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I. INTRODUCTION

FPGA-based Neural Network (NN) accelerator is a rapidly
advancing subject in recent research. Related works can be
classified as two hardware architectures: i) Heterogeneous
Streaming Dataflow (HSD) architecture and ii) Processing
Element Matrix (PEM) architecture. HSD architecture explores
the reconfigurability of FPGAs to support the customization
and optimization of hardware design to implement a complete
network on FPGA for one given trained model. PEM architecture
achieves relatively generic support for different network models,
essentially implementing the neuron processing modules on
the FPGA scheduled by the runtime software environment.
In summary, the HSD architecture requires more resources
with simplified runtime software control. The PEM architecture
consumes fewer resources than the HSD architecture. However,
the runtime software environment can be a heavy payload for
lightweight systems, such as the low-power microcontroller of
IoT or edge devices.

Our work explores a new hybrid architecture, NetPU, based
on the above two architectures. This architecture is designed to
achieve the generic support for different NN models as PEM
architecture with a simplified runtime software environment as
HSD architecture. Our NetPU implementations are created by
Verilog on Vivado. As shown in Figure 1, this work consists of a
three-stage structure: Network Processing Unit (NetPU), Layer
Processing Unit (LPU), and Neuron Processing Unit (NPU).
NetPU reuses LPUs and NPUs to extend the flexibility of
accelerators fitting different sizes of network model workloads.
This accelerator saves the required parameters of current
accelerating layers in LPUs to on-chip memories, reducing the
storage pressure for loading complete network parameters of
large models. This architecture supports scalable, mixable (the
data precision of different layers can be different), quantized (1-
8 bits) precision, BN folding, and selectable activation functions,
including ReLU, Piecewise Linearized Sigmoid/Tanh [1], Sign,
and Multi-Thresholds [2]. All the above accelerator configura-
tions can be reconfigured in runtime without changing hardware
for different models. Figure 2 shows the hardware design of
our runtime-reconfigurable NPUs: crossbar schedules the data
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Fig. 1: Hardware Structure of NetPU
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Fig. 2: Hardware Design of the runtime reconfigurable NPUs
on Completely Generic Mode

stream to bypass some submodules to support different network
models. For further reducing the on-chip hardware resource
consumption, we also offer two other simplified versions of
NetPU, Quantization Generic Mode (QGM) and Binarization
Generic Mode (BGM) for special application scenarios. The
above two modes fix the precision, activation function, and BN
folding setting in NetPU architecture but still do not limit the
scale of network models.

II. SIMULATION AND EVALUATION

Table I lists the simulation results of our work and the
comparison with FINN instances [3]. We applied the pre-trained
network models from the FINN project with three sizes — TFC
(64× 3), SFC (128× 3), and LFC(1024× 3) in our simulation.
Results show that, in Completely Generic Mode (CGM), our
work can support different network models with different sizes
and precision without hardware regeneration. Regarding the
QGM and BGM instances, resource consumption can be further
reduced. As compared to the FINN instance, our work consumes
fewer LUTs and BRAMs resources. However, our current work
has high latency as a trade-off of generic support in network
inference. Besides, we actually measured a 2-bit quantized tiny
size model (TFC, 64x3, W2A2) in a CGM-mode instance on
Ultra96 V2 hardware. The average latency of this instance is
181.74us. The power report generated after the implementation
of CGM mode shows the total on-chip power is 2.313W.

TABLE I: Simulation of NetPU on Ultra96-V2 Compared with
FINN Instances

Work Implementation Target Platform Clock (MHz)
Resource Utilization Latency (µs)

LUT BRAM DSP 64× 3 256× 3 1024× 3

NetPU

BGM-32

Ultr96 V2 100

20,932 45.5 - 60.645 248.805 1923.045
BGM-64 56,776 45.5 - 41.765 139.685 992.165
QGM-32 19,035 49.5 352 104.225 485.105 3851.825

CGM-64 59,755 129.5 352

W1A1
38.745 133.785 974.745

W2A2 and W2A1
172.165 882.085 7408.225

FINN

SFC-max

Zynq7000 200

91,131 4.5 - - 0.31 -
LFC-max 82,988 396 - - - 2.44
SFC-fix 5,155 16 - - 240 -
LFC-fix 5,636 114.5 - - - 282
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