in Fig. 3, by
running 1000 task sets for each utilization point. According
to Fig. 3a, PMS

sys is increased when there is an increase in
utilization. For example, for a constant n = 10, PMS

sys in
UHIHC = 0.4 and 0.8, is 12.91% and 23.71%, respectively.
The reason is, when utilization of HC tasks is high, more
HC tasks are scheduled in the system. Since each HC task
has the probability of overrunning, by increasing the number
of HC tasks, PMS

sys is increased. In addition, we discussed
that PMS

sys is decreased with an increase in n. Fig. 3b also
shows that, by increasing UHIHC , referring to the scheduling
algorithm and schedulability conditions (Eq. 11 and 12), less
core utilization is assigned to LC tasks. As an example for a
constant n = 10, if UHIHC = 0.4, then max(ULOLC) = 97.94%
and if UHIHC = 0.8, then max(ULOLC) = 88.17%. Besides, as
mentioned, increasing n causes a decrease in max(ULOLC). As a
result, by increasing n, PMS

sys is reduced (which is satisfactory),
and the LC tasks utilization and consequently schedulability
is also reduced (which is not desirable). Now, if we optimize
both PMS

sys and assigned utilization to LC tasks, we can find the
optimum value of n for HC tasks. Fig. 3c shows the product
of PMS

sys and max(ULOLC) (Eq. 13), where, the optimum n is
decreased in general with an increase in UHIHC , to run more
tasks in system.

C. Comparison with the other policies
In this subsection, we compare the mode switching prob-

ability and resource utilization under our proposed scheme
with non-uniform n using the GA-algorithm, and the other
policies, used to determine WCET opt and then, ULOHC . As
discussed in Section II, most of the state-of-the-art approaches

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

n

U
L

C
m

ax

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

P
M

S
sy

s

U
LC
max

P
sys
MS

(a) PMS
sys and max(ULO

LC)

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8

1

n

O
pt

. G
oa

l

(b) objective function

Fig. 2: Effect of varying uniform n on maximum assigned utilization to LC
tasks and mode switching probability for an example task set with U = 0.45

have defined a fraction of WCET pes as WCET opt. For
example, if we define λ = WCET opt

WCETpes , researchers in [9] have
considered λ ∈ [1

2.5 ,
1
1.5] in their experiments. In [1], two

different ranges for λ have been considered, λ ∈ [14 , 1] and
λ ∈ [18 , 1]. Researchers in [4] have considered the amount of
λ = { 1

16 ,
1
8 ,

1
4 ,

1
2 , 1}. Since all papers have the same policy

in determining WCET opt, we choose [1] as a representative
methodology of all research works in the experiments.

Since ACET and σ for each task are known, the system
mode switching probability for other policies can be obtained
using Eq. 6. Fig. 4 and 5 show the results of comparing
different policies and our scheme with the optimum ni for
each task τi of task sets using the GA-algorithm, for different
utilization. In the Baruah’s approach [1], considering a large
lower-bound value for λ like 1

8 ,
1
4 , reduces the probability of

mode switching, but it under-utilizes the system during runtime.
For example if UHIHC = 0.8, for λ ∈ { 14 , 1}, P

MS
sys = 0.13%

and max(ULOLC) = 32.60%, while for our proposed scheme,
PMS
sys = 6.61% and max(ULOLC) = 82.45%. On the other hand,

using a smaller lower-bound value for λ like 1
32 , increases the

maximum utilization of the LC tasks with high mode switching
probability. For instance, if UHIHC = 0.8, then PMS

sys = 92.97%
and max(ULOLC) = 86.43%. Our approach works well in both
system properties by determining the best WCET opt values for
HC tasks base on the ACET, and then, the optimum ULOHC . Fig. 5
shows this fact by optimizing both system properties, where
the proposed scheme performs better than other policies. As a
result, our scheme improves the utilization by up to 85.29%
compared to the existing approaches, while PMS

sys is bounded
by 9.11% in the worst-case scenario.

D. Evaluating scheduling approaches under proposed scheme

Now, we evaluate and compare the results in terms of
schedulable task sets (acceptance ratio) to the state-of-the-art
approaches, proposed in [1], [2], with and without our scheme.
In this experiment, we assume that the probability that a task is
an HC or LC is equal. In both [1], [2], the EDF-VD algorithm
has been used to schedule the tasks. In [2], the algorithm
executes all LC tasks in the HI mode by reducing their WCET
to 50%, and also in [1], the algorithm drops all LC tasks when
the system switches to the HI mode. It is noteworthy to mention
that our scheme for selecting the suitable WCET opt for HC
tasks can be applied to any scheduling algorithm with any
policy of task execution and optimize the resource utilization
and mode switching probability.

Fig. 6 shows the acceptance ratio for two state-of-the-art
scheduling approaches [1], [2], which are improved with our
scheme in all utilization bounds. As shown in this figure,
when Ubound ≤ 0.7, all tasks sets are schedulable with Liu’s

01020304050
00.20.40.60.81

0
0.2
0.4
0.6
0.8

1

U
HC
HI

n

P
sy

s
M

S

(a) PMS
sys by varying n and UHI

HC

01020304050
00.20.40.60.81

0
0.2
0.4
0.6
0.8

1

U
HC
HI

n

U
L

C
m

ax

(b) max(ULO
LC) by varying n and UHI

HC

01020304050
00.20.40.60.81

0
0.2
0.4
0.6
0.8

1

U
HC
HI

n

O
pt

. G
oa

l

(c) optimization goal

Fig. 3: Effect of n and HC tasks’ utilization on maximum assigned utilization to LC tasks and mode switching probability.

0
0,2
0,4
0,6
0,8

1

0,
05

0,
15

0,
25

0,
35

0,
45

0,
55

0,
65

0,
75

0,
85

0,
95

.

Our Scheme [1] with 𝜆∊[1/4,1]
[1] with 𝜆∊[1/8,1] [1] with 𝜆∊[1/16,1]
[1] with 𝜆∊[1/32,1]

𝐦
𝐚𝐱
	(𝑼

𝑳𝑪𝑳𝑶
)

𝑼𝑯𝑪𝑯𝑰

(a) max(ULO
LC) by varying UHI

HC

0
0,2
0,4
0,6
0,8

1

0,
05

0,
15

0,
25

0,
35

0,
45

0,
55

0,
65

0,
75

0,
85

0,
95

.

Our Scheme [1] with 𝜆∊[1/4,1]
[1] with 𝜆∊[1/8,1] [1] with 𝜆∊[1/16,1]
[1] with 𝜆∊[1/32,1]

𝑷
𝒔𝒚
𝒔

𝑴
𝑺

𝑼𝑯𝑪𝑯𝑰

(b) PMS
sys by varying UHI

HC

Fig. 4: The effectiveness of our proposed scheme in comparison with other
policies, proposed in other research works

approach [2], and our scheme. When the system utilization is
increased (0.7 < Ubound ≤ 0.9), all task sets are schedulable
by our proposed scheme, while the acceptance ratio of Liu’s
approach [2] is decreased, so that no task set is schedulable for
Ubound ≥ 0.9. Besides, the same trend is found for Baruah’s
approach [1]. The reason for having a better acceptance ratio
in our scheme is determining the appropriate WCET opt for
HC tasks and executing more tasks in the system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a scheme, Worst-Case Execu-
tion Time (WCET) analysis of mixed-criticality tasks, which
manages the probability of mode switching and improves the
schedulability and timing budget allocated to low-criticality
tasks. Our scheme analyzes the application in the offline phase
to determine an appropriate low WCET for each task, based
on the Chebyshev theorem. The proposed scheme improves the
system utilization and schedulability up to 85.29% and 99.73%,
respectively, while bounding the mode switching probability to
9.11% in the worst-case scenario.

As future research, we would extend our scheme for systems
with more than two criticality levels. Based on that, we would
present a scheduling algorithm and the optimization problem to
execute the lower-criticality tasks in higher modes. In addition,
we would evaluate the approach with real benchmarks on
hardware platforms to show its efficiency.

REFERENCES

[1] S. Baruah et al., “The Preemptive Uniprocessor Scheduling of Mixed-
Criticality Implicit-Deadline Sporadic Task Systems,” in RTNS, 2012, pp.
145–154.

[2] D. Liu et al., “EDF-VD Scheduling of Mixed-Criticality Systems with
Degraded Quality Guarantees,” in RTSS, 2016, pp. 35–46.

[3] A. Burns and R. I. Davis, “A Survey of Research into Mixed Criticality
Systems,” CSUR, vol. 50, no. 6, 2017.

[4] Z. Guo et al., “Uniprocessor Mixed-Criticality Scheduling with Graceful
Degradation by Completion Rate,” in RTSS, 2018, pp. 373–383.

0
0,2
0,4
0,6
0,8

1

0,
05

0,
15

0,
25

0,
35

0,
45

0,
55

0,
65

0,
75

0,
85

0,
95

.

Our Scheme [1] with 𝜆∊[1/4,1]
[1] with 𝜆∊[1/8,1] [1] with 𝜆∊[1/16,1]
[1] with 𝜆∊[1/32,1]

𝐦
𝐚𝐱
	(𝑼

𝑳𝑪𝑳𝑶
)
(1
-𝑷

𝒔𝒚
𝒔

𝑴
𝑺
)

𝑼𝑯𝑪𝑯𝑰

Fig. 5: max(ULO
LC) and PMS

sys by
varying UHI

HC

[1] Our scheme under the sch. alg. of [1][2] Our scheme under the sch. alg. of [2]
0,05 1 1 1 1

0,1 1 1 1 1
0,15 1 1 1 1

0,2 1 1 1 1
0,25 1 1 1 1

0,3 1 1 1 1
0,35 1 1 1 1

0,4 1 1 1 1
0,45 1 1 1 1

0,5 1 1 1 1
0,55 1 1 1 1

0,6 1 1 1 1
0,65 0,913 1 1 1

0,7 0,55 1 1 1
0,75 0,265 1 0,942 1

0,8 0,09 0,995 0,622 1
0,85 0,018 0,729 0,189 1

0,9 0,001 0,375 0,015 0,987
0,95 0 0,049 0 0,677

1 0 0 0 0

0
0,2
0,4
0,6
0,8

1

0,
4

0,
45 0,

5
0,

55 0,
6

0,
65 0,

7
0,

75 0,
8

0,
85 0,

9
0,

95 1A
cc

ep
ta

nc
e

R
at

io

Ubound

[1]
Our scheme under the sch. alg. of [1]
[2]
Our scheme under the sch. alg. of [2]

Fig. 6: Different scheduling ap-
proaches with our proposed scheme

[5] B. Ranjbar et al., “FANTOM: Fault Tolerant Task-Drop Aware Scheduling
for Mixed-Criticality Systems,” IEEE Access, vol. 8, 2020.

[6] R. Wilhelm et al., “The Worst-Case Execution-Time Problem—Overview
of Methods and Survey of Tools,” TECS, vol. 7, no. 3, 2008.

[7] A. Kumar et al., “Iterative Probabilistic Performance Prediction for Multi-
Application Multiprocessor Systems,” TCAD, vol. 29, no. 4, 2010.

[8] C. Ballabriga et al., “OTAWA: an open toolbox for adaptive WCET
analysis,” in FDL. Springer, 2010, pp. 35–46.

[9] D. Liu et al., “Scheduling Analysis of Imprecise Mixed-Criticality Real-
Time Tasks,” TC, vol. 67, no. 7, pp. 975–991, 2018.

[10] G. Chen et al., “Utilization-Based Scheduling of Flexible Mixed-
Criticality Real-Time Tasks,” TC, vol. 67, no. 4, pp. 543–558, 2018.

[11] B. Ranjbar et al., “Power-Aware Run-Time Scheduler for Mixed-
Criticality Systems on Multi-Core Platform,” TCAD, 2020.

[12] C. Gu et al., “Partitioned mixed-criticality scheduling on multiprocessor
platforms,” in DATE, 2014, pp. 1–6.

[13] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in RTSS, 2007, pp. 239–243.

[14] Z. Al-bayati et al., “A four-mode model for efficient fault-tolerant mixed-
criticality systems,” in DATE, 2016, pp. 97–102.

[15] X. Gu and A. Easwaran, “Dynamic Budget Management with Service
Guarantees for Mixed-Criticality Systems,” in RTSS, 2016, pp. 47–56.

[16] X. Gu and A. Easwaran, “Dynamic budget management and budget
reclamation for mixed-criticality systems,” Real-Time Systems, vol. 55,
no. 3, pp. 552–597, 2019.

[17] L. Santinelli and L. George, “Probabilities and mixed-criticalities: the
probabilistic c-space,” in RTSS, 2015.

[18] D. Maxim et al., “Probabilistic Analysis for Mixed Criticality Systems
Using Fixed Priority Preemptive Scheduling,” in RTNS, 2017, p. 237–246.

[19] S. Jiménez Gil et al., “Open Challenges for Probabilistic Measurement-
Based Worst-Case Execution Time,” ESL, vol. 9, no. 3, pp. 69–72, 2017.

[20] F. Reghenzani et al., “Dealing with Uncertainty in PWCET Estimations,”
TECS, vol. 19, no. 5, 2020.

[21] A. Bhuiyan et al., “Optimizing Energy in Non-Preemptive Mixed-
Criticality Scheduling by Exploiting Probabilistic Information,” TCAD,
vol. 39, no. 11, pp. 3906–3917, 2020.

[22] B. Hu et al., “FFOB: Efficient online mode-switch procrastination in
mixed-criticality systems,” Real-Time Systems, vol. 55, no. 3, pp. 471–
513, 2019.

[23] L. A. Johnson, “DO-178B, Software considerations in airborne systems
and equipment certification,” Crosstalk, October, vol. 199, 1998.

[24] M. Mitzenmacher and E. Upfal, Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis.
Cambridge university press, 2017.

[25] F. Fortin et al., “DEAP: Evolutionary algorithms made easy,” JMLR,
2012.

[26] M. Bazzaz et al., “An accurate instruction-level energy estimation model
and tool for embedded systems,” TIM, vol. 62, no. 7, 2013.

