
Chapter 9

Runtime thermal management of many-core
systems

Anup Das1 and Akash Kumar2

Many-core systems are widely deployed for embedded and high-performance comput-
ing. With matured technological advances in the deep submicron technology nodes,
it is now possible to integrate 100s to 1,000s of cores per system-on-chip die. How-
ever, growing core count results in thermal hot spots and large temperature gradients,
which significantly impact system reliability, performance, cost and leakage power.
A primary design optimization objective for many-core systems is, therefore, to effi-
ciently manage thermal overheads of applications while satisfying their performance
requirements. This improves system reliability leading to higher mean-time-to-failure.

This chapter presents approaches to runtime thermal management for embedded
systems looking from two perspectives—management in a conventional many-core
system and that designed in evolving three-dimensional (3D) integrated circuit (IC)
technology. Specifically, this chapter first introduces the design of a runtime manager
for a many-core system, which uses workload statistics from the processing cores to
efficiently allocate resources in order to alleviate thermal emergencies. The impact of
workload uncertainty is characterized using machine-learning techniques. Next, this
chapter presents a fast thermal-aware approach for mapping throughput-constrained
streaming applications on 3D many-core systems. In this approach, to avoid slow
thermal simulations for every candidate mapping, a thermal model of the 3D IC is used
to derive an on-chip power distribution (PD) that minimizes the temperature before
the actual mapping is done. This distribution is then used in a resource allocation
algorithm to derive a mapping that meets the throughput constraint while approaching
the target PD and minimizing energy consumption. This way, in contrast to most
existing approaches, a mapping can be derived in the order of minutes.

9.1 Thermal management of many-core embedded systems

Multimedia applications, such as video encoding and decoding, are characterized
by different execution phases, which are defined as a group of consecutive frames.

1Department of Electrical and Computer Engineering, Drexel University, USA
2Institute of Computer Engineering, Department of Computer Science, Technische Universität Dresden,
Germany

216 Many-core computing: hardware and software

The average workload of the frames comprising a phase (inter) varies significantly
across the different phases; however, the workload variation within each phase (intra)
is relatively low. Proactive power and thermal management involves predicting these
dynamic workloads a priori to determine the most appropriate frequency for every
phase such that performance constraint is satisfied while minimizing the power con-
sumption, which in turn leads to a reduction of average temperature [1–6]. Studies
have been conducted recently to use machine learning to determine the minimum
frequency through continuous feedback from the hardware performance monitoring
unit (PMU) [7–15]. These approaches suffer from the following limitations.

First, some of the practical aspects of many-core systems are ignored in the exist-
ing works. Specifically, the CPU cycle count for a frame, obtained by reading the PMU
registers at runtime, is assumed to be a true indicator of the frame workload. However,
as we show in this chapter, the PMU register readings contain a certain amount of
uncertainty, influenced by factors such as cache contention, dynamic random access
memory (DRAM) access, that can have a significant impact on thermal management.
This uncertainty is difficult to estimate at runtime due to the unpredictability associ-
ated with these factors, especially for many-core systems with a realistic assumption
of concurrently executing routine applications. Thus, although workload estimation
based on CPU cycle count leads to efficient thermal management using dynamic
voltage/frequency scaling (DVFS), a significant improvement is possible by estimat-
ing the uncertainty as show in this chapter. Second, the existing approaches do not
consider voltage and frequency switching overhead, which is significant in mod-
ern many-core systems. Last, the classical workload prediction-based power/thermal
minimization techniques work in an ad hoc manner by predicting the workload and
deciding the frequency based on this predicted workload. On the other hand, work-
load history-based statistical classification approaches determine the probability that
a sudden spike (positive or negative) in the workload is due to a change in the phase of
the workload that needs to be processed at a different frequency. Thus, instead of act-
ing instantaneously, the classifier evaluates the probability distribution of the different
classes based on the workload change, and the most probable frequency is selected
such that the scaling leads to thermal improvement for future workloads. However,
these classifiers require characterization using training data, i.e., a supervised learn-
ing approach. Modern many-core operating systems, such as Linux and Android, also
support dynamic frequency scaling during application execution. The default and the
most popular ondemand power governor [16] uses the current workload to determine
the voltage-frequency value to process the future workload (a reactive approach). As
we show in this chapter, thermal improvement using the ondemand power governor
can be outperformed using a naive predictive heuristic.

9.1.1 Uncertainty in workload estimation

Conventionally, the minimum frequency for an application is determined based on
the CPU cycle count (henceforth, referred to as workload) read from the PMU reg-
isters. The underlying assumption is that the CPU cycle count corresponds to frame
processing only. In modern many-core systems, there are a number of applications

Runtime thermal management of many-core systems 217

that continue to operate in the background. Some of these applications are user con-
trolled such as web page rendering, email checking and virus scanning. There are also
system-related applications that are routinely executed on the processing cores. Some
of these applications are beyond the knowledge of the users and cannot be forcefully
exited. As a result, the PMU register readings are not always a true indicator of the
actual frame workload. This can be seen in a recent work by Das et al. [17].

To estimate the impact of workload uncertainty on the frequency value, let w̃
and w denote the observed and the actual frame workloads, respectively, with w̃ =
w + e, where e is the workload uncertainty. The observed and the required workload
frequencies are related according to

frequired

fobserved
= w̃ − e

w̃
≤ 1 (9.1)

Clearly, estimating the uncertainty in the observed workload leads to further
scope for energy improvement. Thus, the problem we are addressing is as follows.
Given the workload obtained from the PMU registers at runtime, how to estimate the
workload uncertainty (e), being agnostic of its probability distribution, such that the
voltage-frequency value corresponding to the actual workload w can be applied on
the system. This is the objective of the next section.

9.1.2 Learning-based uncertainty characterization

Statistical classification is the process of identifying a class (from a set of discrete
classes) for a new observation, based on a training set of observations, whose class
is known a priori [18]. In this work, we focus on a discriminative classifier—logistic
regression applied to a multinomial variable [19]. This type of classifier predicts the
probability distribution over a set of classes from a sample input to learn a direct
mapping from the input sample to the output class. The logistic regression based
classification is composed of two steps—modeling to estimate the probability distri-
bution of the different classes for a given input, and parameter fitting to estimate the
parameters of the logistic regression model. These are described next.

9.1.2.1 Multinomial logistic regression model
Assumptions
A1: There are K discrete frequencies supported by the hardware. The incoming work-
load is assigned to one of these values, depending on which frequency results in the
least energy consumption while satisfying the performance requirement. This is same
as classifying into one of K classes.
A2: The class of the next video frame is predicted based on the workloads of the N
previous frames. These are identified by X = (x1 x2 · · · xN) ∈ R

1×N , where xi is the
workload of the ith previous frame.
A3: The workload class is denoted by the variable y ∈ [1, 2, . . . , K] and the logistic
regression model is represented by the hypothesis hθ , with parameter θ ∈ R

(K−1)×N .

218 Many-core computing: hardware and software

It can be shown that for a given input feature set X , the logistic regression model
outputs hθ (X) is given by

hθ (X) =

⎡

⎢
⎢
⎢
⎣

p1

p2
...

pK−1

⎤

⎥
⎥
⎥
⎦
=
⎛

⎝ e

(

θ (1)T ·X
)

∑K
j=1 e

(

θ (j)T ·X
) · · · e

(

θ (K−1)T ·X
)

∑K
j=1 e

(

θ (j)T ·X
)

⎞

⎠ (9.2)

The output class y is given by

y = argmax
l
{pl ∀ l ∈ [1, 2, . . . , K]} (9.3)

9.1.2.2 Maximum likelihood estimation
We consider a training set of M samples generated independently and identically.
For each of these samples, the input feature X and the output class y are known a
priori and the input–output pairs are identified as (X (i), y(i)) ∀i ∈ [1, 2, . . . , M]. The
maximum likelihood estimation is a technique to estimate the parameters (θ in our
case) of a model by maximizing the likelihood of the joint probability distribution of
the different observations. This is given by

�(θ) = ln (L (θ)) =
M∑

i=1

K∑

l=1

I (y(i) = l) · ln
⎛

⎝
e
(
θ (l)T ·X (i)

)

∑K
j=1 e

(
θ (j)T ·X (i)

)

⎞

⎠ (9.4)

9.1.2.3 Uncertainty interpretation
First we define two new terms—observed class and actual class. The observed class
(denoted by ỹ) is the class perceived at the output of the logistic regression model
corresponding to input X and includes the uncertainty. Let the variable y denote the
actual class as before. Using the basic principles of probability theory, the probability
of the observed class is

P(ỹ = i | X) =
K∑

r=1

P(ỹ = i | y = r) · P(y = r | X) =
K∑

r=1

γi,r · pr (9.5)

where γi,r is the probability that the actual class r is flipped to the observed class i.
Using this probability and the definition of the likelihood function, the log likelihood
function is1

�(θ , γ) =
M∑

i=1

K∑

l=1

I (ỹ(i) = l) ln

(
K∑

r=1

γl,r · pr

)

(9.6)

Finally, the output of the hypothesis is modified as

hθ (X) =
[(

K∑

r=1
γ1,r · pr

)

· · ·
(

K∑

r=1
γK−1,r · pr

)]T

(9.7)

1The derivation steps are omitted for space limitation.

Runtime thermal management of many-core systems 219

9.1.3 Overall design flow

Figure 9.1 shows the adaptive thermal minimization methodology for a many-core
system. An overview is provided on the interaction of the different blocks of this
methodology.
Application: Typically, multimedia applications are characterized with a performance
constraint specified as frames per second, reciprocal of which gives the timing con-
straint for processing a frame. The application source code is annotated to include
this timing requirement.
Operating system: The operating system is responsible for coordinating the applica-
tion execution on the hardware. After processing every frame of an application, the
operating system stalls execution and triggers the classifier, which predicts the class
for the next frame. This class is translated to a frequency value for the CPU cores.
The operating system applies this frequency on the CPU cores using the cpufreq
utility.
Hardware: The hardware consists of processing cores with a PMU to record perfor-
mance statistics. Of the different performance statistics available, we focus on CPU
cycle count. After processing every frame, the PMU readings are collected using
the perfmon utility. Subsequently, the readings are reset to allow recording for the
next frame. Finally, before the start of the next frame, the frequency value set by the
operating system is first converted to a corresponding CPU clock divider setting and
is then written into appropriate CPU registers. The frequency is scaled to execute the
next frame.

Runtime

1
2
3
4

0.93
V

1.10
1.26
1.35

300
F

600
800
1000

Class

V–F values

Operating
system

V–F setting

V–F
controller

Hardware

CPU cycles

PMU

W–N W–2 W–1

Core

Logistic
regression

model

Class

Figure 9.1 Design methodology

220 Many-core computing: hardware and software

9.1.4 Early evaluation of the approach

The proposed run-time approach is evaluated on Texas Instrument’s PandaBoard
featuring ARM A9 cores and Intel quad-core system running Linux.

9.1.4.1 Impact of workload uncertainty: H.264 case study
To signify the impact of the workload uncertainty on the thermal behavior, an exper-
iment is conducted using two 30 s video sequences—“ducks” and “sta_launch” [20].
The H.264 decoder application is restricted to execute on only one core using the
cpu-affinity feature of the operating system. Further, we let all other routine
applications execute freely on any cores. The videos are decoded ten times each and
the CPU cycles consumed for each run is recorded. The CPU cycles count are nor-
malized with respect to the maximum obtained for the ten readings. These results are
shown in Figure 9.2 corresponding to the label single core. The minimum, maximum,
the median value and the 80% distribution (as box) of the CPU cycles count for the
runs are shown as box plots for both the videos. Furthermore, the percentage differ-
ence between minimum and the maximum CPU cycles count of the ten runs (referred
to as the variation) is reported on top of each box. Next, the same experiment is
repeated by allowing the H.264 decoder application to run on two and four cores of
the system. These results are also plotted in Figure 9.2.

As seen from the figure, when the H.264 decoder runs on single core, there is a
variation of 3.5% and 6.7% in CPU cycles count for the two videos, respectively. It is
to be noted that, even though the H.264 application executes on one core, some of the
threads from other routine applications are also scheduled on this core by the operating
system. Thus, there is an amount of uncertainty in the observed CPU cycle count.
Hence, the voltage-frequency value obtained based on this observed CPU cycle count

1.14

1.12

1.1

1.08

N
or

m
al

iz
ed

 C
PU

 c
yc

le
s c

ou
nt

1.06

1.04

1.02

1

0.98

ducks

3.5%

6.7% 9.6%

11.1%

14.1% 14.2%

sts_launch

Single core Two cores Four cores

sts_launchsts_launch ducksducks

Figure 9.2 Variation in CPU cycles count due to workload uncertainty

Runtime thermal management of many-core systems 221

FFT MPEG4 JPEG H.264 MP3 SRC
0

20

40

60

80

100
A

ve
ra

ge
 te

m
pe

ra
tu

re
 (°

C
)

Considering uncertainty

Without considering uncertainty

Figure 9.3 Thermal improvement using our proposed approach

is not optimal, implying that there is a performance slack that enables the operating
system to schedule more threads on this core. When the H.264 application is allowed
to execute on two cores, the percentage variation for the two videos increases to 9.6%
and 11.1%, respectively. This is because, as the application uses more cores, there
are more cache conflicts due to other background threads, increasing the workload
uncertainty. Finally, when all the four cores are used by the H.264 decoder, the
variation increases to 14%. It can thus be concluded that, workload uncertainty can
result in as high as 14% variation in the observed CPU cycles count, clearly motivating
our approach to model the uncertainty and mitigate it using the runtime manager.

9.1.4.2 Thermal improvement considering workload uncertainty
Figure 9.3 reports the thermal improvement obtained by considering workload uncer-
tainty. Results are shown for six applications. For some applications such as FFT and
MP3, the average temperature are similar, while for others, there are significant dif-
ference in the temperature by considering workload uncertainty. Thermal reduction
considering uncertainty is between 1 ◦C and 20 ◦C. These results clearly show the
potential of thermal improvement considering workload uncertainty and allocation of
frequency based on this uncertainty estimation.

This concludes our proposal for thermal management for conventional 2D many-
core systems. In the remainder of the chapter, we present heuristics for thermal
management of systems in 3D IC technology.

9.2 Thermal management of 3D many-core systems

3D ICs provide interesting possibilities to implement promising many-core systems
in advanced technology nodes. In a 3D IC, multiple layers of logic (or memory)

222 Many-core computing: hardware and software

are stacked vertically; these layers are interconnected using vertical interconnect
accesses, commonly referred as through silicon vias (TSVs). Figure 9.4 illustrates a
3D IC with two layers and two TSVs. Stacking multiple layers of processing and/or
memory elements into a 3D IC structure can significantly reduce the die size and
average interconnect wire length. This in turn can reduce communication delays and
interconnect energy, while increasing the interconnect flexibility [21,22]. However,
stacking active layers increases the power density, which can cause serious thermal
problems, affecting both the performance and reliability of a system.

In this section, we introduce an integrated thermal-aware approach for mapping
streaming applications on a 3D many-core system. A streaming application, such as
video decoding, typically has a throughput requirement, which possibly cannot be
guaranteed in combination with unexpected thermal emergencies in a 3D IC. The
goal of the proposed approach is to map and schedule multiple applications, satis-
fying their throughput requirements, communication and storage constraints, while
minimizing the peak-temperature and temperature gradients across the chip. Since
simulating the thermal process with a high temporal resolution is a time-consuming
activity, the approach described in this work is split into two main steps. In the first
step, thermal characteristics of the 3D IC are extracted from a simple but flexible
model of the physical chip. Then, the extracted profile is passed to the actual resource
allocation algorithm, which does not require iterative temperature simulations. This
causes runtime of the total flow to be in the order of minutes, in contrast to most
existing thermal-aware mapping approaches.

The many-core system is assumed to contain a 3D mesh of (homogeneous or
heterogeneous) processing tiles. Since networks-on-chip (NoCs) are widely regarded

Bottom layer

Bond material

Top layer

Metal

Active Si

Active Si

TSV Bulk

Bulk

Heat sink

Metal

Figure 9.4 Two stacked layers connected by TSVs [23]

Runtime thermal management of many-core systems 223

as the most promising communication architecture for many-core 3D architectures
[22], a 3D NoC is assumed to provide the communication between these tiles. The
streaming applications are modeled as synchronous dataflow graphs (SDFGs) [24].
Since there are multiple trade-offs involved, for example, between optimizing for
energy consumption or peak temperature in the 3D IC [25], a set of parameters
has been used to steer the optimization process by providing varying weights to the
optimization criteria. This results in a flexible thermal-aware mapping flow. The
thermal process resulting from the mapping is simulated using the HotSpot thermal
simulator [26], which is extended to consider thermal effect of TSVs.

To evaluate performance, the proposed flow is used to map and schedule a set
of synthetic benchmark applications as well as realistic multimedia streaming appli-
cations on a NoC-based 3D many-core systems. The performance evaluations show
that compared to the load-balancing (LB) strategy, the peak temperature and energy
consumption are reduced by 7% and 47%, respectively, while meeting all timing and
storage constraints.

9.2.1 Recent advances on 3D thermal management

Thermal-aware mapping and scheduling on 3D many-core systems is a well-studied
topic. Multiple approaches have been proposed, which can be split into dynamic
(runtime) and static (design-time) thermal-aware mapping techniques. Dynamic
approaches measure or estimate instantaneous thermal distribution in the chip and
initiate actions in order to minimize hotspots and thermal gradients (spatial, temporal
or both). In [27], several dynamic mechanisms such as temperature-triggered DVFS,
clock gating and hot-task migration are reviewed, and a runtime task assignment algo-
rithm is proposed that takes the thermal history of cores into account. A thermal-aware
OS-level scheduler for 3D many-core system is proposed in [28]. These methods share
the goal of minimizing the peak temperature and thermal gradients without sacrificing
performance too much. Constraints such as deadlines or memory requirements are,
however, not taken into account, as well as the effect of inter-task communication.
Recent studies have shown that NoCs can dissipate a substantial part of the power
budget, and the dissipation depends on the traffic [29]. Therefore, ignoring the inter-
connect thermal contribution can lead to underestimation of temperature, leading to
system failures before they are anticipated. For 2D ICs, a thermal-aware task assign-
ment and scheduling technique for real-time applications is proposed in [30], which
is based on mixed integer linear programming. However, the techniques for 2D ICs
cannot simply be applied to 3D ICs due to significantly different thermal behavior of
3D ICs. Skadron et al. [26] developed the HotSpot thermal simulator to evaluate the
steady state and dynamic temperature distribution in ICs.

Static mapping approaches aim at finding a thermal-aware mapping at design
time, by using a model of the physical chip, or by using general knowledge about
the thermal behavior of 3D ICs. In [29], both temperature and communication load
are considered, and a genetic algorithm is used to generate static mappings. Cheng
et al. [25] show that a trade-off exists when minimizing energy usage as well as peak
temperature and use a combination of heuristics, simulated annealing and a greedy

224 Many-core computing: hardware and software

algorithm to find optimal static mappings. However, application constraints such as
throughput requirements are not taken into account. The authors of [31] propose an
approach to find optimal mappings in a thermal sense for applications with dead-
lines. First, a power balancing algorithm is used to find an initial mapping. The initial
mapping is then iteratively improved by simulating the temperature distribution and
migrating tasks. Communication between tasks as well as memory constraints are not
taken into account. Thiele et al. [32] argue that being able to guarantee the maximum
peak temperature in a many-core system and analyzing real-time applications early
in the design process (i.e., analyzing at design-time) is important, since it removes
the need for unpredictable runtime mechanisms. Toward this, the authors use formal
methods in a tool to find optimal static mappings of SDFG-modeled applications
on heterogeneous 2D many-core systems while guaranteeing performance and peak
temperature. The communication overhead is taken into account, but the power dis-
sipation of the NoC has not been considered. Since vertical communication in a 3D
NoC can be considerably faster and energy efficient than horizontal communica-
tion [25], a straightforward extension of their methods to 3D many-core systems will
not provide optimal mapping solutions. In contrast to above strategies, our approach
performs thermal-aware mapping of throughput-constraint applications on 3D many-
core systems while taking memory as well as communication constraints into account.
Further, our approach considers the effect of TSVs on the temperature distribution
and power dissipation and minimizes the energy consumption.

Next to thermal-aware mapping, thermal-aware floorplanning can also help to
mitigate thermal problems. Thermal-aware floorplanning techniques have been devel-
oped for 2D ICs [33] as well as for 3D stacked ICs [34,35]. There are also some
research studies on efficient floorplanning to mitigate thermal problems.

9.2.2 Preliminaries

3D ICs have gained significant research attention in recent years. However, exper-
imental platforms for 3D ICs are not yet available to research community. In the
absence of real platforms, abstract models of 3D ICs are used for analysis and design
space exploration. This section covers the application model, multiprocessor platform
model and the 3D IC model.

9.2.2.1 Application model
To model streaming applications with a throughput constraint, synchronous dataflow
graphs (SDFGs) [24] are used. In a SDFG, an application is modeled as a set of tasks,
called actors, that communicate chunks of data with a predefined size, called tokens.
An example SDFG that models an H.263 decoder is depicted in Figure 9.5. The nodes
correspond to the actors and the edges represent data dependencies, referred to as
connections, between the actors. The H.263 decoder is modeled with four actors vld,
iq, idct and mc and four edges d1, d2, d3 and d4. An actor has fixed input and output
rates on every connection. The input rate corresponds to the number of tokens that the
actor consumes from the incoming connection when fired once. Similarly, the output
rate defines the number of tokens that are produced on the outbound connection

Runtime thermal management of many-core systems 225

Output rate

2,376

1 1

1
[26018]

[10958]

[559]

[486]idct

Actor

Execution time
of actor

Edge
iqd1 d2

d4 d3
mc

2,376

vld
Input rate

Initial tokens 2

1

1

1

Figure 9.5 SDFG of a H.263 decoder

during one firing of the actor. An initial number of tokens might be available on the
connection. An actor fires as soon as sufficient tokens are available at all its incoming
connections, and enough buffer space is available to store the produced tokens. The
size of a token may be different for every connection.

The input and output rates of the actors in an SDFG determine the relative fre-
quency in which the actors can fire, which can be represented by a unique repetition
vector. In the application model, the worst case execution times (in time units) and
memory requirements (in bits) of all actors on all possible processing elements are
specified. For example, an actor performing encoding may have worst case exe-
cution times of 10,000 time units on an ARM7 or 2,000 time units on dedicated
encoder hardware. Specifying requirements for all possible mappings enables the
use of heterogeneous architectures. For all connections, the size of the tokens (in
bits) is specified, as well as the memory required when mapping the connection to
memory, or the bandwidth required when mapping the connection to interconnect.
If actors are fired as soon as they are ready to fire (self-timed execution), the exe-
cution pattern of a consistent, strongly connected SDFG is always periodic after an
initial start-up period [36]. The time between two recurring states in the execution
of an SDFG defines the throughput of the application. An application may have a
throughput requirement, fixing the maximum time between two recurring states. The
throughput of a SDFG may be calculated by simulating the execution until a recurrent
state is found [36].

9.2.2.2 Multiprocessor platform model
In this work, a regular 3D mesh of tiles connected by a NoC is considered, as depicted
in Figure 9.6. Every tile contains at least a network interface (NI), connecting the tile
to the interconnect network. Furthermore, a tile may contain a processing element
(P) of some type PT (processor type), for example, an ARM core and a memory.
Different types of processors are possible, allowing the modeling of heterogeneous
architectures. Such an architecture can be modeled by an architecture graph consisting
of tiles and connections as defined below.

Definition 9.1 (Tile). A tile t is a 9-tuple (pt, w, m, c, i, o, pa, pi, pm) with pt ∈ PT the
processor type, w ∈ N0 the TDMA timewheel size, m ∈ N0 the available memory (in
bits), c ∈ N0 the maximum number of supported connections, i, o ∈ N0 the maximum
i/o bandwidth (in bits), pa, pi ∈ R the active and idle power (in W) and pm ∈ N

3
0 the

position of the tile in the mesh.

226 Many-core computing: hardware and software

NoC router

Processing tile:

PE M

NI

TSV bundle

Horizontal link
(NoC)

Figure 9.6 Example 3D mesh of tiles [23]

Tiles are connected by an NoC. In the architecture graph, the NoC is abstracted
to a set of point-to-point connections between tiles.

Definition 9.2 (Connection). A connection c is a 5-tuple (u, v, l, hh, hv) with u ∈ T
the source tile, v ∈ T the destination tile, l ∈ N0 the latency (in time units), and
hh, hv ∈ N0, respectively, the number of horizontal and vertical hops between u and v.

The set of tiles T and the set of connections C together define the architecture
graph. A tile is assumed to consume pa W of power when active, and pi W when idle.

Vertical links between tiles are generally implemented using TSVs. As reported
in [25], TSVs can often provide faster and more energy efficient communication
compared to horizontal links, mainly because of their short length. The differences
in delay and energy per bit depend on the technology and the NoC topology. For
example, the NoC switches can simply be extended with two extra ports for up/down
communication, or the vertical links can be implemented as a shared bus. This work
does not treat all these options in detail, but the latency (l) and horizontal and vertical
hop count (hh, hv) properties of a connection do provide some room for modeling
different 3D NoC implementations in the architecture graph. For example, the latency
of a connection can be specified such that it is dependent on the direction of the
communication.

9.2.2.3 3D IC model
To be able to simulate the on-chip temperature for a given execution trace, a model
describing the thermal characteristics of the 3D IC is required. The model is also
used to extract information about the thermal behavior of the chip, which can be
used by the mapping algorithm. The model used in this work is based on the 3D
grid model available in the HotSpot thermal simulator [26]. The model contains all
relevant physical properties of the IC and the heat sink, as well as a set of active and

Runtime thermal management of many-core systems 227

Blocks in a tile

Proc. Router

Memory

Active layer

TILE 0,0,1
(1)

TILE 0,1,1
(3)

TILE 0,0,0
(0)

TILE 0,1,0
(2)

Figure 9.7 Active layer floorplan illustration

inactive layer specifications. Active layers correspond to layers that actually dissipate
power, while inactive layers are used to model the bonds (glue, thermal interface
material (TIM)) between the active layers. Figure 9.7 illustrates the floorplan of an
active layer. For every layer, the thickness, material properties and a floorplan are
specified. Floorplans of the active layers consist of tiles, all of which contain one
or more blocks (e.g., processor, memory, router), specified by the floorplan of the
specific tile type. Execution of the application models is tracked at the tile level.
The power, that is dissipated in a tile, is assumed to be distributed over the blocks
of that tile. For example, 80% may be dissipated in the processor block, 10% in the
router block and 10% in the memory. Blocks can correspond to function blocks of
the processor, but the processor can also be modeled as one block. This enables the
use of both fine (detailed) and course-grained models.

TSVs are generally made of copper, which has significantly different thermal
properties than silicon. To take the thermal effect of TSVs into account, the size,
position and material properties of the TSVs are also specified in the 3D IC model.
To be able to simulate the thermal impact of the TSVs, the HotSpot simulator is
extended to take TSVs into account. This is done by changing the thermal properties
(conductance and heat capacity) of grid cells in the internal HotSpot model that
contain TSV material, based on the ratio of the grid cell volume that is occupied by
TSV material.

9.2.3 Thermal-aware mapping

This section introduces the proposed mapping flow. The general structure of the flow
is depicted in Figure 9.8. The flow consists of two main steps: a “thermal profiling”
step and the actual mapping algorithm. In the “thermal profiling” step, the physical
model of the 3D IC is used to derive a PD among the tiles that minimizes the peak
temperature and spatial temperature gradients. For example, in the power distribution
that minimizes the peak temperature, tiles that are on the layer closest to the heat sink
are likely to dissipate more power than tiles far away from the heat sink. This is due to

228 Many-core computing: hardware and software

Application
models

Architecture
spec.

3D IC
model

“Thermal profiling” Target-power
distribution

Mapping and
throughput validation

Static mapping

Figure 9.8 Overview of the thermal-aware mapping flow [23]

Arch.
spec.

3D IC
model

Power trace

3D IC
model

Update
power distribution

Steady state (S.S.)
temperature simulation

S.S. temperature distribution
Target-power
distribution

Figure 9.9 Structure of the “thermal profiling” algorithm [23]

the fact that the layers close to heat sink are able to get rid of the heat faster; therefore,
they are able to handle more load/power without overheating. Thus, they get a higher
target power ratio. The power density, the floorplan and the absolute position of a tile
in the horizontal plane will also influence its target power ratio. The resulting “target
PD” assigns a power ratio to every tile and is passed to the mapping algorithm. The
mapping algorithm tries to find a mapping that approaches this distribution while
minimizing the energy and meeting all timing and storage constraints.

The two step structure is based on the observation that (high resolution) thermal
simulations have a long running time, making it impossible to simulate the temper-
ature for every candidate mapping within a limited running time. A lot of existing
approaches avoid iterative thermal simulations by just applying heuristics to optimize
for temperature. However, these heuristics are often not very accurate in a quantita-
tive way, requiring the designer to tune the heuristics by hand in order to match the
actual chip properties and find good mappings. In our approach, this tuning is done
automatically in the first step of the flow. In the mapping step, no thermal simulations
are required, which drastically reduces the runtime compared to methods that simu-
late the temperature for a lot of candidate mappings. The remainder of this section
discusses the steps of the flow in more detail.

9.2.3.1 Thermal profiling
The structure of the thermal profiling step is depicted in Figure 9.9. The update algo-
rithm adjusts the power ratios Rt of the tiles based on the steady state temperature

Runtime thermal management of many-core systems 229

distribution resulting from the previous PD. The power ratio Rt of a tile corresponds
to the ratio between the total chip power P and the power dissipated in tile t. The
power dissipated in tile t, Pt = Rt ×P, is distributed among the blocks in that tile
based on an intra-tile PD, which may be constant in simple models. This way, a
power trace is generated for every block in the chip. To limit the number of ther-
mal simulations, a heuristic is used for updating the PD. The power ratios of tiles
with a peak temperature above the average are decreased, while the power ratios
of tiles with a peak temperature below the average are increased in the update
step. This way, temperature differences among tiles are decreased, resulting in a
lower peak temperature and smaller temperature gradients. The adaptation rate of
the power ratios is defined by constant α. The update algorithm is summarized in
Algorithm 1.

Algorithm 1: Thermal profiling algorithm

Input: 3D IC model, stopping criterion δ ∈ R, max. # of iterations Imax ∈ N,
adaptation constant α ∈ R, total chip power P ∈ R.

Output: Target power ratios Rt , t ∈ [0, Ntiles − 1].
Initialize power ratios ∀t ∈ [0, Ntiles − 1] : Rt = 1/Ntiles;
Tavg = 0, Tprev.max = ∞, Tmax = 1, 000;
i = 0;
while (Tprev.max − Tmax) ≥ δ and i ≤ Imax do

Generate power traces for all blocks based on P, Rt and the intra-tile power
distribution;

Simulate steady state temperature dist.;
Tavg ← average chip temperature;
∀t ∈ [0, Ntiles − 1] : Tpeak ,t ← max. temp. in tile t;
Tmax ← max (Tpeak) ;
if (Tprev.max − Tmax) < δ then

break
end
if Tprev.max < Tmax then

α = α/2;
Restart algorithm;

end
for all tiles t ∈ [0, Ntiles − 1] do

d = (Tpeak ,t − Tavg)/Tavg ;
Rt = max (0, Rt ∗ (1.0− (α ∗ d)));

end
Renormalise power ratios Rt ;
Tprev.max = Tmax;
i ++;

end
return power ratios Rt

230 Many-core computing: hardware and software

In agreement with observations described in related literature [27,28], some
general observations can be made regarding the PD after convergence of the algorithm:

1. Tiles on layers farther away from the heat sink get hotter than tiles closer to
the heat sink with the same power dissipation. Hence, algorithm will in general
assign smaller power ratios to tiles further away from the heat sink.

2. The thermal conductance in the vertical direction is generally high compared to
the horizontal direction, because the layers are thin (typically 20–100 μm). As
a result, blocks with a high power density that are stacked on top of each other
generate high temperatures. Because of this, the combined power dissipation of
horizontally aligned blocks in different layers will be limited.

3. TSVs increase the thermal conductance between layers. As a result, temperature
differences between layers get decreased. The magnitude of this effect depends
on the TSV material, size and density.

4. Blocks that are near the edges/corners of the die tend to get hotter than blocks
farther away from the edges, since there is less material for the heat to spread to.

The above observations are used to develop heuristics in some thermal-aware
mapping approaches, for example, by assigning higher costs to mappings that use
tiles that are further away from the heat sink or by balancing computational load over
“stacks” of vertically adjacent tiles [28]. However, these heuristics are generally not
tuned to the specific IC that is considered, possibly resulting in suboptimal solutions.
In our approach, the temperature-related observations are modeled implicitly in the
target PD, which is derived directly from a model of the 3D IC. This results in
assumptions that are more representative for the specific 3D IC that is considered.

9.2.3.2 Runtime
The steady state temperature is iteratively simulated by the modified HotSpot ther-
mal simulator, which determines the runtime of the algorithm. The simulation time
depends on the spatial resolution and the number of layers. For an IC with three active
layers and a grid resolution of 32× 32, one simulation takes 117s on a 2.3 GHz Intel
i7 CPU (single threaded). With a well-chosen value for the adaptation constant α, the
algorithm converges to a static PD in 6–10 iterations, resulting in a total runtime of
up to 1,170 s. Note that the running time is independent from the number of tiles on
a layer, since the thermal simulator internally uses a grid with a fixed resolution.

An overview of the mapping flow is depicted in Figure 9.10. The application
graphs, the architecture specification and the target PD serve as inputs to the flow.
For the memory dimensioning, constraint refinement and communication scheduling
steps, existing implementations available in the SDFG3 tool set [37] are applied. The
other steps are described subsequently.

9.2.3.3 Application merging
In practical situations, use cases consisting of multiple applications running simul-
taneously are common. To support the mapping of multiple applications, in the first
step of the flow, all application graphs are merged into one application graph using the
rate control principle. In this approach, a rateControl actor is inserted to control the

Runtime thermal management of many-core systems 231

Application
graphs

Merge application graphs

Memory dimensioning
and constraint refinement

Resource allocation

Throughput constraint
met?

Utilization minimization

Communication scheduling

Static mapping

Infeasible

No

Merged app. graph

Resource-aware SDFG

Mapping

Mapping

Yes

Arch. spec. +
targetpower dist.

Figure 9.10 Overview of the mapping flow [23]

relative execution rates of the different applications that are merged into one graph.
Connections between the rateControl actor and one actor in every application are
added, with input and output rates that force the execution rates of the applications to
synchronize in a desired ratio. For example, application A might have a throughput
requirement twice as high as that of application B. In that case, the rate controller
will force the execution of application B to stall until A has executed twice, and vice
versa. The throughput constraint of the merged application is the minimum of the
original individual throughput constraints, and the individual applications can have
throughput constraints that are a multiple of the overall throughput constraint.

9.2.3.4 Resource allocation
In the resource allocation step, every actor of the merged application is bound to a tile
in the architecture graph. As a result of binding the actors, the connections between
the actors will be bound to either memory (in case both connected actors are bound
to the same tile) or to a set of NoC links (in case the actors are bound to different
tiles). Since the tile binding defines the computational load distribution and thus the

232 Many-core computing: hardware and software

PD within the many-core system, it is the most important step in the thermal-aware
mapping flow. A feasible tile binding binds all actors to a tile and all connections to
a memory or interconnect link such that no storage, connection count or bandwidth
limitation is violated. After a feasible tile binding is found, a static-order schedule is
generated for each tile, defining the order of execution of the actors mapped on that
tile. Note that the resulting resource allocation is not guaranteed to be able to meet
the throughput constraint.

An extension of the heuristic-based resource allocation strategy introduced in [38]
is used to find a feasible mapping that results in a PD close to the target PD. The bind-
ing algorithm is summarized in Algorithm 2. First, all actors are sorted on criticality
in descending order. The criticality is calculated as a measure for the worst case. Next
to approaching the target PD, there might also be other optimization targets, such as
computational LB among the tiles, memory usage balancing or communication bal-
ancing/minimization. Function cost(t, a), defined in (9.8), assigns a cost to binding
actor a to tile t, which is used in the binding algorithm. Constants c1, . . . , c6 weight
the costs of the different optimization criteria:

cost(t, a) = c1×P(t, a)+ c2×M (t, a)+ c3×C(t, a)+ c4×L(t, a)

+ c5×PDT (t, a)+ c6×PDS(t, a) (9.8)

● P(t, a) ∈ [0, 1] is the normalized processor load when binding actor a to tile t;
● M (t, a) ∈ [0, 1] is the ratio of allocated memory when a is bound to t;
● C(t, a) ∈ [0, 1] is the ratio of allocated connections on tile t when a is bound

to t;
● L(t, a) ∈ [0, 1] is the normalized average latency of all connections from/to a

when a is bound to t;
● PRT (t, a) ∈ [0, 1] is the normalized cost for the power ratio of tile t when a is

bound to t

PRT (t, a) = c ·
(

rt

Rt

)

where rt is the estimated power ratio of tile t when binding a to t and Rt is the
target power ratio of tile t. c is a normalizing constant to scale the cost to [0, 1]
for all tiles; and

● PRS(t, a) ∈ [0, 1] is the normalized cost for the power ratio of the tile stack s
containing tile t when mapping a to t.

PRS(t, a) = c ·
(

rs

Rs

)

where rs is the estimated power ratio of stack s when binding a to t and Rs is
the target power ratio of stack s. c is a normalizing constant to scale the cost to
[0, 1] for all stacks. A tile stack is a set containing all tiles that are in the same
horizontal position at different layers. The target power ratio of a stack is defined
by the sum of the ratios of the tiles it contains.

Runtime thermal management of many-core systems 233

Algorithm 2: Tile binding algorithm

Input: tiles T , actors A, connections C.
Output: Feasible resource allocation.
// Find an initial binding
Sort all actors a ∈ A on criticality, descending;
for all sorted actors a ∈ A do

Sort all tiles t ∈ T on cost(t, a), ascending (see (9.8));
for all sorted tiles t ∈ T do

if binding actor a to tile t is feasible then
Bind actor a to tile t;
Bind connections to/from a;
break;

end
end
if actor a not bound then

return “Unable to find feasible binding”;
end

end

// Try to improve the binding
Sort all actors a ∈ A on criticality, ascending;
for all sorted actors a ∈ A do

Unbind actor a;
Unbind connections to/from a;
Sort all tiles t ∈ T on cost(t, a), ascending (see (9.8));
for all sorted tiles t ∈ T do

if binding actor a to tile t is feasible then
Bind actor a to tile t;
Bind all related connections;
break;

end
end

end

Note that there are two terms related to the PD: PRT (t, a) and PRS(t, a). PRT
represents the deviation from the original target power ratios of the individual tiles.
Since we observed that there is a large thermal correlation between vertically adjacent
tiles, it makes sense to also take the target power ratios of stacks of tiles into account,
which is captured by the PRS term. If the PD among stacks would not be included,
deviations from the target PD in the vertical direction would result in the same cost
as deviations in the horizontal direction, leading to worse results in a thermal sense.

234 Many-core computing: hardware and software

The tile power ratios resulting from a candidate binding can be calculated since the
active and idle powers of all tiles are known, along with the execution time of every
actor on every possible tile.

9.2.3.5 Throughput computation
When a feasible resource allocation has been found, the maximum throughput of the
mapped application has to be calculated in order to validate the throughput constraint.
This is done by modeling the mapped application as a binding-aware SDFG and
performing a state-space exploration by simulating the self-timed execution of the
graph [36]. The throughput is calculated as soon as a recurrent state is found during
the execution.

9.2.3.6 Utilization minimization
It is possible that the maximum throughput of the mapped application is higher than
the throughput constraint. From an energy and temperature perspective, it makes
sense to slow down the execution as long as the throughput constraint is satisfied.
This is done in the utilization minimization step. It is assumed that every processor
contains a TDMA system, in which a time slice can be reserved during which the
processor is idle. To slow down execution, an idle timeslice is inserted in the TDMA
schedule of every active processor. The appropriate sizes of the idle time slices are
determined by performing a binary search and recalculating the throughput after every
step. The search is terminated once the actual throughput is not more than 10% above
the throughput constraint.

9.2.4 Experimental results

The performance of the proposed approach is tested by applying it to a set of synthetic
benchmark applications as well as a set of real-life multimedia applications.

9.2.4.1 Benchmark applications
To evaluate the performance of the thermal-aware mapping approach, a set consisting
of four application graphs is generated. Every application consists of eight actors
with random (Gaussian distributed) execution times and storage requirements. To
evaluate the effect of the weights in the tile binding cost function, multiple mappings
are generated for each set of applications, based on different cost function weights. To
eliminate the effects of the random generator, three sets of applications are generated.
Next to the synthetic benchmark application set, a real-life application set consisting
of four independent H.263 encoders (five actors each) with a throughput constraint
of 60 frames per second is constructed.

9.2.4.2 Target 3D many-core system
The sets of benchmark applications are mapped on a tile-based 3D many-core system
consisting of three layers of 2× 2 identical tiles. Each tile consists of a processor,
memory and NI, all modeled as a single block as depicted in Figure 9.7. The active
power of each tile is set to 1.5 W, the idle power is set to 10% of the active power. For
the placement of blocks in a tile, two different tile floorplans are used, such that the

Runtime thermal management of many-core systems 235

processor blocks do not overlap. Tile floorplan 1 is used on the bottom and top layer,
while floorplan 2 is used on the middle layer to avoid stacking all processor blocks
exactly on top of each other, since the power density is the highest in that block.
The heat sink is connected (via a heat spreader) to the bottom layer. The other active
(power dissipating) layers are thinned down to 50 μm. Between two active layers, a
10 μm thin layer containing TIM is modeled. The most important physical properties
of the 3D IC model are listed in Table 9.1. In the center of the NI block of every tile,
a bundle of 8× 9 TSVs is placed. For the interconnect, a hybrid NoC-Bus design is
assumed, consisting of a regular NoC in the horizontal plane and a multi-drop shared
bus for vertical communication [25]. In this setup, every tile is assumed to have its
own NoC switch, and every stack of tiles contains a shared bus. In the architecture
graph, communication links are modeled as point-to-point connections. The latencies
of all possible tile-to-tile connections are calculated based on the delay of the shortest
path between the tiles. A hop in the horizontal plane is modeled as a delay of 2 time
units, a hop in the vertical direction as 1 time unit.

9.2.4.3 Temperature simulation
For every mapping, an execution trace of 0.5 s is generated. The execution patterns are
periodic with a period much shorter than 0.5 s, making longer simulations obsolete.
From the execution trace and the architecture specification, power traces are derived
for every block. The power traces are used in the modified HotSpot 5.02 thermal sim-
ulator to simulate the temperature with a grid resolution of 32× 32 and a temporal
resolution of 10 μs. First, a steady state simulation is performed to find a represen-
tative initial temperature distribution. Next, the transient temperature simulation is
performed. Table 9.1 lists the most important HotSpot parameters.

Table 9.1 Physical properties and HotSpot parameters

Parameter Value

Tile size [mm] 2× 2
Silicon thermal conductance [W/(m K)] 150
Silicon specific heat [J/(m3 K)] 1.75 · 106

TIM thermal conductance [W/(m K)] 4
TIM specific heat [J/(m3 K)] 4 · 106

TSV thermal conductance [W/(m K)] 300
TSV specific heat [J/(m3 K)] 3.5 · 106

TSV diameter [μm] 10
TSV pitch [μm] 20
Bottom layer thickness [μm] 200
Non-bottom layer thickness [μm] 50
TIM layer thickness [μm] 10
Convection resistance to ambient [K/W] 3.0
Heat sink side/thickness [mm] 14× 14× 10
Heatsink conductance [W/(m K)] 400
Heat sink specific heat [J/(m3 K)] 3.55 · 106

Ambient temperature [K] 300

236 Many-core computing: hardware and software

9.2.4.4 Interconnect energy computation
Since the interconnect energy consumption can be a significant part of the total energy
consumption [39], it is also interesting to investigate the communication intensity and
interconnect energy consumption resulting from different mappings. Note that the
computational energy consumption will be close to identical for all mappings, since
a homogeneous architecture is considered and every application is slowed down to
match the throughput constraint.

The interconnect consumes energy to facilitate communication between the titles
and consumed energy is also referred to as communication energy. In between two
tiles, communication has to take place when actors (tasks) mapped on them need
to communicate with each other. The communication energy depends on the data
volume and the relative locations of the communicating task (actor) pair. For each
communicating task pair mapped to tile i and tile j and connected by edge e, the
communication energy is estimated by the product of the number of transferred bits
(nrTokens[e]× tokenSize[e]) and the energy required to transfer one bit between tiles
i and j (Ebit(i, j)), as defined in (9.9). The value of Ebit(i, j) is calculated based on the
energy required for horizontal link traversals, vertical link traversals and the energy
consumed in routers between tiles i and j, as shown in (9.10). Vertical intercon-
nects are implemented as shared buses, so no intermediate routers are involved when
traversing multiple layers. Therefore, hops in the vertical direction will increase the
total number of routings by just 1, independent of the number of vertical hops. The
total communication energy is estimated by summing over all communicating task
pairs (edges).

Ecomm(e) = (nrTokens[e]× tokenSize[e]
)× Ebit(i, j) (9.9)

Ebit(i, j) = (
Ehorizontal

bit × hopshorizontal(i, j)
)+ (Evertical

bit × hopsvertical(i, j)
)

+ (Erouter
bit × numOfRouters(i, j)

)
(9.10)

In our 3D IC model, the horizontal link energy per bit, Ehorizontal
bit , is taken as

0.127 PJ, which is estimated from [25]. The vertical link energy per bit, Evertical
bit , is

determined by the used TSVs and is therefore referred to as ETSV
bit . ETSV

bit is estimated
to be 9.56× 10−3 PJ [40]. For a horizontal link length of 2 mm, the per bit router
energy Erouter

bit is approximately 70% of Ehorizontal
bit [41]. ETSV

bit is only 7.5% of Ehorizontal
bit ,

providing substantial space for communication energy optimization by exploiting
the low link energy in the vertical direction. However, using more vertical links may
result in a higher peak temperature due to increased power density because of mapping
communicating tasks on stacked tiles.

9.2.4.5 Thermal profiling results
The target PD obtained by running the thermal profiling algorithm on the considered
3D IC is given inTable 9.2. It is observed that the power is almost completely balanced
in the horizontal plane, indicating that the power dissipated in a stack of tiles is

Runtime thermal management of many-core systems 237

Table 9.2 Target power distribution for the considered 3D IC

Tile position in the horizontal plane

(0,0) (0,1) (1,0) (1,1)

Top layer (%) 2.8 2.8 2.7 2.4
Middle layer (%) 7.5 7.6 7.4 6.9
Bottom layer (%) 15.0 15.3 15.0 14.7

minimized. In the static PD that minimizes the peak temperature on this specific 3D
IC, about 60% of the total chip power is dissipated in the bottom layer. About 29% is
dissipated in the middle layer, and the remaining 11% is dissipated in the top layer.
Further experiments show that this distribution mainly depends on the PD within the
tiles, the layer thickness and the interlayer bonds. Although the thermal properties of
the heat sink have a large impact on the average chip temperature, the optimal PD is
almost independent from it.

9.2.4.6 Benchmark application results
To evaluate the performance of the resource allocation strategy, five different com-
binations of tile-binding cost-function weights are evaluated, corresponding to the
following different optimization objectives:

1. Load balancing (LB):
(c1, c2, c3, c4, c5, c6) = (1, 0, 0, 0, 0, 0). Balance the computational load as much
as possible.

2. Communication latency minimization (CLM):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 1, 0, 0). Minimize the interconnect latency.

3. Load balancing + latency minimization (LB+CLM):
(c1, c2, c3, c4, c5, c6) = (1, 0, 0, 1, 0, 0). Combine computational LB and latency
minimization with equal weights.

4. Power balancing by stack (PBS):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 0, 0, 1). The power ratios of all tile stacks are set
equal, causing power balancing in the horizontal plane.

5. Optimize power distribution (PD):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 0, 1, 1). Optimize for a PD close to the target
distribution.

6. Optimize power distribution + latency minimization (PD+CLM):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 1, 1, 1). Combine PD optimization with latency
minimization.

Temperature results
Figure 9.11 shows the lowest and highest observed temperatures resulting from map-
ping the benchmark application set using the different optimization objectives. All
mappings result in a throughput within 10% above the constraint. The results are
averaged over the three application sets to remove effects of the random generator.

238 Many-core computing: hardware and software

324

322

320

318

316

314

312

310

Mapping strategy

Min. temperature

Peak temperature
Te

m
pe

ra
tu

re
 (K

)

308

1. LB

2. CLM

3. LB+CLM

4. PBS

5. PD

6. PD+CLM

Figure 9.11 Minimum and peak temperature resulting from mappings with
different optimization objectives [23]

It is clear that trying to minimize the communication latency alone (scenario 2)
results in the highest peak temperature. This is due to the fact that vertically adjacent
tiles have smaller communication delays, which results in communicating actors
being mapped on vertically adjacent tiles. This can cause a power imbalance in the
horizontal plane, explaining the increased temperature. Including the target power
ratio terms leads to a peak temperature decrease of 5.3K compared to the latency
minimization case and 3.4K compared to the computational LB case. It is clear that
only balancing the load in the horizontal plane (scenario 4) does not result in the
minimum temperature.

Interconnect usage and energy consumption results
Figure 9.12 depicts the average normalized number of bit hops, as well as the aver-
age interconnect power consumption for different optimization criteria. A bit hop
is defined as 1 bit of data that is transferred 1 hop through the NoC. The intercon-
nect power is estimated as the average communication energy per second. It can be
observed that including the latency cost term results in a significant decrease in inter-
connect utilization. This can be explained by the observation that the latency cost
term assigns high costs to mappings in which communicating actors are mapped on
tiles that are far apart in the 3D NoC. In scenario 6, the interconnect utilization is
roughly halved compared to scenario 5, with almost no increase in peak temperature
(Figure 9.11).

Runtime thermal management of many-core systems 239

1.2

In
te

rc
on

ne
ct

 u
til

iz
at

io
n

In
te

rc
on

ne
ct

 p
ow

er
 (µ

W
)

25

20

15

10

5

0

1

0.8

0.6

0.4

0.2

Mapping strategy

Vertical hops (normalized)
Horizontal hops (normalized)
Interconnect power

1. LB

2. CLM

3. LB+CLM

4. PBS

5. PD

6. PD+CLM

0

Figure 9.12 Average normalized horizontal/vertical interconnect utilization and
interconnect power [23]

The average interconnect power depends on the usage of the horizontal and verti-
cal interconnect links, as can be seen in Figure 9.12. A couple of observations can be
made from Figure 9.12. First, the total power consumption is mainly governed by the
usage of horizontal links, as they consume much more power than the vertical links.
Second, the power consumption for the CLM and LB+CLM strategies are low due to
more usage of vertical links than horizontal links, but they show high peak tempera-
tures (Figure 9.11). This indicates that using more vertical links instead of horizontal
links facilitates lower interconnect power consumption at the cost of a higher peak
temperature due to more power stacking within the chip. Thus, a trade-off exists
between minimizing interconnect energy consumption and peak temperature. Third,
the PD+CLM strategy shows almost the same power consumption as the CLM and
LB+CLM strategies, along with lower interconnect utilization and peak temperature.
This indicates that the PD+CLM strategy results in a good balance between peak tem-
perature, interconnect utilization and interconnect energy consumption. The absolute
interconnect energy reduction highly depends on the communication intensity of the
applications as well as the NoC type and technology.

9.2.4.7 Case-study for real-life applications
To test the applicability of our approach for real-life applications, four independent
H.263 encoder applications are mapped on the 3D many-core system using our map-
ping flow. Two different mapping strategies are applied: LB+CLM and PD+CLM,
as introduced earlier. The LB+CLM strategy tries to balance the computational load

240 Many-core computing: hardware and software

Table 9.3 Average interconnect power consumption,
minimum and maximum temperature for four
independent H.263 encoder applications

LB+CLM PD+CLM

Interconnect power consumption (μW) 166.62 85.10
Minimum temperature (K) 310.75 310.15
Maximum temperature (K) 317.05 314.25

while minimizing the interconnect latency, whereas the PD+CLM strategy aims at
optimizing the PD while also minimizing interconnect latency.

Table 9.3 shows the average interconnect power consumption, minimum and
maximum temperature when the mapping strategies LB+CLM and PD+CLM are
employed. Strategy PD+CLM outperforms strategy LB+CLM for all the perfor-
mance figures, i.e., it results in a lower interconnect power consumption, minimum
temperature and maximum temperature. Minimizing the communication latency
(CLM) results in a significant reduction in interconnect utilization and intercon-
nect power consumption (Figure 9.12), making it an important optimization criterion
to be considered. The results in Table 9.3 indicate that in addition to minimizing
the communication latency, optimizing the PD is a better choice than balancing the
computational load (LB).

9.3 Conclusions and future directions

We proposed a flexible and fast approach for thermal-aware mapping of throughput-
constrained streaming applications on 3D many-core systems. As compared to the
LB case, the proposed approach reduces the peak temperature by 7% (in ◦C) and
interconnect energy consumption by 47% for a set of benchmark applications on a
three-layer IC, while meeting all storage and throughput constraints. We showed that
the approach can also be used in combination with other optimization criteria, such as
interconnect utilization minimization. The average runtime of the total flow is 20 min,
with about 90% being spent in the thermal profiling step. The runtime of the resource
allocation and throughput validation step highly depends on the size and complexity
of the application graph.

Despite the significant progress on thermal management for 2D and 3D ICs, there
are open challenges that need to be addressed in future. One emerging challenge is the
dissipation of heat in the absence of atmosphere, e.g., when systems are employed in
space. Specifically, it is important to manage the thermal aspects more aggressively
in such situations, otherwise a simple task can lead to the system temperature to
surpass the safe limit, leading to damaging the system. Recently, significant efforts
are been made to improve the thermal dissipation of many-core systems. A thermal
management of battery system using novel phase-change materials is proposed in [42].

Runtime thermal management of many-core systems 241

Two-phase liquid cooling is proposed for 3D systems [43]. Optimal placement of
liquid microchannels for heat management of 3D ICs is discussed in [44]. Integrated
flow cells are used in [45] for quick heat dissipation. Integrated microfluidic power
generation and cooling is described in [46]. For a comprehensive study of these
techniques, readers are referred to [47].

Another possible solution is to harvest useful energy from heat, mitigating the
impact. In [48,49], energy harvesting from thermoelectrics is discussed for thermal
management of many-core systems. Self-powered distributed networks is proposed
in [50]. A new design of energy-harvesting systems is proposed in [51]. A scheduling
technique for mixed critical tasks is discussed in [52] for heterogeneous many-core
systems powered by energy harvesting sources. There is also approach for scheduling
sporadic tasks on systems with energy harvesting sources [53]. Readers are referred to
[54] for a survey on recent advances in thermal management using energy-harvesting
sources.

For a 3D IC, the positive/negative impact of increasing the number of stacked
layers on the temperature needs to be addressed in future. Simultaneous multilayer
access in a 3D system is discussed in [55]. Placement of the 3D layers is described in
[56]. Simulated annealing-based layer placement is proposed for 3D systems in [57].
Readers are referred to [58] for a survey of the challenges in layers optimization of
3D many-core systems.

Finally, the design-space exploration needs to be extended to consider emerging
design principles such as approximate computing. An online quality-management
system for approximate computing is discussed in [59]. A hardware–software frame-
work for approximate computing is proposed in [60]. Recent works that propose
approximate arithmetic blocks such as multiplier and adders may also be consid-
ered for low-area and low-power implementations of the DSE algorithms [61,62].
Readers are referred to [63] for a survey of architectural techniques for approximate
computing.

References

[1] Jung H, Pedram M. Continuous frequency adjustment technique based on
dynamic workload prediction. In: Proceedings of the International Conference
on VLSI Design; 2008. p. 249–254.

[2] Das A, Al-Hashimi BM, Merrett GV. Adaptive and hierarchical runtime man-
ager for energy-aware thermal management of embedded systems. ACM
Transactions on Embedded Computing Systems (TECS). 2016;15(2):24.

[3] Das A, Shafik RA, Merrett GV, et al. Reinforcement learning-based inter-and
intra-application thermal optimization for lifetime improvement of multicore
systems. In: Proceeding of the Annual Design Automation Conference (DAC).
ACM; 2014. p. 1–6.

[4] Das A, Kumar A, Veeravalli B. Reliability and energy-aware mapping and
scheduling of multimedia applications on multiprocessor systems. IEEE
Transactions on Parallel and Distributed Systems. 2016;27(3):869–884.

242 Many-core computing: hardware and software

[5] Ma Y, Chantem T, Dick RP, et al. Improving system-level lifetime reliability
of multicore soft real-time systems. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. 2017;25(6):1895–1905.

[6] Yang Z, Serafy C, Lu T, et al. Phase-driven learning-based dynamic reliability
management for multi-core processors. In: Proceeding of the Annual Design
Automation Conference (DAC). ACM; 2017. p. 46.

[7] Dhiman G, Rosing TS. Dynamic voltage frequency scaling for multi-tasking
systems using online learning. In: Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED). New York, NY,
USA: ACM; 2007. p. 207–212.

[8] Shen H, Lu J, Qiu Q. Learning based DVFS for simultaneous temperature,
performance and energy management. In: Proceedings of the International
Symposium on Quality Electronic Design (ISQED); 2012. p. 747–754.

[9] Shen H, Tan Y, Lu J, et al. Achieving autonomous power management
using reinforcement learning. ACM Transactions on Design Automation of
Electronic Systems (TODAES). 2013;18(2):24:1–24:32.

[10] Ye R, Xu Q. Learning-based power management for multicore processors via
idle period manipulation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD). 2014;33(7):1043–1055.

[11] Dhiman G, Kontorinis V, Tullsen D, et al. Dynamic workload characteriza-
tion for power efficient scheduling on CMP systems. In: Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED); 2010. p. 437–442.

[12] Jung H, Pedram M. Supervised learning based power management for multi-
core processors. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD). 2010;29(9):1395–1408.

[13] Cochran R, Hankendi C, Coskun AK, et al. Pack & Cap: Adaptive DVFS
and thread packing under power caps. In: Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO). ACM; 2011.
p. 175–185.

[14] Cochran R, Hankendi C, Coskun A, et al. Identifying the optimal energy-
efficient operating points of parallel workloads. In: Proceedings of the
International Conference on Computer Aided Design (ICCAD); 2011.
p. 608–615.

[15] Mercati P, Bartolini A, Paterna F, et al. Workload and user experience-aware
dynamic reliability management in multicore processors. In: Proceeding of the
Annual Design Automation Conference (DAC). ACM; 2013. p. 2:1–2:6.

[16] Pallipadi V, Starikovskiy A. The ondemand governor. In: Proceedings of the
Linux Symposium. vol. 2; 2006. p. 215–230.

[17] DasA, KumarA,Veeravalli B, et al. Workload uncertainty characterization and
adaptive frequency scaling for energy minimization of embedded systems. In:
Proceedings of the Conference on Design, Automation and Test in Europe
(DATE). IEEE; 2015. p. 43–48.

[18] Michie D, Spiegelhalter DJ, Taylor CC. Machine Learning, Neural and
Statistical Classification. New York, NY: Ellis Horwood; 1994.

Runtime thermal management of many-core systems 243

[19] Anderson JA, Richardson SC. Logistic discrimination and bias correction in
maximum likelihood estimation. Technometrics. 1979;21(1):71–78.

[20] Derf. Test Media; 2014. Available from: http://media.xiph.org/video.
[21] Knickerbocker JU, Patel CS,Andry PS, et al. 3-D silicon integration and silicon

packaging technology using silicon through-vias. IEEE Journal of Solid-State
Circuits. 2006;41(8):1718–1725.

[22] Feero BS, Pande PP. Networks-on-chip in a three-dimensional environment: A
performance evaluation. IEEE Transactions on Computers. 2009;58(1):32–45.

[23] Cox M, SinghAK, KumarA, et al. Thermal-aware mapping of streaming appli-
cations on 3D Multi-Processor Systems. In: IEEE Symposium on Embedded
Systems for Real-time Multimedia (ESTIMedia). IEEE; 2013. p. 11–20.

[24] Lee EA, Messerschmitt DG. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions on Computers.
1987;100(1):24–35.

[25] Cheng Y, Zhang L, Han Y, et al. Thermal-constrained task allocation
for interconnect energy reduction in 3-D homogeneous MPSoCs. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems. 2013;21(2):
239–249.

[26] Skadron K, Stan MR, Sankaranarayanan K, et al. Temperature-aware microar-
chitecture: Modeling and implementation. ACM Transactions on Architecture
and Code Optimization (TACO). 2004;1(1):94–125.

[27] Coskun AK, Ayala JL, Atienza D, et al. Dynamic thermal management in 3D
multicore architectures. In: Design, Automation & Test in Europe Conference
& Exhibition, 2009. DATE’09. IEEE; 2009. p. 1410–1415.

[28] Zhou X, Yang J, Xu Y, et al. Thermal-aware task scheduling for 3D mul-
ticore processors. IEEE Transactions on Parallel and Distributed Systems.
2010;21(1):60–71.

[29] Addo-Quaye C. Thermal-aware mapping and placement for 3-D NoC designs.
In: SOC Conference, 2005. Proceedings. IEEE International. IEEE; 2005.
p. 25–28.

[30] Chantem T, Hu X, Dick RP. Temperature-aware scheduling and assignment
for hard real-time applications on MPSoCs. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems. 2011;19(10):1884–1897.

[31] Sun C, Shang L, Dick RP. Three-dimensional multiprocessor system-on-chip
thermal optimization. In: Hardware/Software Codesign and System Synthe-
sis (CODES+ ISSS), 2007 5th IEEE/ACM/IFIP International Conference on.
IEEE; 2007. p. 117–122.

[32] Thiele L, Schor L, Bacivarov I, et al. Predictability for timing and tem-
perature in multiprocessor system-on-chip platforms. ACM Transactions on
Embedded Computing Systems. 2013;12(1s):48:1–48:25. Available from:
http://doi.acm.org/10.1145/2435227.2435244.

[33] Nookala V, Lilja DJ, Sapatnekar SS. Temperature-aware floorplanning of
microarchitecture blocks with IPC-power dependence modeling and transient
analysis. In: Proceedings of the 2006 International Symposium on Low Power
Electronics and Design. ACM; 2006. p. 298–303.

244 Many-core computing: hardware and software

[34] Zhou P, Ma Y, Li Z, et al. 3D-STAF: Scalable temperature and leakage aware
floorplanning for three-dimensional integrated circuits. In: Computer-Aided
Design, 2007. ICCAD 2007. IEEE/ACM International Conference on. IEEE;
2007. p. 590–597.

[35] Pathak M, Lim SK. Thermal-aware Steiner routing for 3D stacked ICs.
In: Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International
Conference on. IEEE; 2007. p. 205–211.

[36] Ghamarian AH, Geilen M, Stuijk S, et al. Throughput analysis of synchronous
data flow graphs. In: Application of Concurrency to System Design, 2006.
ACSD 2006. Sixth International Conference on. IEEE; 2006. p. 25–36.

[37] Stuijk S, Geilen M, Basten T. SDFˆ3: SDF for free. In: Application of Concur-
rency to System Design, 2006. ACSD 2006. Sixth International Conference
on. IEEE; 2006. p. 276–278.

[38] Stuijk S, Basten T, Geilen M, et al. Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: Design Automation
Conference, 2007. DAC’07. 44th ACM/IEEE. IEEE; 2007. p. 777–782.

[39] HoskoteY, Vangal S, Singh A, et al. A 5-GHz mesh interconnect for a teraflops
processor. IEEE Micro. 2007;27(5):51–61.

[40] International Technology Roadmap for Semiconductors; 2010. Available from:
http://www.itrs.net/reports.html.

[41] Bhat S. Energy Models for Network-on-Chip Components [MSc. thesis].
Eindhoven University of Technology; 2005.

[42] Wang Q, Rao Z, Huo Y, et al. Thermal performance of phase change
material/oscillating heat pipe-based battery thermal management system.
International Journal of Thermal Sciences. 2016;102:9–16.

[43] Chiou HW, LeeYM. Thermal simulation for two-phase liquid cooling 3D-ICs.
Journal of Computer and Communications. 2016;4(15):33.

[44] Dash R, Pangracious V, Risco-Mart JL, et al. Thermal management in 3D
homogeneous NoC systems using optimized placement of liquid microchan-
nels. In: Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2017
IEEE 11th International Symposium on. IEEE; 2017. p. 37–44.

[45] Andreev AA, Sridhar A, Sabry MM, et al. PowerCool: Simulation of cool-
ing and powering of 3D MPSoCs with integrated flow cell arrays. IEEE
Transactions on Computers. 2018;67(1):73–85.

[46] Sabry MM, Sridhar A, Atienza D, et al. Integrated microfluidic power gen-
eration and cooling for bright silicon MPSoCs. In: Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2014. IEEE; 2014.
p. 1–6.

[47] Murshed SS, de Castro CN. A critical review of traditional and emerging tech-
niques and fluids for electronics cooling. Renewable and Sustainable Energy
Reviews. 2017;78:821–833.

[48] Jayakumar S, Reda S. Making sense of thermoelectrics for processor ther-
mal management and energy harvesting. In: Low Power Electronics and
Design (ISLPED), 2015 IEEE/ACM International Symposium on. IEEE; 2015.
p. 31–36.

Runtime thermal management of many-core systems 245

[49] LeeY, Kim E, Shin KG. Efficient thermoelectric cooling for mobile devices. In:
Low Power Electronics and Design (ISLPED, 2017 IEEE/ACM International
Symposium on. IEEE; 2017. p. 1–6.

[50] Brunelli D, Passerone R, Rizzon L, et al. Self-powered WSN for distributed
data center monitoring. Sensors. 2016;16(1):57.

[51] Merrett GV,Al-Hashimi BM. Energy-driven computing: Rethinking the design
of energy harvesting systems. In: Proceedings of the Conference on Design,
Automation & Test in Europe. European Design and Automation Association;
2017. p. 960–965.

[52] Xiang Y, Pasricha S. Mixed-criticality scheduling on heterogeneous multicore
systems powered by energy harvesting. Integration. 2018;61:114–124.

[53] Housseyni W, Mosbahi O, Khalgui M, et al. Real-time scheduling of spo-
radic tasks in energy harvesting distributed reconfigurable embedded systems.
In: Computer Systems and Applications (AICCSA), 2016 IEEE/ACS 13th
International Conference of. IEEE; 2016. p. 1–8.

[54] Zhang Y. Improving the Efficiency of Energy Harvesting Embedded System.
Syracuse University; 2016.

[55] Lee D, Ghose S, Pekhimenko G, et al. Simultaneous multi-layer access:
Improving 3D-stacked memory bandwidth at low cost. ACM Transactions on
Architecture and Code Optimization (TACO). 2016;12(4):63.

[56] Banerjee S, Majumder S, Varma A, et al. A placement optimization technique
for 3D IC. In: Embedded Computing and System Design (ISED), 2017 7th
International Symposium on. IEEE; 2017. p. 1–5.

[57] Zhu HY, Zhang MS, He YF, et al. Floorplanning for 3D-IC with through-
silicon via co-design using simulated annealing. In: 2018 IEEE International
Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific
Symposium on Electromagnetic Compatibility (EMC/APEMC). IEEE; 2018.
p. 550–553.

[58] Chan WTJ, Kahng AB, Li J. Revisiting 3DIC benefit with multiple tiers.
Integration, the VLSI Journal. 2017;58:226–235.

[59] Khudia DS, Zamirai B, Samadi M, et al. Rumba: An online quality manage-
ment system for approximate computing. In: Computer Architecture (ISCA),
2015 ACM/IEEE 42nd Annual International Symposium on. IEEE; 2015.
p. 554–566.

[60] Mishra AK, Barik R, Paul S. iACT: A software-hardware framework for under-
standing the scope of approximate computing. In: Workshop on Approximate
Computing Across the System Stack (WACAS); 2014.

[61] Ullah S, Rehman S, Prabakaran BS, et al. Area-optimized low-latency approx-
imate multipliers for FPGA-based hardware accelerators. In: Proceedings of
the 55th Annual Design Automation Conference. ACM; 2018. p. 159.

[62] Ullah S, Murthy SS, Kumar A. SMApproxlib: Library of FPGA-based approx-
imate multipliers. In: Proceedings of the 55th Annual Design Automation
Conference. ACM; 2018. p. 157.

[63] Mittal S. A survey of techniques for approximate computing. ACM Computing
Surveys (CSUR). 2016;48(4):62.

	9 Runtime thermal management of many-core systems
	9.1 Thermal management of many-core embedded systems
	9.1.1 Uncertainty in workload estimation
	9.1.2 Learning-based uncertainty characterization
	9.1.2.1 Multinomial logistic regression model
	9.1.2.2 Maximum likelihood estimation
	9.1.2.3 Uncertainty interpretation

	9.1.3 Overall design flow
	9.1.4 Early evaluation of the approach
	9.1.4.1 Impact of workload uncertainty: H. 264 case study
	9.1.4.2 Thermal improvement considering workload uncertainty

	9.2 Thermal management of 3D many-core systems
	9.2.1 Recent advances on 3D thermal management
	9.2.2 Preliminaries
	9.2.2.1 Application model
	9.2.2.2 Multiprocessor platform model
	9.2.2.3 3D IC model

	9.2.3 Thermal-aware mapping
	9.2.3.1 Thermal profiling
	9.2.3.2 Runtime
	9.2.3.3 Application merging
	9.2.3.4 Resource allocation
	9.2.3.5 Throughput computation
	9.2.3.6 Utilization minimization

	9.2.4 Experimental results
	9.2.4.1 Benchmark applications
	9.2.4.2 Target 3D many-core system
	9.2.4.3 Temperature simulation
	9.2.4.4 Interconnect energy computation
	9.2.4.5 Thermal profiling results
	9.2.4.6 Benchmark application results
	9.2.4.7 Case-study for real-life applications

	9.3 Conclusions and future directions
	References

