PosAx-O: Exploring Operator-level Approximations

for Posit Arithmetic in Embedded AI/ML

Amritha Immaneni®, Salim Ullah®, Suresh Nambi®, Siva Satyendra Sahoo®, Akash Kumar
Chair of Processor Design, Center for Advancing Electronics Dresden (cfaed),
Technische Universitit Dresden, Dresden, Germany

Abstract—The quest for low-cost embedded AI/ML applications
has motivated innovations across multiple abstractions of the
computation stack. Novel approaches for arithmetic operations
have primarily involved quantization, precision-scaling, approxi-
mations, and modified data representation. In this context, Posit
has emerged as an alternative to the IEEE-754 standard as it
offers multiple benefits, primarily due to its dynamic range and
tapered precision. However, the implementation of Posit arithmetic
operations tends to result in high resource utilization and power
dissipation. Consequently, recent works have delved into the idea
of exploiting the error resilience of machine learning algorithms
by using low-precision Posit arithmetic. However, limiting the
exploration to precision-scaling limits the scope for application-
specific optimizations for embedded AI/ML applications. To this
end, we explore operator-level optimizations and approximations
for low-precision Posit numbers. Specifically, we identify and
eliminate redundant operations in state-of-the-art Posit arithmetic
operator designs and provide a modular framework for exploring
approximations in various stages of the computation. We also
present a novel framework for behaviorally testing the correspond-
ing Posit approximate designs in Artificial Neural Networks. The
proposed optimizations and approximations exhibit considerable
resource improvements with a small error in many cases. For
instance, a Posit-based multiplier with 1-bit reduced precision
shows a 33% improvement in power and utilization, with only a
0.2% degradation in overall accuracy.

Index Terms—Approximate Computing, Arithmetic Operator
Design, Circuit Synthesis, Posit Arithmetic

I. INTRODUCTION

As the world moves toward more prevalent automated sys-
tems, Machine Learning (ML) models are becoming ubiquitous
and indispensable in a wide range of applications. However,
the convenience and productivity offered by automation come
at the cost of a large carbon footprint. Factors affecting the
energy consumption of ML models include training time,
computing infrastructure, and the type of energy used [1].
Moving toward greener systems, machine learning inference
has recently shifted from servers to edge devices, opening up
new advantages and challenges. To this end, the high computa-
tional complexity, memory footprint, and storage requirements
of ML models are some of the main challenges in deploying
them on embedded systems at the edge. Many recent works
have proposed various optimization techniques, such as ML
model reduction and optimization [2], low precision quantiza-
tion techniques [3], and utilization of approximate arithmetic
circuits [4] to enable ML inference at the edge. In this work, we
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TABLE I: Comparing range of number representations

n es useed | Min(scale) | Max(scale)
Posit8 4 65536 1.26E-29 7.92E+28
Positl6 3 256 1.93E-34 5.2E+33
Posit32 2 16 7.52E-37 8.3E+34
FP32 - - 1.0E-45 3E+38
FP16 - - 6E-08 TE+04

have explored various optimization techniques for the recently
proposed Posit number scheme to enable resource-efficient and
highly accurate computations for embedded AI/ML applica-
tions.

Posits have been shown to offer multiple benefits over the
IEEE 754-2008 Floating-Point (FP) standards as they exhibit
better dynamic range, better resolution with tapered accuracy,
and have eliminated the ambiguity of positive and negative
infinity and zero [5]. As seen in TABLE I, Posit(8,4)! and
Posit(16,3)* have a comparable dynamic range to IEEE 754-
2008 single-precision Floating-Point (FP32), motivating the
usage of 8-bit or 16-bit Posit schemes resulting in significant
memory savings. For example, Fig. 1, adapted from [6], shows
the comparison of the effect of using different quantization
methods (number representation schemes) across multiple per-
formance aspects — error in the quantization of weights, Critical
Path Delay (CPD) of Multiply and Accumulate (MAC) unit,
and storage requirements of the weights of the Conv2_1 layer
of pre-trained VGG16 network [7]. As seen in the figure, Posit
number representation schemes offer a considerable reduction
in the memory requirements with almost negligible loss in
accuracy compared to FP32.

However, the memory and accuracy advantages of the Posit
scheme incur energy and delay costs in implementing the
Posit arithmetic operators. The number decoding logic for the
Posit scheme is more complex than that of FP due to the
variable regime length, resulting in an undesirable amount
of delay, energy and total utilized resources. Additionally,
as shown in Fig. 1, the CPD of the Posit MAC is much
higher compared to Fixed-Point (FxP) operators of similar bit-
width. Consequently, the implementation cost of Posit-based
hardware could supersede the accuracy advantages they offer
over more straightforward quantization schemes such as 8-bit
Integer (INT8) and FxP. Therefore, it is imperative that the

18-bit Posit numbers
216-bit Posit numbers. Posit number scheme is summarized in Section II.
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Fig. 1: Accuracy and performance comparison of various
schemes for numbers representation for the Conv2_1 layer of
pre-trained VGG16 [7]: Average absolute relative error con-
cerning FP32-based parameters, critical path delay, normalized
memory footprints [6].

hardware architectures for Posit arithmetic are optimized and
made to be more energy- and resource-efficient.

Most of the related research in efficient architectures for Posit
arithmetic operators has focused on circuit-level modifications
and further parameterizing the number representation to mod-
ulate the implementation for application-specific requirements.
While such an approach allows some degree of application-
specific optimizations, it excludes leveraging a large body of
work related to application-specific approximations in arith-
metic operators. Approximations can significantly improve the
power performance and area (PPA) metric of the design by
introducing errors in the computation, which an application’s
inherent error resilience can tolerate. However, searching for
the appropriate level of approximation in the arithmetic operator
requires efficient Design Space Exploration (DSE). To this end,
we propose a novel framework for exploring approximations in
Posit-based arithmetic operators. The related contributions are
listed below.

Contributions:

1) We present a modular model of Posit-based arithmetic
operators that enables further exploration of optimizations and
approximations in the operators’ implementations. Specifically,
we model the adder, multiplier, and Fused Multiply and
Accumulate (FMA) operators into generic operations to allow
the modular characterization of each operation to identify areas
of improvement.

2) With the proposed model, we present circuit-level opti-
mization to the accurate operators’ implementations. Specif-
ically, we identify and eliminate redundant operations in the
design and report up to 17% and 40% reduction in power and
resource utilization, respectively, compared to the state-of-the-
art implementation.

3) We explore the effect of standard approximation tech-
niques for integer arithmetic on the corresponding Posit op-
erator implementations. Specifically, we report the results
of integrating different types of approximations—generic,
architecture- and quantization-specific methods in the Posit
operators.

4) We present a novel PyTorch-based framework for esti-
mating the impact of approximate Posit operators in Artificial
Neural Networks (ANN)-based applications. The proposed
framework for exploring Posit operator-level approximations
for ANN applications will be available as an open-source tool
at https://Blinded_for_peer_review.

The rest of the paper is organized as follows. Section II
provides a brief overview of the Posit number system and
discusses some related works for Posit arithmetic operator
implementations. The proposed modeling of the Posit opera-
tors and the corresponding optimizations and exploration of
approximations using the model are described in Section III and
Section IV, respectively. The results from the experimentation
with the proposed framework are discussed in Section V.
Finally, we conclude the paper in Section VI with a summary of
the proposed methods and a discussion of the scope of related
future work.

II. BACKGROUND AND RELATED WORKS
A. Posit Number System

The structure of a Posit-based number with bit-width n and
exponent width es is shown in Fig. 2. The sign bit can be 0
or 1, depending on whether the number is positive or negative,
respectively. If the sign bit is 0, the Posit can be decoded as
it is; else, the number has to be 2's complemented and then
decoded. The scale factor of the Posit number is made up of
two components: the regime and the exponent. The regime is a
variable-length bit-sequence following the sign bit, consisting
of contiguous Os or 1s, terminated by the opposite bit. The run-
length of the regime is equivalent to the number of Os or 1s
until the terminating bit. Depending on whether the run-length,
m, consists of Os or 1s, the regime value can be found as shown

in (1) [5].
—m, rbits=0
k_{ml, r bits =1 M

We can then decode the Posit value as:

sign x useed® x 2°*P x mantissa )

useed = 22" ; mantissa = 1.f1 f... @
The useed is an important tuning parameter, and the mantissa
consists of fraction bits with the hidden leading 1. It is
important to note that, unlike in FP, Posit does not include an
exponent bias. Moreover, the Posit number representation does
not need to have any fraction bits at all, as the regime bits
can occupy anywhere between 2 to n — 1 bits. The variable-
length regime and exponent bits give rise to what is known as
tapered precision, where numbers closer to 1 are more accu-
rately represented. Finally, there is no special representation for
infinity, as Posit numbers do not overflow. The representation

Sign Regime bits Exponent bits, if any Fraction bits, if any
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Fig. 2: Posit number representation
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for zero in Posits is simply all zero bits, and the other special
representation of 1 followed by n — 1 Os represents the value
+00, sometimes called projective infinity or complex infinity or
the point at infinity. The oo represents the reciprocal of zero
and not necessarily any overflow in operations. These simple
representations allow for a less ambiguous representation and
simplify certain aspects of the decoding logic.

B. Related Works

Similar to floating-point arithmetic, a straightforward ap-
proach to implementing Posit arithmetic operators involves
decoding the number representation, performing the integer
arithmetic operations, and encoding the result back into the
Posit number representation. Some of the more significant
works in the context of the hardware implementation of Posit
arithmetic operators include [8], [9], and [10]. In [8], the
authors employ a three-stage process that involves Posit data
extraction, core arithmetic processing, and Posit construction
to perform parameterized Posit arithmetic, including multi-
plication and division. However, the circuit implementations
proposed in [8] has two main drawbacks: firstly, the decoding
logic utilizes both a Leading Zero Detector (LZD) and Leading
One Detector (LOD), and secondly, a negative Posit number has
to be complemented before it is decoded. While the authors
in [9] eliminated the first problem, the authors in [10] obtained
the best utilization and power by solving both these implemen-
tation deficiencies. For more optimized implementations, the
authors in [11] propose a Posit multiplier in which the mantissa
multiplier is divided into smaller width modules which can
be enabled depending on the mantissa width. Their proposed
design achieves an 8% reduction in power for an 8-bit Posit-
based multiplier, and over 20% for Posit numbers with n > 16.
To enable better throughput, the work in [12] proposed an
algorithm for a 5-stage pipeline for the Posit FMA unit, which
takes three m-bit inputs and a 3-bit control signal. However,
this implementation is not fully optimized with regard to the
decode stage and utilizes more resources than those reported
in [8].

Few works in literature have focused on energy-aware and
approximation-oriented hardware implementations for Posit
arithmetic. In [13], the authors propose a Posit multiplier
implementation utilizing Mitchell’s approximate multiplication
algorithm along with variable truncation bits and an iterative
approach to reduce approximation errors. Compared to [8],
their design achieves a 44% decrease in Look-Up Table (LUT)
utilization for 32-bit Posit arithmetic. The work in [14] uses
a logarithm-approximate multiplier as well, resulting in a
30% improvement in utilization compared to [8] and 15-20%
compared to [9], as well as a 40-60% improvement in power
compared to other works. Furthermore, the authors in [14] have
trained different ANNs using the Posit(16,1) format for various
datasets, and during inference, they replace the accurate Posit
multipliers with their proposed approximate multipliers. Their
experimental results show that both accurate and approximate
multipliers-based inferences produce similar output accuracy.
The authors in [6] proposed an application-specific energy-

aware Posit to Fixed-point hardware, which reduces memory
utilization by up to 46%. It also leverages the range of weights
in neural networks, [—1,1], to make further optimizations to
this hardware. Another kind of approximation is proposed
in [15] and [16], where the Posit structure was leveraged to
make approximations in activation functions. The behavioral
results show that the proposed functions outperformed existing
approximations such as FastSigmoid; however, these functions
have not been characterized on hardware. An interesting ap-
proach to decrease the decoder power is proposed in [17], where
the authors use a fixed regime length in the Posit format. Tuning
the regime length allows the tuning of tapered precision. This
optimization is carried out for n = 16 to n = 32 Posits, with a
regime length that results in a similar dynamic range to FP32.
The authors report 47% improvement in power compared to
traditional Posit, and up to 70% improvement when compared
to IEEE 754.

The majority of state-of-the-art Posit arithmetic operator
designs focus on custom modifications to the algorithm, thereby
optimizing the circuit complexity. Additionally, since the de-
coder deals with modules such as LZD and shifters which are
required to be accurate, to determine the scale factor, there
is limited scope for approximation in the decoder. Hence, the
approximation-based methods primarily target the integer arith-
metic module. However, most of the approximation methods
focus on 16-bit Posit numbers where the integer module is
much larger and consumes comparable power to the decoder
and encoder. However, for the 8-bit Posit operations, the over-
all improvements seen while approximating integer modules
may not be very high and hence motivate the exploration of
novel approximations and optimizations. Further, state-of-the-
art Posit approximations have not leveraged the various types of
integer approximation methods available, primarily due to the
lack of a framework for exploring the effect of such methods
both at the operator- and application-level. Our current work
attempts to enable such DSE by enabling the implementation of
various approximations across different stages of computation
and characterization of the resulting approximate designs for
ANN-based applications.

III. OPERATOR MODELLING FOR EXPLORING
APPROXIMATIONS

A. The Posit Arithmetic Flow

A general Posit arithmetic block as shown in Fig. 3 consists
of a decoder, the integer arithmetic module (adder, multiplier,
etc.), and an encoding block that takes care of the packaging
and rounding, converting it back to a Posit.

The output of each module is an intermediate representation
including parameters such as the sign, scale, fraction(frac),
isZero and isNaR (the point at infinity). The intermediate
representation in our current work follows the convention
used in [10]. In general, a Posit operand must go through a
2’s complement module before the decoder and/or after the
encoder if it is a negative number. Hence, the 4 possibilities
of using the 2’s complement operation in a Posit addition are
illustrated in Fig. 4. The Adder could be replaced with any
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integer module for a different operator. It can be seen that for
cases such as (d) the 2’s complement can be repetitive and
redundant, especially when we look into the finer details of
2’s complementing that takes place in the decoder. The authors
in [10] resolved this redundancy through a more complex but
efficient implementation known as smallPosit [18]. We thus
utilize smallPosit as a starting point for further approximations
and optimizations.

B. The Posit Decoder

The main modules of the Posit decoder are shown in Fig. 5.
The most components of the decoder are the LZD (in this
case, Inverse LZD (ILZD)) and the Shifter. In [11], the authors
eliminated the need for both LZD and LOD by performing an
XOR operation on the bits inp(n — 2,1) and inp(n — 3,0),
where inp is the input to the decoder. When the output of the
XOR operation is passed through the ILZD, the resulting value
is one less than the regime length. The regime length, which is
the flipped output of ILZD, is an input to the Shifter. Normally,
the shift operation is inp(n — 3,0) >> r_length, as the sign
bit and flip bit must be taken into account. However, since the
regime length is 1 less than what it is supposed to be, the shift
operation, in this case, is inp(n — 4,0) >> r_length, as seen
in the figure. Finally, the Shifter outputs the exponent-fraction

regime

=
=)
Lz

isZero/ }-
isNaR
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. 7 INP[n-4,0]

Fig. 5: The Posit Decoder

value which can be separated into the respective components.
The exponent has to be 2’s complemented if the number is
negative. In this case, a 1’s complement suffices in most cases,
and the exponent is concatenated with the regime to form the
scale. However, the 1’s complement would bring about errors
in cases where the fraction bits are 0. This problem is resolved
by defining the mantissa as: mantissa = {sign, !sign, frac}.
This mantissa format offsets the scale value in anomalous
cases.

C. Posit Adder and Multiplier

STICKY
RIGHT SHIFT]

Fig. 6: The Posit Adder

The Posit Adder is quite similar to the standard floating-
point adder, given the intermediate representation inputs. The
main modules, shown in Fig. 6, are the comparator that is
used to find the larger scale, subtractor to find the difference
of the scales, sticky right shift module and the 2’s complement
signed adder. Post addition the required modules are the ILZD
and Shifter for normalizing and the overflow unit, as shown
in Fig. 7.

The Posit multiplier flow is similar to that of floating-point
as well. As shown in Fig. 8, the integer multiplier unit receives
the mantissas, and the output goes to a bias unit, which consists
of various XOR operations to evaluate the added exponent bias,
depending on the value of sig,..q. Then the exponent bias is
added to the two scales to compute the final scale. Since there
is a possibility of overflow or underflow as well, the scale must
be compared with the maximum and minimum scales to obtain
the final output.

D. The Posit Encoder

A basic schematic of the Posit encoder is shown in Fig. 9.
The main modules of the encoder involve a shifter to extract the
regime, another shifter for packaging the Posit, multiplexers,
and finally a rounding unit that consists of AND and OR
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operations as well as an adder. The rounding unit must also
output the bit sequences for isZero and isNaR depending on
the value of those parameters for the input operands. The final
rounded bit sequence is concatenated with the sign to obtain
the final Posit result. As seen in the figure, there is no 2’s
complementing required when the sign is negative, as this is
taken care of much earlier with the multiplexers.

E. The Fused Multiply-Adder

The Posit FMA essentially combines the multiplier and adder
modules to create a pipelined MAC unit. Fig. 10 shows the
basic modules of the FMA unit. There is no encoding between
the multiplier and adder stages, which leaves the rounding to
the end, thus reducing the possibilities for an error. The FMA
in the smallPosit design is a two-stage pipelined architecture
with a latency of two clock cycles. In the first stage, the three
inputs are decoded and A and B are multiplied to obtain the
product. In the second stage, the product(P) and C are added
and the output is encoded back into a Posit. As a result, the
final output is obtained after two clock cycles.

IV. EXPLORING OPTIMIZATIONS AND APPROXIMATIONS

The proposed models of the Posit-based arithmetic operators,
with a modular representation of the constituent operations,
allows the characterization and optimization of the operator
implementations. Further, it also enables the exploration of
possible approximations at different hierarchies. In our current
work, we utilize the model to propose algorithm-level optimiza-
tions over state-of-the-art implementations. Additionally, we
explore the impact of standard approximations in the arithmetic
operators—both at operator- and application-level. While in
the current work, we have limited such exploration to generic
approximate methods, the proposed model can be used for
exploring Posit-specific approximations as well. However, such

/isZiero//lsNgaR/Lgr_s/

e
|
=
=
=
%]

v v ¥V

[EUNDING

A

CONCAT

ADDER (IR)
2*(n-es-1)

ENCODER

Posit(n,es)
DECODER

(n,es)

. 10: Posit FMA

an approach is beyond the scope of the current article.
A. Algorithm-level optimizations
1) Removing Adder/Subtractor Multiplexing

Posit adder implementations involve addition or subtrac-
tion at the arithmetic operation stage, which is determined
based on the sign of the intermediate representation of both
operands. Similar signs indicate that an addition operation is
to be performed whereas dissimilar signs indicate a subtraction
operation is to be performed. Thus, PACoOGEN’s [8] Posit adder
implementation uses standalone instances of both an adder and
a subtractor module in the arithmetic operation stage, whose
inputs are the magnitude of the operands. Instead, we use a
unified binary adder-subtractor module that intrinsically 2’s
complements the second operand when a subtraction operation
is required to reduce resource utilization.

2) Removing Redundant Comparator

Observing the schematic of the Posit Adder (in Fig. 6), we
notice that a comparator is utilized to obtain the larger scale,
which is then fed into the subtractor as an input with the
smaller scale. We can eliminate this comparator by directly
subtracting the two scales and using the sign as a select line to
the multiplexer. In this case, we do not require the multiplexer
to output the smaller scale, but instead to 2’s complement the
difference in case it is negative.

B. Exploring Approximations

Various approximations, similar to the work in [13] and [14],
could be introduced to optimize the resource utilization of
Posits. However, these works are mainly focused on 16-bit and
32-bit Posits, where the integer arithmetic module, especially
the multiplier, consumes a comparable amount of power to the
decoder and encoder. According to [14], the multiplier con-
sumes 70% of the power in these cases. Also, they limit their
exploration to posit-specific approximations. One current work
is orthogonal to these approaches and complements them by



leveraging the large body of research into integer approximation
methods. We limit our exploration to low-precision (8-bits)
arithmetic only and focus on the following methods.

1) Using Truncated Multipliers

Truncation is one of the more generic and widely used meth-
ods for implementing low-cost arithmetic. For the truncated
multiplier, we eliminate 1-2 bits from the LSB of both input
operands and append the appropriate number of zeros to the
multiplier result.

2) Using Approximate Signed Operators

A large body of research is dedicated to implementing ap-
proximate operators by partial removal of the circuit logic. Such
approaches have resulted in the design of both generic [19]
and application specific operators [4]. In one current work, we
use the approximate operators proposed in [19] as the integer
multiplier. Since the work in [19] is only designed for even
multipliers currently, this approximation could not be applied
to the case (8,2).

3) Using Approximate XOR Multiplier

Using XOR operations for a subset of the bits forms an
extreme way of implementing approximate multiplication. We
used the case where the input operand bits are XORed to
generate the MSBs of the integer multiplication result, wth the
LSBs being set to all zeros.

C. PyTorch-based Application-level Exploration

To evaluate approximate operators, they are evaluated in
application-specific contexts. Applications with implicit error
tolerance present ample scope for implementing approximate
arithmetic while providing disproportionate gain in implemen-
tation cost. AI/ML-based systems form one primary example
of such applications. Multiple works have focused on building
frameworks for Posit-based Neural Network inference [20]-
[23]. While [21] performs the accumulation in single-precision,
[20] and [22] utilize existing Posit frameworks for the oper-
ations. The work in [23] presents FP, FxP and Posit-based
EMAC:s (exact multiply and accumulate operations) with hard-
ware characterizations. However the resource utilization clearly
shows limitations in 8-bit Posit when compared to FP, FxP
operations of the same precision. None of the aforementioned
works utilize approximate operators. In this work, we present
a novel PyTorch-based framework for running Neural Network
inference with Posits. The features of this framework allow
for selecting approximate operators to estimate the application-
level accuracy when such operators are used in the MAC units.
Currently, the framework only supports linear layers. PyTorch
allows for the creation and integration of custom operators in
C++. The Posit operations are carried out using Universal by
Stillwater [24], a C++ header library. The operators are written
in a language called TorchScript [25].

The general inference flow of operators is shown in Fig. 11.
Approximations can currently be applied only at the layer level,
and not for individual nodes. The parameters (including 7,1t
and ngqq for parallel units) are sent to the Posit MAC function
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Fig. 11: Operator flow for Neural Network inference

(scripted in Python), which calls the individual Posit matrix
multiplication and matrix add operators. The output is then
passed through the activation function, which currently does
not use Posit. Similarly, each of the next layer is called to run
through the same loop.

V. EXPERIMENTS AND RESULTS
A. Experiment Setup

To make approximations, an important step is to characterize
the various constituent operations of the implementation. To do
so, we sub-divide the Posit adder, multiplier and MAC unit into
modules similar to the flow in Fig. 3. Therefore, the decoder is
the point up to main adder/multiplier, and the encoder starts
right after the integer module. Note that the term decoder
and encoder here are not the standard Posit decoder and
encoder as they are performing additional operations required
for each specific operator. For example, the decoder module
for the adder contains the sticky right shift, comparator, and
subtractor. The decoder for the multiplier does not include these
modules. Since smallPosit [18] is written in Chisel language,
we proceed to subdivide using the same script. The designs
were implemented in Chisel language [26]. Once each sub-
module was implemented, we obtained the Verilog code for all
cases of n=8 and below. Chisel first converts to FIRRTL [27]
and then to Verilog. Each of these modules is instantiated in
an external wrapper that connects the required input and output
wires. The modules require a “DON’T TOUCH” condition
to view hierarchical power and utilization for each module.
Finally, the external wrapper is further instantiated in an outer
wrapper with clock, reset and registers.

The modular designs were characterized in Xilinx Vivado
2020.1 [] on a Zynq Ultrascale Board xczu7ev-ffvcl156-2-e.
The clock constraints were optimized over 10 iterations using
a Tool Command Language (TCL) script. To obtain the power,
we require a Switching Activity Interchange Format (SAIF)
which is fed to the power report. The SAIF file can be generated
by simulating the design with all possible testcases in random



order. For n=8, we obtain 216 such testcases. These cases
were also verified with the results obtained from the original
smallPosit design. Once the synthesis, implementation, and
post-implementation behavioral simulation are complete, we
obtain the power, delay and utilization of the design.

B. Modular Characterization

The power and utilization of the adder can be seen in Fig. 12
and Fig. 13. It is evident that most of the power dissipation
and LUT utilization come from the decoder and encoder. The
decoder of the adder seems to dominate in the case of power
and utilization, which can be attributed to the comparator,
subtractor and shifter modules. The encoder consists of an
additional ILZD and shifter, which also contribute to the
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. 13: Modular utilization for Posit adder
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Fig. 14: Modular power dissipation for multiplier
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Fig. 15: Modular utilization for multiplier

multiplier, although here the power consumed by the integer
multiplier module is more comparable to that of the decoder.
The multiplication module power and utilization reduce with
es, as seen in Fig. 14 and Fig. 15. This is due to the decrease
in fraction width with an increase in es, which reduces the
multiplier size. The encoder module in the multiplier consists
of two comparators which are a part of the overflow/underflow
module. As the size of the scale increases with es, so does
the comparator size, which gives rise to an increase in encoder
power with an increase in es.

C. Circuit-level Optimization

The proposed improvements over PACoGEN [8], by re-
moving the adder-subtractor multiplexing, resulted in reduced
resource utilization and reduced CPD. For instance, in the case
of Posit(8,2) adder, the LUT utilization reduced from 189 to
178 and the CPD from 12.99ns to 11.96ns. However, the
smallPosit [18] implementation reports LUT utilization of 143
and CPD of 12.851ns. Consequently, for the rest of the article,
we use the smallPosit results for comparison.

The comparator removal in the Posit adder saves power and
utilization, as shown in Fig. 16 and Fig. 17. As seen in Fig. 16,
the power saved is most prominent for cases (8,0), (8,1), (8,5),
and (6,0). Although the subtractor width increases with an
increase in es, as shown in TABLE II, since the size of the
scale increases as well, the additional 2’s complementing could
offset the decrease in power, depending on switching activity.
However, for the most part, this elimination of the comparator
reduces power dissipation by up to 17% and utilization by up
to 40%.
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Fig. 16: Comparing power dissipation with comparator removal

The comparator removal can be applied to the Posit FMA.
As seen in Fig. 18, more than 50% of the power is consumed
by the integer multiply-accumulate component of the FMA.
Hence, there is some scope for optimizing the integer modules



N
@
=)

W smallPosit M No Comparator

LUT Utilization

BoeN
o o @ o
S o o o

o

(8,0)
(8,2)
(8,3)
(8,4)
(8,5)

S
~

(7,1)
(7,2)
(7,3)
(7,4)
(6,0)
(6,2)
(6,3)
(5,0)
(5,1)
(5,2)
(4,0)
(4,1)

=
©

(8,1)

Posit number representation

Fig. 17: Comparing utilization with comparator removal

TABLE II: Adder and subtractor widths for multipliers

Design Posit(8,0) | Posit(8,1) | Posit(8,2) | Posit(8,3) | Posit(8,4) | Posit(8,5)

Adder

width 7 6 5 4 3 2
Subtractor

width 4 5 6 7 8 9

in this case. Having applied the modification, we observe a
power reduction in many cases, as seen in Fig. 19. There is a
16-20% improvement in cases such as (8,1) and (7,1). There
is an improvement in the LUT count in almost all cases as
seen in Fig. 20. Therefore the power increase in some cases
in Fig. 19 can be attributed to bit-switches which result from
2’s complementing the scale. Further, it is important to note
that the No comparator versions are modularized versions of
the smallPosit hardware.
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Fig. 18: Modular power dissipation of Posit FMA designs
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Fig. 19: FMA Power dissipation with comparator removal

D. Using Approximate Components

The results for power and utilization for the accurate (small-
Posit) and approximate Posit multiplier are shown in Fig. 21
and Fig. 22. As seen in the figures, the Approximate-XOR
multiplier achieves the minimum power in many cases, but
also the maximum error as shown in Fig. 23. The best power-
accuracy trade-off is obtained by the 1-bit reduce precision
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Fig. 20: FMA LUT utilization with comparator removal
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Fig. 21: Comparing power dissipation with approximation
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Fig. 22: Comparing utilization with approximation

multiplier. For cases like (8,3) which are useful for applications
such as ML inference, there is a 33% improvement in power
with only a 4% error. For cases such as (7,1) and (6,0), we
obtain an improvement of over 40% with less than 4% error.
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Fig. 23: Multiplier error comparison

Fig. 24 illustrates the error and resource improvement for
a Posit Multiplier with 1-bit reduced precision. As seen in
the figure, replacing the multiplier can increase the resources
as well, in smaller cases of n. This can be attributed to
the overheads incurred which offset the small improvement
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Fig. 24: Power-Accuracy trade-off for 1-bit truncation-based
integer multiplier

brought about by replacing a minuscule multiplier (as the
fraction width is much lower for n=4 and n=5). As discussed
previously, the best improvement is obtained for (6,0) and
(7,1). In future work, these approximations could be utilized in
combination with other optimizations in the decoder to bring
about a greater improvement in resource utilization. Similar
approximations are applied to the Posit FMA unit, as shown
in Fig. 25 and Fig. 26. In this instance, the integer multiplier
with reduced precision is utilized. This brings about almost
a 40% improvement in power in case of (7,1) and 19% in
(8,3). In case of utilization, there is an improvement of over
20% in cases such as (8,3), (7,3) and (5,0). It is important to
note that these approximations are applied to the design with
the comparator. Greater improvements could come about by
removing the comparator as well. Future work in approximating
the FMA involves reducing the adder width in combination
with various approximate multipliers. The Booth multiplier can
only be applied to even cases. However it brings about great
improvement in the power of the FMA: 40% in (8,1) and (7,0).
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Fig. 25: FMA power with 1-bit truncation

E. Application-level Exploration

To test the framework with Posit, we use the MNIST
dataset with a fully-connected network of 2 hidden layers.
The overall layer sizes used for the MNIST network are 784,
100, 64 and 10. The network was trained in floating point,
and the inference was run on 8196 images using 8-bit Posit
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Fig. 26: FMA utilization with 1-bit truncation
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Fig. 27: MNIST Inference accuracy
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Fig. 28: MNIST power-accuracy trade-off

with a reduced precision approximated multiplier, as shown
in Fig. 27. As seen in the figure, there is negligible accuracy
degradation for Posit(8,0), and the accuracy degrades by a
higher percent as es increases (due to the decrease in mantissa
width). We also see that the highest accuracy is obtained for
Posit(8,1). The accuracy comparison for exact operators is
shown in TABLE III. Fig. 28 shows the power improvement
alongside the accuracy degradation for a 1-bit reduced precision
approximate multiplier. The best case is obtained in Posit(8,2),
where 33% power is saved in a single multiplier with less than
0.3% accuracy degradation overall. Currently, the framework
takes less than 1 second per image inference. This speed can
be improved by utilizing direct operations in C++ instead of
lookup tables. Future work involves improving the inference
speed and integrating convolutional operators along with Posit-
approximate activation functions. The network can then be



tested on multiple other datasets such as CIFAR and Fashion-
MNIST.

TABLE III: Comparing accuracy for Posit formats

FP32
93.79

Posit(8,0)
83.95

Posit(8,1)
92.98

Posit(8,2)
92.97

Posit(8,3)
90.6

Posit(8,4)
58.98

VI. CONCLUSION

Posits offer many advantages over the IEEE-754 standard
of floating Point with their dynamic range, tapered accuracy,
and resolution (especially in the golden region). Their benefits
can be leveraged in applications such as Deep Neural Network
inference, replacing traditional fixed-point quantization in the
context of low precision and offering significant memory sav-
ings. However, the hardware characterization of Posits shows
that the decoding logic is more complex and may consume
more power and LUTs than floating-point. We introduced an
optimization by eliminating the comparator in the Posit Adder,
bringing about improvements of up to 17% in power and 40%
in utilization. To further reduce the overall power consumption,
approximations were made in the integer arithmetic module of
the Posit Multiplier and FMA. The results indicate that this may
not always be advantageous in case of 8-bit Posits and lower,
as the mantissa width is not significant (the maximum width
is 7 bits for (8,0) including the hidden 1 and sign). However
for multiple cases there is a reduction of 33-40% in power,
respectively. It is imperative to select the type of approximation
depending on the application and the selected parameters of n
and es. Another possibility to explore is the fixed regime length,
which could significantly simplify decoding logic. However,
restricting the regime length also affects the range and accuracy
of numbers, bringing us back to the notion that optimizations
must be made for specific applications. To behaviorally test
the operators, they were integrated into PyTorch using lookup
tables. It is found that es=1 and es=2 obtained the best
accuracy for n=8, with accuracy degradation being minimum
at the lowest es. It is evident that Posit numbers can offer
great benefits over floating-point, not just due to the error-
resilience of applications but also due to their dynamic range
and other hardware-friendly properties. It is worth observing
and comparing the metrics above with fixed-point numbers to
reduce the overall resource utilization for low-power systems.
Future work looks towards optimizing and standardizing Posit
hardware as far as possible to make them usable in multiple
applications.
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