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ABSTRACT
The architectural differences between ASICs and FPGAs limit the
effective performance gains achievable by the application of ASIC-
based approximation principles for FPGA-based reconfigurable com-
puting systems. This paper presents a novel approximate multiplier
architecture customized towards the FPGA-based fabrics, an effi-
cient design methodology, and an open-source library. Our designs
provide higher area, latency and energy gains along with better out-
put accuracy than those offered by the state-of-the-art ASIC-based
approximate multipliers. Moreover, compared to the multiplier IP
offered by the Xilinx Vivado, our proposed design achieves up
to 30%, 53%, and 67% gains in terms of area, latency, and energy,
respectively, while incurring an insignificant accuracy loss (on av-
erage, below 1% average relative error). Our library of approximate
multipliers is open-source and available online at https://cfaed.tu-
dresden.de/pd-downloads to fuel further research and development
in this area, and thereby enabling a new research direction for the
FPGA community.

1 INTRODUCTION AND RELATEDWORK
Multiplication is one of the basic arithmetic operations, used exten-
sively in the domain of digital signal and image processing. FPGA
vendors, such as Xilinx and Intel, provide DSP blocks to achieve fast
multipliers. Despite the high performance offered by the DSP blocks,
their usage might not be efficient in terms of overall performance
and area requirements for some applications. Table 1 compares two
different implementations of Reed-Solomon and JPEG encoders1
for Virtex-7 series FPGA (7VX330T device) using Xilinx Vivado
17.1. The routing delay, caused by the location of the allocated DSP
blocks, has resulted in higher latency for DSP-based implementa-
tion of Reed-Solomon encoder. For small applications, it may be
possible to perform manual Floorplanning to optimize the overall
performance of an application, but for complex applications hav-
ing contending requirements for FPGA resources, it may not be
possible to optimize the placement of required FPGA resources
for enhancing the performance gains. Similarly, the implementa-
tion of the JPEG-encoder shows a large number of DSP blocks
(56% of the total available DSP blocks) utilization. Such applica-
tions can exhaust the available DSP blocks for other performance
critical operations. As a result, other applications executing concur-
rently on the same FPGA will opt for using LUT-based multipliers.
1Source codes from http://opencores.org/projects
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Similar results about DSP blocks utilization and overall applica-
tion performance are also reported by [13]. In short, despite the
availability of DSP blocks, the need of LUT-based multipliers is
inevitable. That is why Xilinx and Intel also provide logic-based
soft multipliers [10, 13, 20]. Multiplier designs like [12] and [18]
have also considered the efficient utilization of FPGA resources for
providing high performance. However, a wide range of applications
do not require accurate intermediate computations and their oper-
ations can be approximated to further improve performance and
energy efficiency. These applications have inherent resilience to ap-
proximation induced errors and thereby demonstrate the ability to
produce viable outputs despite some of the input-data/intermediate
computation being incorrect or approximate. Examples of such ap-
plications can be found in the domains of image/signal processing,
machine learning and various other probabilistic algorithms [3].

Table 1: Comparison of logic vs DSP blocks based
implementations

Design

DSP Blocks Enabled DSP Blocks Disabled

Critical 
Path 

Delay [ns]

Total 
No. of 
LUTs

Total No. 
of DSP 
Blocks

Critical 
Path 
Delay 
[ns]

Total 
No. of 
LUTs

Total No. of DSP 
Blocks

Reed-Solomon Encoder 5.115 2826 22 4.358 2867 0

JPEG Encoder 8.637 71362 631 9.732 14780 0

Using the principles of approximate computing, works in [4, 5, 8, 11]
and [1, 6, 7, 14–16, 19] suggest the use of functional approximations
for designing different types of approximate adders and multipliers
with different performance gains. However, because of the inherent
architectural differences between FPGAs and ASICs, most of these
techniques provide limited or no performance gains when directly
synthesized for the FPGA-based systems. To further emphasize the
need for designing FPGA-based approximate modules, we present
the following motivational case study.
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1.1 Motivational Case Study
Fig. 1 compares the ASIC-based area, latency and Energy-Delay-
Product (EDP) gains of two state-of-the-art approximate multipliers,
"W", presented in [19], and "K", described in [6], with their FPGA-
based implementations. The gains for ASIC-based implementations
have been obtained from [19] and [6], whereas for the FPGA-based
implementations, Xilinx Vivado 17.1 tool for the 7VX330T device
of Virtex-7 family has been used. As shown by the analysis results,
the gains offered by the ASIC-based implementation are not pro-
portionally translated to FPGA-based implementation. The area
and EDP gains offered byW and K are reduced for FPGA-based im-
plementation. However, the latency gains have improved for both
multipliers. This lack of similar performance gains for FPGA-based
systems is the result of the architectural differences between ASICs
and FPGAs. In ASIC-based designs, logic gates are deployed for
the implementations of different logic circuits, thus a full control
over resource utilization at a fine granularity is possible. How-
ever, FPGA-based computational blocks are composed of entirely
different entities, i.e., look-up tables (LUTs) where configuration
bits are used to implement a certain circuit. This poses a research
challenge of defining LUTs-based approximations for FPGA-based
systems to achieve significant performance gains.

1.2 Our Novel Contributions
To address the above research challenge, this paper presents a novel
approximate multiplier architecture, that has been specifically de-
signed for FPGA-based systems. The proposedmethod utilizes LUTs
for the generation of approximate partial products. As most of the
modern LUTs have six inputs, therefore, to completely utilize a
LUT, this paper presents a novel approximate 4×2 multiplier as
an elementary module. In order to reduce the number of output
errors, we then perform different FPGA-specific optimizations and
generate an approximate and asymmetric 4×4 multiplier. It has
increased output accuracy and reduced latency and area require-
ments as compared to the state-of-the-art approximate multipliers.
To the best of our knowledge, this work is the first attempt towards
FPGA-specific approximate multipliers by utilizing LUTs and asso-
ciated carry chains to generate approximate partial products. To
further explore the efficacy of the proposed 4×2 and 4×4 elemen-
tary multipliers, this paper also presents the approximate addition
of the generated approximate partial products.

Our approximate multipliers have been characterized using the
following quality metrics (as also adopted by the literature [1, 6, 9]).

• Number of Error Occurrences
• Maximum Error Magnitude
• Average Relative Error
• Number of Maximum Error Case Occurrences

The proposed asymmetric 4×4 multiplier has total 6 error cases
with fixed error magnitude for a uniform input distribution. For
different real-world applications with non-uniform input data sets,
the asymmetric nature of the proposed multiplier can be utilized
for improving the output accuracies. This is also verified by our
experimental analysis in section 5, where the mutual swapping of
the input values to the multiplier results in improving the final
output accuracies.

The rest of the paper is organized as follows: Section 2 presents
the preliminaries and the inspiration for designing approximate 4×2
multiplier as the basic block for designing higher order multipliers,
Section 3 describes our novel design of 4×2 and 4×4 multipliers,
followed by the description of designing higher order multipliers
using approximate sub-components in Section 4. Finally, Section 5

describes the implementation and analysis results of our approxi-
mate multipliers.

2 PRELIMINARIES
The proposed design has been implemented using Xilinx FPGAs,
however, the presented methodology can also be implemented on
FPGAs from other vendors, such as Intel which provides fracturable
6-input LUTs and carry chains.
A slice in the configurable logic block (CLB) of Xilinx 7-series
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Figure 2: Xilinx FPGA slice structure [21]
FPGAs have four 6-input LUTs (commonly referred as LUT6_2)
along with eight flip-flops for registering LUTs outputs and a single
4-bit long carry chain [21]. A LUT6_2 can be used to implement
either a single 6-bit combinational function, using O6 output bit,
or two 5-bit combinational functions, using O5 and O6 output bits,
by defining an INIT value which describes all the possible input
combinations for which a logic value "1" is required at the output.
For example, an INIT value of 0000000000000002(hex) for LUT6_2
defines to produce outputs O5 = 1 & O6 = 0 for input combination
100001. Besides the implementation of combinational functions,
these 6-input LUTs are also used for controlling the associated
carry chain; as shown in Fig. 2(b). The carry chain implements a
4-bit carry-look ahead adder using O5 as carry-generate signal and
O6 as carry-propagate signal.

A Performance/Area Optimized Elementary Multiplier Module,
targeted for FPGAs, should efficiently utilize the available LUT6_2
and associated carry chains in FPGAs. The 2 × 2 multipliers, as
used by [19] and [6], under-utilize LUT6_2 and therefore has been
excluded from the list of potential elementary multipliers. The only
two potential multiplier designs, which utilize all the inputs of a
LUT6_2, are 3 × 3 and 4 × 2 multipliers. However, a 3 × 3 multiplier
is not a feasible option for the implementation of higher order
multipliers, e.g. 4 × 4 and 8 × 8 multipliers. A 4 × 4 multiplier
requires one 3 × 3, one 1 × 4 and one 3 × 1 multipliers [2]. This
limited applicability of a 3 × 3 multiplier results in filtering it out
from our selection of an elementary multiplier module. The only
feasible elementary design is a 4 × 2 multiplier, which thoroughly
utilizes lookup tables of state-of-the-art FPGAs. A 4 × 4 multiplier
can be implemented using two instances of a 4 × 2 multiplier. This
paper uses 4×2 multiplier as elementary block for designing higher
order multipliers. Using 4 × 2 multipliers, a 4 × 4 multiplier with
improved output accuracy has been presented.

3 APPROXIMATE DESIGN OF ELEMENTARY
MULTIPLIER MODULES

Before presenting the approximate 4 × 4 multiplier design, we
present the approximate 4 × 2 multiplier design in the next subsec-
tion.

3.1 Approximate Design of 4 × 2 Multiplier
An accurate 4 × 2 multiplier generates a 6-bit output with the
following optimized logic equations for A(A3A2A1A0) and B(B1B0)
as multiplicand and multiplier respectively:
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P0 = B0A0 (1)
P1 = B1

′B0A1 + B1B0
′A0 + B1A1

′A0 + B0A1A0
′ (2)

P2 = B1
′B0A2 + B1B0

′A1 + B0A2A1
′ (3)

+ B1A2
′A1A0

′ + B1A2A1A0

P3 = B1
′B0A3 + B1B0

′A2 + B1A3
′A2A1

′ + B0A3A2
′A1

′ (4)
+ B1B0A3

′A2
′A1A0 + B0A3A2A1 + B0A3A1A0

′

P4 = B1B0
′A3 + B1A3A2

′A1
′ + B1A3A2

′A0
′ (5)

+ B1B0A3
′A2A1

P5 = B1B0A3A2 + B1B0A3A1A0 (6)
As P0, P1 and P2 each depend on less than six shared variables

i.e. A0, A1, A2, B0 and B1, therefore, any two of these three least
significant product bits can be generated using a single LUT6_2.
The remaining four product bits will require four separate LUTs
for implementation. An area and energy efficient approximation
is to accommodate the six product bits in four LUTs i.e. a single
slice. Truncation of P0 limits the output error to the least significant
product bit and the final output accuracy to 75% with maximum
error magnitude of ”1” for all input combinations. Approximation
of any other product bit results in a higher magnitude of error
in the final output. The proposed approximate design of 4 × 2
multiplier uses 4 LUTs for its implementation by truncating “P ′′0
and generating “P ′′1 and “P ′′2 by a single LUT6_2.

3.2 Approximate Design of 4 × 4 Multiplier
The approximate design of 4 × 4 multiplier requires two 4 × 2 mul-
tipliers, consuming eight LUTs for partial products generation. For
multiplicand A(A3A2A1A0) and multiplier B(B3B2B1B0), the first
4×2 multiplier takes A(A3A2A1A0) & B0(B1B0) and the second 4×2
multiplier occupies A(A3A2A1A0) & B1(B3B2) as input operands.

PP0<5> PP0<4> PP0<3> PP0<2> PP0<1> PP0<0>

PP1<5> PP1<4> PP1<3> PP1<2> PP1<1> PP1<0>

P7 P6 P5 P4 P3 P2 P1 P0

Approximate Summation

Accurate Summation

PP0<X>: Result of first 4 × 2 multiplier 

PP1<X>: Result of second 4 × 2 multiplier 

Figure 3: 4×4 using 4×2 multipliers
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Figure 4: Implementation of Gen3 and Prop3 for P6 and P7
As shown by the black box in Fig. 3, the accurate summation

of the approximate partial products generated by the two 4 × 2
multipliers requires the use of two carry chains. Therefore, the
approximate 4 × 4 multiplier, with accurate summation of partial
products, requires 16 LUTs (2 LUTs wasted by the second carry
chain). Due to the truncation of PP0 < 0 > and PP1 < 0 > in Fig. 3,
this 4×4 multiplier implementation has an average relative error of

Table 2: 4×4 multiplier error values
Multiplier Multiplicand Actual Product Computed Result Difference

5 15 75 67 8
6 7 42 34 8
6 15 90 82 8
7 15 105 97 8
13 13 169 161 8
15 5 75 67 8

0.049 with an error probability of 0.375 for a uniform input distribu-
tion. However, the proposed design performs approximate addition
along with FPGA-specific optimizations of second 4 × 2 multiplier
and uses one single carry chain for partial products summation,
as shown by the blue rectangle in Fig. 3. Our optimizations not
only provides area gains but also significantly improves the total
number of error cases by having only 6 erroneous outputs. Our
proposed optimization uses three LUT6_2s for the implementation
of required Carry Propagate and Carry Generate signals to compute
P3, P4 and P5 product bits. Since PP1<4> and PP1<5> share same
six operands, therefore our design does not compute PP1<4> and
PP1<5> explicitly for subsequent addition by the carry chain. The
proposed approach, as shown in Fig. 4, computes the respective
Carry Propagate ‘Prop3’ and Carry Generate ‘Gen3’ signals for the
computation of P6 and P7 directly from the multiplier and multipli-
cand bits by implicitly generating PP1<4> and PP1<5>. This implicit
implementation of PP1<4> and PP1<5> saves one LUT as compared
to their explicit computation. In order to improve the output accu-
racy, the recovered LUT is then assigned for the accurate realization
of P0 and P2. Since the computation of P3 is also dependent on the
carry-out from P2, therefore, the corresponding LUT for P3 besides,
using PP0<3> and PP1<1> also utilize A0, B2 and PP0<2> to resolve
the effect of the missing carry-out from P2. As carry propagate and
carry Generate signals cannot be "1" simultaneously, all the cases
where A0, B2, PP0<2>, PP0<3> and PP1<1> are all "1" concurrently,
will generate an error. In order to limit the error occurrences to a
single product bit, P3, we propose to correctly compute the carry
Generate signal only. This decision limits the error to P3 only with
a fixed error magnitude of “8”.

The proposed design has been implemented on 7VX330T de-
vice of Virtex-7 series FPGA and Tables 2 and 3 present the input
operands with erroneous outputs and INIT values employed by
each LUT along with input/output pins configuration respectively.
However, the availability of 6-input LUTs and dedicated adders in
other FPGA architectures, such as Intel Stratix 10, also make the
proposed design portable to other architectures to obtain compa-
rable performance gains. It is noteworthy that depending upon an
application’s input data, the proposed 4×4 multiplier may produce
better result due to its asymmetric nature and the values presented
in Table 2 only show the maximum number of possible error oc-
currences for uniform distribution of all input cases. Our proposed
multiplier does not generate erroneous outputs for highlighted in-
puts, in Table 2, with multiplier and multiplicand mutually swapped.
For achieving better output quality results, the proposed approach
suggests an initial analysis of input data, before multiplication, to
decide operands for multiplier and multiplicand. The asymmetric
nature of the proposed multiplier and the analysis of input data for
achieving better output accuracy are further explored in section 5.

4 DESIGNING HIGHER ORDER
APPROXIMATE MULTIPLIERS

The proposedmethodology utilizes the recursive approach of adding
approximate 4×2 and 4×4 multipliers for implementing higher or-
der multipliers as shown in Fig. 5(a). For the process of addition, the
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Table 3: LUTs’ inputs and outputs pins configuration for
approximate 4×4 Multiplier

LUT
LUT Input Pins Configuration INIT value (Hex)

LUT Output Pins 
Configuration

I5 I4 I3 I2 I1 I0 O6 O5
LUT0 1 B1 B0 A2 A1 A0 B4CCF00066AACC00 PP0<2> PP0<1> = P1

LUT1 B1 B0 A3 A2 A1 A0 C738F0F0FF000000 PP0<3>
LUT2 B1 B0 A3 A2 A1 A0 07C0FF0000000000 PP0<4>
LUT3 B1 B0 A3 A2 A1 A0 F800000000000000 PP0<5>
LUT4 1 B3 B2 A2 A1 A0 B4CCF00066AACC00 PP1<2> PP1<1>
LUT5 B3 B2 A3 A2 A1 A0 C738F0F0FF000000 PP1<3>
LUT6 B3 B2 A3 A2 A1 A0 F800000000000000 Gen3

LUT7 1 1 PP0<2> B2 B0 A0 5FA05FA088888888 P2 P0

LUT8 1 PP1<1>PP0<3> B2 A0 PP0<2> 007F7F80FF808000 Prop0 Gen0

LUT9 1 1 1 1 PP1<2>PP0<4> 6666666688888880 Prop1 Gen1

LUT10 1 1 1 1 PP1<3>PP0<5> 6666666688888880 Prop2 Gen2

LUT11 B3 B2 A3 A2 A1 A0 07C0FF0000000000 Prop3

0
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O5 O6

0
Cout To Next Carry 
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A: 2M bit Multiplier
B: 2M bit Multiplicand
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(a) Implementation of a 2M×2M multiplier from M×M multiplier

(b) Accurate addition of three partial products

Figure 5: Designing higher order multipliers from lower
order multipliers: (a) Implementation of 2M×2M multiplier
using M×Mmultipliers. (b) Generation of product bits P4,

P5, P6 and P7 using carry chain
proposed methodology utilizes accurate and approximate addition.
The approximate multiplier Ca in Fig. 5(b), performs an accurate
summation of the approximate partial products by using the asso-
ciated carry chain. As shown in Fig. 5(b), PP0 < 4 > – PP0 < 7 >
from AL×BL , PP1 < 0 > – PP1 < 3 > from AH×BL and PP2 < 0 >
– PP2 < 3 > from AL×BH are added in one single step to produce
final product bits P4 – P7 for an 8×8 multiplier. The O5 output of
fourth LUT6 and Cout of carry chain in Fig. 5(b) are routed to next
slice for generation of higher order product bits. The same process
can be repeated for the implementation of arbitrary sizes of higher
order multipliers. In the next section, we use approximate addition
of the approximate partial products to obtain approximate multi-
plier Cc. An example for 8 × 8 multiplier is presented, but the same
methodology can be followed to design arbitrary size of multiplier.

4.1 8 × 8 Approximate Multiplier Cc:
Approximate Summation of Partial
Products

For further improving the performance of the 8 × 8 multiplier, a
highly-inaccurate approximation has been applied on the partial
products summation, as shown by the blue dotted boxes in Fig. 6. All
partial products are added using LUTs but without using carry-out
from the preceding bit locations. The four least and most signifi-
cant product bits are obtained without using addition, as shown in
Fig. 6. The result of this highly-inaccurate approximate addition

also signifies the high output accuracy of our basic 4×4 approximate
multiplier. By utilizing sophisticated approximate addition, higher
order approximate multipliers with higher output accuracies and
area gains than those achievable with Cc can be obtained.
To characterize the proposedmultipliers, a detailed analysis in terms
of maximum errormagnitude, number of error occurrences, number
of maximum error occurrences, average error, area requirements,
worst case latency, EDP requirements, output visual quality and
peak signal to noise ratio (PSNR) values of approximate multipliers
is presented in the next section.

5 RESULTS & DISCUSSION
5.1 Experimental Setup and Tool Flow
All presented multipliers have been implemented in VHDL and
synthesized for 7VX330T device of Virtex-7 family using Xilinx
Vivado 17.1. For EDP calculations, Vivado Simulator and Power An-
alyzers have been used. EDP and output accuracies of all proposed
multipliers have been calculated for a uniform distribution of all
input combinations. We compare the proposed multipliers for per-
formance gains and output accuracies with W [19], K[6], library of
8-bit approximate multipliers EvoApprox8b[17], precision reduced
4×4 and 8×8 multipliers with three and four LSBs rounded to zero
respectively, and Xilinx accurate multiplier IP[20].

The designed multipliers have also been implemented for the
image smoothing accelerator of the SUSAN application to record
the area savings offered by our novel approximate multipliers.

5.2 Evaluation and Characterization of
Designed Multipliers

Table 4 presents the implementation results of our proposed ap-
proximate multipliers. For approximate 8×8 and 16×16 multipliers
Ca and Cc, all sub-multipliers are approximate. Cc trades the output
accuracy to provide area and latency gains. Table 5 presents an er-
ror analysis of our designed approximate multipliers in comparison
with the state-of-the-art approximate multipliers and precision re-
duced 8×8 multiplier with four LSBs rounded to zero. The proposed
multiplier Ca outperforms the existing approximate multipliers in
terms of maximum error magnitude, average error, error occur-
rences and maximum error occurrences. The approximate multi-
plier Cc has higher maximum error magnitude than state-of-the-art
W[19], however, the maximum error occurs only once for Cc while
it occurs 31 times for W[19]. The precision reduced Mult(8,4) has
highest number of maximum error occurrences. Regardless of its
low average relative error, its high resource utilization, 350 LUTs,

Table 4: Area and latency results of proposed multipliers

Multiplier
Size

Area [LUTs] Latency (ns) Area [LUTs] Latency (ns)

Ca Cc

4×4 12 5.846 12 5.846

8×8 57 7.746 56 6.946

16×16 245 10.765 240 7.613

Table 5: Error analysis of 8×8 approximate multipliers

Error Description
Approximate Architectures

Ca Cc W[19] K[6] Mult(8,4)

Maximum Error Magnitude 2312 8288 7225 14450 15

Average Error 54.1875 1592.265 1354.687 903.125 6.5

Average Relative Error 0.002917 0.129390 0.1438777 0.032549 0.0037

Error Occurrences 5482 52731 53375 30625 53248

Maximum Error Occurrences 14 1 31 1 2048
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PP0<3> ─ PP0<0> are not added in any 
implementation(accurate/approximate) of higher order multipliers. 

PP3<7> ─ PP3<4> are not added in Cc implementation of higher 
order multipliers. 

PP0<7> PP0<6> PP0<5> PP0<4> PP0<3> PP0<2> PP0<1> PP0<0>

PP1<7> PP1<6> PP1<5> PP1<4> PP1<3> PP1<2> PP1<1> PP1<0>

PP2<7> PP2<6> PP2<5> PP2<4> PP2<3> PP2<2> PP2<1> PP2<0>

PP3<7> PP3<6> PP3<5> PP3<4> PP3<3> PP3<2> PP3<1> PP3<0>

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Figure 6: 8×8 approximate multiplier and its approximate summation
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Figure 8: Probability of error in individual product bits

filters it out in Pareto analysis. To explore the erroneous bit values
with their effect on final output and the frequency of error occur-
rences, Fig. 8 represents the normalized bit accuracy histograms and
the normalized number of unique error occurrences for proposed
multipliers. Our novel design restricts the errors to limited bits only.
Except Cc multiplier, all other multipliers have few distinct errors.
The low probability of getting accurate bit values for Cc is due to
the highly-inaccurate approximate addition of the partial products.
Such type of architectures, with limited distinct errors, can be easily
configured to have an error-correction circuitry that can be turned
on/off according to applications’ requirements.
Besides enhanced output accuracies, the proposed multipliers are
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Figure 9: Pareto optimal analysis of the proposed 8×8
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Figure 10: Pareto optimal analysis of the proposed 8×8
multipliers with state-of-the-art approximate multipliers

also better than state-of-the-art approximate multipliers W [19],
K[6], Vivado’s multiplier IP [20] (optimized for speed and area) and
4×4 truncated multiplier (3 LSBs have been truncated) in terms of
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area, latency and EDP gains as shown in Fig. 7. These results have
been normalized with respect to the area, latency and EDP results
of Vivado’s default accurate multiplier implementation. Our pre-
sented multipliers offer 25% — 31.5% area reduction, 8.6% — 53.2%
reduction in latency and 8.86% — 67% gains in EDP when compared
to the accurate multiplier implementation offered by Vivado.

Finally, Fig. 9 and Fig. 10 compare all possible configurations
of the presented 8×8 multipliers and state-of-the-art multipliers
W[19], K[6], EvoApprox8b[17] and area/latency optimized Xilinx
multiplier IP[20] with respect to average relative error, occupied
LUTs and critical path delay. The Pareto optimal analysis reveals
that the number of non-dominated points reported by Evoapprox8b
in [17] has significantly reduced for FPGA-based implementation.
This analysis is in accordance with our observation of ASIC-based
approximations less effective in producing comparable results for
FPGA-based systems. The design points with very low average
relative error and low area requirements are only provided by our
proposed methodology. Similarly, our methodology offers design
points with low critical path delay and low average relative error.

The proposed multipliers are also tested for the SUSAN appli-
cation based image smoothing accelerator to observe area gains.
Our approximations produced 17%, and 17.2% area gains for Ca
and Cc multipliers respectively with insignificant output quality
loss. Fig. 11 and Table 6 contrast the output visual qualities and
the PSNR values of SUSAN image smoothing accelerator, using
proposed approximate multipliers, accurate multiplier and state-
of-the-art multipliersW [19] and K [6] respectively. Results show
that our designed approximate multipliers, besides offering reduced
area/latency and EDP requirements, produce better visual quality
outputs and PSNR values than the multiplier proposed in [6]. The
approximate multiplier W, apparently, produces better PSNR value
than those produced by Ca and Cc. However, the input values anal-
ysis, in Fig. 12, of the image under consideration shows that most of
the multiplications during the image smoothing process are limited
to a narrow band and increasing the multiplication output accuracy
for this band can increase the accelerator’s output quality. Exploit-
ing the asymmetric nature of our proposed multiplier, the mutual
swapping of all input values to our approximate multipliers for
SUSAN image smoothing accelerator and input-image under con-
sideration results in enhanced output qualities with higher PSNR
values as shown in Table 6.

Accurate Ca Cc

Figure 11: Accurate and approximate multiplier Ca based
accelerator output

Hence depending upon the input-data and the application under
analysis, Ca, Cc or Cas, Ccs can be deployed for achieving desired
area, latency, EDP gains with required output accuracy.

6 CONCLUSION
In this paper approximate 4×2 and 4×4 multipliers have been pre-
sented as elementary blocks for designing higher order multipliers.
To the best of our knowledge, this is the first work that presents
FPGA-specific approximate partial product generation and their
summation. The generic nature of the presented methodology also
opens the door for area-efficient and reduced latency multipliers
for future FPGA versions.
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Table 6: PSNR values of 8×8 approximate multipliers

Multiplier Architectures SUSAN Accelerator  PSNR

Accurate ∞

Ca 33.7162

Cc 25.6022

Approximate 4: W[19] 47.4939

Approximate 5: K[6] 17.9443

Cas (Ca Swapped Inputs) 59.1198

Ccs (Cc Swapped Inputs) 27.3665
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