
NetPU-M: a Generic Reconfigurable Neural Network
Accelerator Architecture for MLPs

Yuhao Liu , Shubham Rai , Salim Ullah , Akash Kumar
Chair of Processor Design, Center for Advancing Electronics Dresden (CfAED), TU Dresden, Germany

Email: {yuhao.liu1, shubham.rai, salim.ullah, akash.kumar}@tu-dresden.de

Abstract—Recent research widely deployed Neural Networks
(NNs) in various scenarios, such as IoT systems, wearable devices,
or smart sensors. However, the complex application scenarios
cause the rapid extension of network model size and the require-
ment for higher-performance hardware platforms. Related works
apply Heterogeneous Streaming Dataflow (HSD) and Processing
Element Matrix (PEM) architectures as the most popular schemes
for FPGA-based implementation of NN accelerator: 1) HSD
architecture implements a complete network for given trained
models on FPGA with simplified control but more hardware
consumption; 2) PEM architecture implements reusable neuron
structures controlled by runtime environments/drivers providing
the generic acceleration supports for different network models. Our
work explores a new hybrid architecture based on HSD and PEM
to implement a reusable partial network structure on FPGA and
achieve generic acceleration supports for different network models
with simplified runtime control. This architecture supports scalable,
mixable, quantized precision, and selectable activation functions,
including ReLU, Sigmoid, Tanh, Sign, and Multi-Thresholds. Data
stream transmission can reset the accelerator configuration in
runtime without hardware implementation changes for different
networks. This work has supported Multi-Layer Perceptron (MLP)
in current.

I. INTRODUCTION

FPGA-based Neural Network (NN) accelerator is a rapidly
advancing subject in recent research. Although current widely-
applied NN acceleration applications focus more on the deploy-
ments on CPU and GPU platforms, with the extension size and
increasing energy consumption of large-scale networks, related
researchers have begun to explore customized hardware and low-
precision computation schemes to improve power efficiency and
data throughputs. Compared with the high design complexity
and expensive development costs of customized ASICs as
NN accelerators, FPGA achieves a good trade-off between
customizability, flexibility, and power efficiency, making it a
feasible candidate as a NN acceleration platform.

Here, we classify the implementations of neural network struc-
tures on FPGAs as two hardware architectures: i) Heterogeneous
Streaming Dataflow (HSD) architecture and ii) Processing
Element Matrix (PEM) architecture.

• HSD architecture-based implementations explore the re-
configurability of FPGAs to support the customization of
hardware design for one given network model. The related
works based on this architecture choose to implement a
complete and optimized neural network on FPGA for one
target model, which simplifies the data stream control of
model parameters and inference inputs and outputs. HSD
architecture also allows the researchers to explore and
apply state-of-the-art low-precision computation and model
compression schemes in their works, such as quantization,
binarization, approximation, model pruning, and folding, to
reduce hardware resource utilization on FPGA. However,
the limitation of on-chip hardware resources of FPGA
is still the bottleneck for the deployment of large-scale

networks. Researchers need to trade between the com-
pressed model size and inference accuracy based on the
optimization solutions mentioned above, especially for the
low-power FPGA platforms on edge. Besides, for different
networks, HSD architecture-based acceleration requires
regeneration and re-optimization of hardware design for
new target models.

• PEM architecture-based implementations can achieve rel-
atively generic support for different network models
compared with HSD architecture. This architecture es-
sentially implements a few neuron structures on the FPGA,
including a processing element array with/without systolic
multiplier structure and a post-matric processing pipeline in-
tegrated with accumulator, activator, quantizer, pooling, etc.
Therefore, to drive the above-described neuron structures,
accelerating one complete neural network, the related PEM
architecture-based FPGA or ASIC implementations require
a runtime environment or driver to schedule and control
the work of one or multiple PEMs. However, the runtime
environment is a heavy payload for some lightweight
systems, such as the low-power microcontroller of IoT
or edge devices.

Considering the above discussion of HSD and PEM archi-
tectures, we assume the following scenario. For a lightweight
edge device applying a low-power Microcontroller Unit (MCU)
and middle-end FPGA development platform: 1) the on-chip
hardware resources on the FPGA platform limit the available
model size for HSD architecture. 2) low-power performance
of MCU cannot support the execution of a complex runtime
environment of PEM architecture well.

Therefore, we present a hybrid architecture, NetPU-M, of
HSD and PEM architectures in this paper. This architecture
is designed to drive a reusable partial HSD-architecture-like
implementation offering the generic neural network inference
acceleration as PEM architecture with simplified runtime
control. This work consists of a three-stage structure: Network
Processing Unit (NetPU), Layer Processing Unit (LPU),
and Transformable Neuron Processing Unit (TNPU). NetPU
reuses LPUs, and LPU reuses TNPUs to extend the flexibil-
ity of accelerators fitting different sizes of network model
workloads. This accelerator only saves the required parameters
of current accelerating layers in LPUs to on-chip memories,
reducing the storage pressure for loading complete network
parameters. This architecture supports scalable, mixable (the
data precision of different layers can be different), quantized
(1-8 bits) precision, and selectable activation functions, includ-
ing ReLU, Sigmoid, Tanh, Sign, and Multi-Thresholds. The
optimization of Batch Normalization (BN) folding is also a
selectable function. Data stream transmission can reset all the
above accelerator configurations in runtime without changing
hardware for different networks.

https://orcid.org/0000-0002-7281-2126
https://orcid.org/0000-0002-6522-5628
https://orcid.org/0000-0002-9774-9522
https://orcid.org/0000-0001-7125-1737

Processing Elements Array Buffer

Accumulator

Batch
Normalization

Pooling

Activation

M
em

ory
Interface

MUL 8MUL 7MUL 6

MUL 5MUL 4MUL 3

MUL 2MUL 1MUL 0

Processing Elements Array

Resharp

Network In/Out Buffer

M
em

ory
Interface

Neuron
0

Neural Network

Neuron
1

Layer 0

Neuron
0

Neuron
1

Neuron
2

Layer 1

Neuron
0

Neuron
1

Neuron
2

Layer 2 Layer 3

Neuron
0

Fig. 1: PEM (left) and HSD (right) Architecture

A. Contributions
Here we highlight the major contributions in this works as

follows, motivated by our poster in [20]:
• NetPU-M presents a hybrid architecture of HSD and PEM

architecture offering the generic inference acceleration for
different networks as PEM architecture with simplified
runtime control like HSD architecture.

• NetPU-M configures the acceleration mentioned above
settings through the data stream without hardware regen-
eration for different network models in runtime.

• NetPU-M only loads the required parameters, inputs, and
weights for current inferring layers working in enabled
LPUs, reducing the on-chip memory consumption to
support larger and deeper networks.

B. Potential Application Scenarios
• Large-scale NN inference on lightweight edge devices

based on low-power MCU and FPGA platforms.
• Generic NN inference IP core embedded in other FPGA

projects with simplified control.
• Fast modeling and prototyping for low-precision NN

models targeted to be accelerated on FPGA.
• Multiple FPGAs pipelined NN inference acceleration.

C. Organization
This manuscript is structured in the following way: Section

II discusses the background of FPGA-based NN accelerators in
recent research. Section III introduces the implementation of
NetPU-M and the difference with existing architectures. Section
IV shows the simulation and evaluation results of NetPU-
M architecture based on the Ultra96-V2 platform. Section V
discusses the further potential improvement and optimization
of NetPU-M architecture. Section VI concludes the contents of
this paper.

II. BACKGROUND

A. HSD and PEM Architectures
1) PEM Architecture: As shown in Figure 1 (left), this

architecture focuses on designing a reusable neuron to
offer generic support for different kinds of NN models,
widely applying the Processing Element (PE) array and
a post-matrices processing pipeline. This architecture is
widely applied in recent industrial and research communi-
ties on FPGA and ASIC design, for instance: DeepBurn-
ing [33], MP-OPU [34], DNNweaver [26], AngleEye [13], Open-
VINO (Intel) [11], NVIDIA Deep Learning Accelerator

(NVDLA) [37], Project BrainWave (Microsoft) [10], Vitis AI
library (Xilinx) [17], etc. The advantage of this architecture is
the generality meeting the acceleration for different network
models. However, because the implementation based on this ar-
chitecture scheme is a single neuron processing unit, the related
works require the cooperation of the runtime environment to
drive the implemented hardware engines, such as the User Mode
Driver and Kernel Mode Driver in NVDLA [37]. Additionally,
the model compiler is also necessary to convert the trained
network as executable data streams layer by layer, for example,
the NVDLA Loadable [37].

2) HSD Architecture: As shown in Figure 1 (right), the
works based on HSD architecture implement a complete network
layer by layer on FPGA as hardware design. This architecture
applies the heterogeneous layer design with different numbers of
neuron processing units according to the given trained network to
optimize the hardware resource utilization. Related works stream
the data flow between layers and neurons under the hardware
control modules, which can simplify the complexity of runtime
environments. This architecture scheme is rapidly advancing
in recent research, such as FINN [30], FINN-R [3], Logic-
Nets [32, 31], DeepFire [2], FixyFPGA [21], HLS4ML [8, 12,
7], etc. However, the works based on this architecture need
to regenerate the hardware design for the different networks,
and the heterogeneous layer structure extends the complexity
of hardware design. Therefore, automatic hardware generation
tools are essential for related works meeting the simplification of
hardware re-design. For instance, FINN-R [3] and HLS4ML [8,
12, 7] explored end-to-end automatic implementation generation
by converting trained network models to hardware design.

B. Quantization
Large-scale network model leads to high hardware resource

consumption, for example, requiring more DSP slices and
on-chip memory in implementing model parameter storage
and inference computation on FPGA. Therefore, previous
research explored low-precision data representation schemes,
such as Quantization [30, 3, 25, 32, 31, 8, 12, 7, 16, 35,
9], Approximate Computing [28], and Posit Computing [15,
14, 22].

Quantization is one of the most widely-applied low-precision
solutions. Su et al. [27] explored the Quantized Neural Net-
work (QNN) inference accuracy under different precision of
1/2/4/8/16-bits fixed-point format compared with 32-bits floating-
point format. Results show that the low-precision schemes can
achieve similar accuracy as the full precision. According to
their evaluation, 2/4-bit schemes balance resource consumption

LPU
NPU NPU NPUNPU NPU NPU · · ·NPU

Layer
Control

Layer In/Out FIFO

LPU
NPU NPU NPUNPU NPU NPU · · ·NPU

Layer
Control

Layer In/Out FIFO

AXI Stream Data FIFO
x 2

(RX and TX channel)

NetPU Control

AXI Stream TXD AXI Stream RXD

AXI DMA

AXI Stream MM2S AXI Stream S2MM

NetPU Structure

Layer Weight FIFO
Layer BN FIFO

Layer Quantization FIFO
…

Layer Weight FIFO
Layer BN FIFO

Layer Quantization FIFO
…

LPU
0

LPU
1

IN
 M

U
X

Network
Inputs

IS_FIRST
_INPUT LPU 0

input

LPU 1
input

LPU 1
output

LPU 0
output

LPU
Output

Crossbar
0

LPU
Output

Crossbar
1

Output
Enable

Output
Layer
Index

OUT MUX

Network Outputs

Fig. 2: Hardware Structure of NetPU-M (left) and LPU Recycle Design (right)

and inference accuracy better than others. 1-bit scheme requires
a larger network to achieve similar accuracy as others.

Binarization is an extreme situation of quantization methods,
which quantizes the activation and weight of a network model
as 1-bit values. Because this method can further reduce the
resource utilization of NN accelerators on FPGA, previous
works widely explored the related implementation on the-
ory and hardware design, such as XNOR-Net [24], XNOR-
Net++ [5], FINN [30], FINN-R [3], etc. As shown in Table I,
XNOR gates replace the multiplier in Binarized Neural
Network (BNN). Therefore, one XNOR operation can replace the
multiplication operation of N binarized activation and weights.
Because the ’1’ value in output represents the 1, and ’0’ represent
the −1, applying the Popcount operation to count the number
of ’1’ in XNOR outputs can get the sum of 1 outputs. The
entire output width minus the above sum can get the sum of
−1 outputs. The sum of N binarized activation and weight
multiplied product will be the sum of 1 minus the sum of −1.

C. Activation and Batch Normalization

Batch Normalization (BN) can improve the inference accuracy
and speed up the network training. Especially for low-precision
neural networks, such as BNN and QNN, BN will be the
necessary processing before activation. As shown in Equation 1
of BN computation, yi and xi refer to the output and input data
separately. σ2 and x̄ are variance and mean of mini-batch. To
be noticed, according to Equation 1, the computation of BN is
full precision. Therefore, the hardware implementation of BN
causes high resource consumption. According to the Equation 2,
Krishnamoorthi et al. [18] present an optimization method to
fold the BN into the weight and bias of Convolution (CONV)
and Fully Connected (FC) Layers. FINN [30] applied another
method to fold the BN into Sign activation as a threshold for
BNN as shown in Equation 3.

{
x̂i =

xi − x̄
√
σ2 + ε

// Normalize

yi ← γx̂i + β ≡ BNγ,β (xi) // Scale and Shift
(1)

TABLE I: XNOR: Binarized Multiplier

Signed Unsigned

Inputs Output Inputs Output

1 1 1 1 1 1
1 -1 -1 1 0 0
-1 1 -1 0 1 0
-1 -1 1 0 0 1

BNγ,β (Wx) = γŴx+ β = γ
Wx− x̄
√
σ2 + ε

+ β

=
γW
√
σ2 + ε

x+

(
β −

γx̄
√
σ2 + ε

) (2)

Activation, such as ReLU, Sigmoid, tanh, Sign, is widely-
applied in recent research. However, for some non-linear
activation functions, like Sigmoid, the hardware implemen-
tation consumes a large number of computing resources on
FPGA. Therefore, the previous works [36, 1, 35, 4] explore
the piecewise-linear function to approximate the nonlinear
processing in the activation.

Half-wave Gaussian Quantization (HWGQ) [6][29] is another
widely-used activation scheme in the implementation of FPGA-
based NN accelerator. In other activation functions, such
as Sigmoid and tanh, the output is the full-precision result,
which needs the re-quantization to meet the input precision of
the next layer. HWGQ method implements 2N − 1 thresholds
and counts the number of thresholds as output, which is smaller
than the input value. Therefore, the output of HWGQ (or Multi-
Threshold) activation will be a quantized value as N -bits data,
which folds the re-quantization into activation.

Sign
(
BNγ,β (i)

)
=

 1 γ xi−x̄√
σ2+ε

+ β ≥ 0

−1 γ xi−x̄√
σ2+ε

+ β < 0

∴Threshold = x̄−
β
√
σ2 + ε

γ
⇐ γ

xi − x̄
√
σ2 + ε

+ β = 0

(3)

Moreover, Sign, as shown in Equation 3, is the BNN-oriented
activation. If the result of Popcount ≥ 0, the Sign output will
be 1, else, the output will be 0. Equation 3 also explained how
to fold the BN layer into Sign activation as thresholds [30].

III. IMPLEMENTATION

A. Introduction of NetPU-M Architecture
According to the summary about HSD and PEM architectures

in section II. A, we compare the difference between these two
schemes as Table II. The advantages of HSD architecture are the
high optimization of hardware design for a given network model
and simplified runtime dataflow streaming control. The shortages
of this architecture are the requirement of hardware regeneration
for different models and the high resource consumption for
implementing a complete network on FPGA. PEM architecture
offers generic support for different networks with a neuron
processing engine. However, the dataflow streaming control and
schedule will be complex.

Therefore, considering the promising application scenar-
ios in section I, the target feature of NetPU-M architecture
is: Generic support for different network models meeting
few resource consumption without hardware regeneration
and complex runtime control. All implementations in our
NetPU-M architecture are written by Verilog. Moreover, we
created a C++ program to generate the Verilog macro definitions
as a hardware configuration file. Based on the generation block
we widely applied in our Verilog codes, the NetPU-M project
can easily build a suitable project for different FPGA platforms.

Therefore, the major differences in the hardware design of
NetPU-M architecture compared with previous works are:

• To achieve the generic support for different network
models without hardware regeneration, this work designed
a Transformable Neuron Processing Unit (TNPU), which
can reset the executing computing precision, activation, and
BN folding optimization options in runtime. One crossbar
module in TNPU controls the model resetting with the
reconfiguration signals by the inner dataflow schedule.

• To simplify the runtime control, this work designed a three-
stage structure as Figure 2 (left): A Layer Processing Unit
(LPU) schedules multiple TNPUs, and A top Network
Processing Unit (NetPU) schedules multiple LPUs. NetPU
controls the data streaming of LPUs and resets LPUs as
different kinds of NN layers, such as Input Layer, Hidden
Layer, and Output Layer, and configures the input length
and layer setting, including neuron number, activation,
and BN folding options. Input Layer quantizes the high
precision inputs to meet the precision in Hidden Layers.
Output Layer finds the maximum value belongs to which
output neurons to achieve the catalog classification. LPU
configures and controls the TNPUs to process the given
data stream.

• To reduce resource consumption, NetPU schedules the
reuse of LPUs based on the recycling structure in Figure 2
(right). LPU controls the reuse of TNPU for inferring more
neurons in one layer of a large-scale network model.

Some previous works implemented a similar reusable layer
structure, such as the Multi-layer Offload in FINN-R [3].
However, the Multi-layer Offload in FINN-R implements some
layers with the maximum size in a given trained network to
infer the large-scale network models. Our work only implements
a few TNPUs and LPUs to support larger network models by
reusing TNPUs and LPUs, which can reduce the hardware
consumption than FINN-R and does not require a given network
for hardware generation.

TABLE II: HSD and PEM Architecture Comparison and the
Target Features of NetPU-M

Architecture HSD PEM NetPU-M

Generality for Needs Generic Generic
Different Networks Regeneration Supports Supports

Complexity of Simplified High SimplifiedRuntime Environment

Hardware Resouce High Low MiddleConsumption

Automatic Needs No NoGeneration Tools

Has Resource Limitation Yes No Noof Network Size

B. Implementation of NetPU-M Architecture
1) Transformable Neural Processing Units (TNPU): TNPU

is the basic processing component for NetPU-M architecture. As
shown in Figure 3, TNPU contains six submodules: i) Multiplier
(MUL), ii) Accumulator (ACCU), iii) Batch Normalization
(BN), iv) Activation (ACTIV), v) Quantization (QUAN), and
vi) Crossbar. The implementation of TNPU refers the works
of FINN [30], FINN-R [3] and BN folding schemes described
in section II.B and C.

• Multiplier: The supported precision of activation inputs
and weights in the MUL submodule are from 1 to 8 bits,
including N 8-bit integer multipliers (N = 2M , N ≥ 32)
and N 8-bits binary multipliers, which contains four input
ports (1. MUL Inputs (8N bits), 2. MUL Weights (8N
bits), 3. Input Precision Setting (3 bits) 4. Weight Precision
Setting (3 bits)) and one output port (Multiplier Outputs
(16N bits)). The precision of inputs and weights can be
different. (Exception: When one of the inputs and weights
precisions is 1-bit, another should also be 1-bit.) For 1-
bit precision, the input and weight data represent eight
1-bit channels. One binary multiplier consists of one 8-bits
XNOR gate and one Popcount as the implementation in
FINN [30]. For 2-8bits precision, the input and weight are
only one channel. Multipliers ignore the additional unused
bits when precision is lower than 8 bits and higher than 1
bit.

• Accumulator: This submodule calculates the sum of MUL
outputs, which contains two input ports (1. Accumulator
Input (16N bits), 2. Bias Inputs (8 bits)) and one output port
(Accumulator Output (32 bits)). Only when the BN folding
option is activated in the current inference task, Bias Inputs
is available. 32 bits of ACCU output support computing
the sum of at least 216 ACCU inputs, which means our
TNPU can support the neuron connection numbers for
most datasets and network models by repeatedly reusing
the TNPU and computing the sum of MUL results.

• Batch Normalization: BN submodule is available only
when the BN folding option is disabled. This submodule
has three input ports (1. Activation Inputs (32 bits), 2. BN
Scale (32 bits), 3. BN Offset (32 bits)) and one output port
(1. Activation Outputs (37 bits). BN Scale and Offset are
two 32-bit fixed-point values, and the Activation Outputs
is one 37-bit fixed-point value, which has 32 integer bits
value and five fraction bits.

f (x) =

1, |x| ≥ 5
x≫ 5 + 0.84375 2.375 ≤ |x| < 5
x≫ 3 + 0.625 1 ≤ |x| < 2.375
x≫ 2 + 0.5 0 ≤ |x| < 1

SigmoidL (x) =

{
f (x) x ≥ 0
1− f (x) x < 0

(4)

• Activation: The current supported activation functions
in NetPU-M architecture are ReLU, Sigmoid, tanh, Sign,
and Multi-Threshold. According to the implementation
in FINN [30], FINN-R [3], Sign and Multi-Threshold
require the trained thresholds. Therefore, this submodule
contains four input ports (1. ACTIV Inputs (37 bits),
2. Activation Selection (3 bits), 3. Sign Threshold (32 bits)
4. Multi-Thresholds ((2M − 1)× 32 bits)) and one output
ports (ACTIV Outputs (37 bits)). For Sigmoid and tanh,
because tanh (x) = 2 × Sigmoid (2x) − 1, tanh can be
converted from Sigmoid. Therefore, the ACTIV submodule
has only implemented one shared Sigmoid for both two

MUL ACCU ACTIV QUAN

CROSSBAR

Input Stream
1. Inputs &

Weights
2. Non-quan.

Inputs

Bias
Sign

Threshold
BN

Scale
BN

Offset
Quan
Scale

Quan
Offset

Output Stream
1. Quan

Neuron
Output

2. Bin Neuron
Output

3. Quantized
Input

Input
Preci.

Weight
Preci.

Output
Precision

BN

Multi-
Thresholds

MUL ACCU ACTIV QUAN

CROSSBAR

BN MUL ACCU ACTIV QUAN

CROSSBAR

BN MUL ACCU ACTIV QUAN

CROSSBAR

BN

MUL ACCU ACTIV QUAN

CROSSBAR

BN MUL ACCU ACTIV QUAN

CROSSBAR

BN

1) QNN Inference with Regular Activation without BN-folding 2) QNN Inference with Regular Activation with BN-folding 3) QNN Inference with Multi-Thres Activation without BN-folding

4) QNN Inference with Multi-Thres Activation with BN-folding 5) BNN Inference with Sign Activation

Fig. 3: I. Hardware Structure (top) of the TNPUs; II. Fig.1-5 Show the Data Stream Paths of TNPUs in Input/Output/Hidden
Layers of BNN/QNN Models (Yellow Path Represents Input Layer. Pink Path Represents Output Layer. Red Path Represents
Hidden Layer)

activation functions. Equation 4 present the principle
of piecewise-linear approximate Sigmoid function [1],
which significantly reduces the consumption of Sigmoid
implementation avoiding the use of DSP slices. For Multi-
Thresholds activation, this function requires (2M − 1)
32bits thresholds. M is the maximum supported precision
of Multi-Thresholds activation in NetPU-M architecture.
As shown in in Table IV, when M = 8, the Multi-
Thresholds activation requires 256 32bits thresholds in
one neuron, which causes a huge resource consumption
(∼ 28% LUTs for one TNPU). Therefore, in our testing
implementation, we limit the maximum supported precision
of Multi-Thresholds activation as 4bits, which means at
most 16 32bits thresholds reducing the LUTs consumption
to ∼ 4%.

• Quantization: For the activated output of ReLU, Sigmoid
and tanh, the full-precision value needs to be quantized
to the required precision of the next layer. Therefore, this
submodule has four input ports (1. QUAN Inputs (37 bits),
2. Output Precision (3 bits), 3. QUAN Scale (32 bits)
4. QUAN Offset (32 bits)) and one output port (QUAN
Outputs (O bits)). O is the required input precision in the
next layer. Therefore, in principle, NetPU-M architecture
supports the mix-precision, which means the data precision
in different layers can also be different. Moreover, this
submodule is only available when the enabled activation
is not Sign or Multi-Thresholds.

• Crossbar: This submodule schedules the dataflow in TNPU
to execute the inference as the neuron in different layers.
As shown in Figure 3, the crossbar controls the input and
output dataflow to bypass some submodules in TNPU as
the path of Yellow (As a neuron in input layers), Pink
(As a neuron in output layers), and Red (As a neuron in
hidden layers). When the BN folding option is enabled
in the current inference task, the output of ACCU will
not be passed into the BN submodule. When the inferring
network model is BNN or applied activation is Multi-
Thresholds, the output of ACTIV will not be passed into
QUAN. When the inferring layer is an input layer, the
inference input of the target dataset will be transmitted
into ACTIV or QUAN submodule according to the applied

activation. (If the current task applies Multi-Thresholds
or Sign, the dataset input will be passed into ACTIV.)
When the inferring layer is an output layer, the output of
BN or ACCU will be passed to the TNPU output port
as the final result of the current output neuron. Moreover,
for the output layer, the current NetPU-M architecture
implemented a MaxOut submodule to find the maximum
result in the output layer. We will continue to complete this
architecture to support the SoftMax in our further work.

2) Layer Processing Unit (LPU): LPU module controls
multiple TNPUs to execute the inference of one layer in network
model loading. As shown in Figure 2 (left), LPU consists of
three parts: i) TNPU Cluster, ii) Data Buffer Cluster, iii) Layer
Control.

TNPU Cluster contains multiple TNPUs scheduled by LPU
module. Data Buffer Cluster implemented the FIFOs as a
buffer for data and parameter loading. Table III lists the buffer
cluster we used in our testing implementation. Entire BRAM
consumption is shown in Table V. Therefore, because the
supported maximum precision in NetPU-M is 8bits, the max.
input length and max. neuron number for data and parameter
loading in one layer of the inferring network model is 8192,
which can meet most MLP models. Layer Control schedules
the TNPU to complete the inference of one layer. Because the
number of TNPUs is smaller than the real neuron number of
inferring network model, which limits the processing number
of neurons in parallel, LPU divides the neurons into small
batches to load the parameters and execute the inference of
loaded neurons as one processing period. Therefore, for the MLP
models, because every neuron requires the same inputs, to avoid
repeated loading of layer activation inputs, we implemented
an Input Reload Buffer to reuse the inputs as shown in Table III.

Figure 4 shows the working flow of LPUs in NetPU-M
architecture, which contains three processing steps: Layer

TABLE III: Data Buffer Cluster in LPU

Buffer Name Output Width Depth Buffer Name Output Width Depth

Layer Input 64 bits 1024 Input Reload 64 bits 1024
Layer Weight 64 bits 1024 Bias 64 bits 1024
BN Scale 128 bits 2048 BN Offset 128 bits 2048
Sign Threshold 128 bits 2048 Multi-Thresholds 128 bits 2048
QUAN Scale 128 bits 2048 QUAN Offset 128 bits 2048

Layer
Init

Sign
Thres.
Load

BIAS
Load

BN
Scale
Load

BN
Offset
Load

Quan.
Scale
Load

Quan.
Offset
Load

Inputs
Load

Weight
s

Load

If it is the first input
period

1. Loading data
from Input Data
FIFO

2. Transmit data
into Input Data
Buffer

1. Loading data
from Input Data
Buffer

2. Transmit loaded
data back into
Input Data Buffer
again

If all parameters, inputs, and weights
ready for one batch of inference

NPU Inference Enable

If all neurons has been inferred,
this layer inference finished

If all inputs have been inferred for current NPUs, refresh the NPU settings like
Sign threshold, BN parameters, quantization parameters, etc., for next batch of
neuron

Else, only refresh the inputs and weights for next input batch

This layer
finished

Fig. 4: Workflow in Layer Processing Units (LPUs)

Initialization, Neuron Initialization, and Neuron Processing:
• Layer Initialization: LPU receives Layer Setting Data

firstly to initial the layers, including layer type (Input Layer,
FC Layer, Output Layer), activation type (Sign, Sigmoid,
tanh, ReLU, Multi-Thresholds), BN folding option, neuron
input precision, weight precision, neuron output precision,
neuron number, neuron input length.

• Neuron Initialization: According to the initialized infor-
mation of neurons, LPU loads the required neuron inputs
and parameter data from Buffer Cluster into TNPUs, such
as the BN parameter, Sign/Multi-thresholds, and QUAN
parameter.

• Neuron Processing: This step loads weights from Buffer
Cluster and executes the neuron inference processing in
TNPUs. LPU repeats this step until all weights are pro-
cessed. The loaded neurons in TNPU finish the inference.
If all neurons in the current inferring layer have finished,
LPU sets the finished signal. If not, LPU turns to Neuron
Initialization step and initials new neurons.

3) Network Processing Unit (NetPU): Figure 2 (left) shows
the hardware design in NetPU, which contains a LPU Clus-
ter, NetPU FIFO Cluster, and In/Output Control. According to
our above design, TNPU achieves support for different layers,
meeting a large number of inputs and various activation. LPU
schedules the TNPU to support the inference of most 8192
neurons in one layer, which meets most MLP models. Therefore,
as the top control module, the NetPU module controls the LPUs
to execute the inference with the Recycling Layer Structure to
support a very deep MLP model. Figure 2 (right) shows the
hardware design of Recycling Layer Structure: LPUs connect
each other as a loop. The input of inferring dataset is loaded
into the first LPU. The outputs of each LPU will be connected
to the next LPU as input and an Output Multiplexer (OM).
When the inference of the entire network model is working on
the last layer, OM connects the LPU that infers the output layer
to Network Output FIFO.

The working flow in NetPU contains the following steps:
1) NetPU Initialization, 2) LPU Initialization, 3) LPU Pro-
cessing, 4) LPU Resetting.

• NetPU Initialization: In this step, NetPU loads the layer
number of the target network model. Then, loading all layer
settings from Network Input FIFO into a Layer Setting
FIFO.

• LPU Initialization: NetPU initials the LPUs to execute
the first period of processing. First, NetPU loads the target
dataset input into the first LPU. Second, all LPUs load the

layer setting from Layer Setting FIFO. Then, all LPUs load
the required parameters to initial their processing layers
according to the loading layer setting.

• LPU Processing: All LPUs start processing and loading
the weights from Network Input FIFO. If one LPU finishes
the inference, NetPU checks if there is an unprocessed
layer in the target network model. If yes, it turns to the
next step. If no, NetPU waits for all LPUs to finish the
processing and sets the network model inference finished.

• LPU Resetting: Loading the new layer setting and pa-
rameters to reset the finished LPU. Then NetPU turns to
step LPU Processing and continues the inference.

According to the above processing control in NetPU, we
can find that the order of data loading can be predicted, which
means the data loading order from Network Input FIFO is
always: (1) Layer Number N , (2) All Layer Settings, (3) Dataset
Inputs, (4) Parameter of Layer.0, (5) Parameter of Layer.1, (6)
Weights of Layer.0, (7) Parameter of Layer.2, (8) Weights of
Layer.1, . . . , (i) Parameter of Layer.(N − 2), (i+1) Weights of
Layer.(N−3), (i+2) Parameter of Layer.(N−1), (i+3) Weights
of Layer.(N − 2), (i+4) Weights of Layer.(N − 1). Therefore,
if we pre-package all inputs and network models based on the
above order, the runtime control of NetPU-M architecture is
only the data streaming. Because NetPU loads the outputs of
each layer into the on-chip memory (Layer Input Buffer), this
design requires no additional memory access in the processing
until the inference is finished, which can highly simplify the
runtime control.

IV. EVALUATION

We synthesized and simulated four instances of TNPU
and one instance of NetPU-M and measured this NetPU-M
implementation with six network models on Ultra96-V2 Eval-
uation Platform (Xilinx Zynq UltraScale+ MPSoC). Table IV
and Table V show the simulation and synthesis results of four
single TNPUs and the entire NetPU-M with different inference
configurations. Therefore, we can summarize some features of
NetPU-M architecture:

For TNPU, as shown in Table IV, we synthesized four
instances supporting eight pairs of 8-bit activation and weights
which can be quantized to 1 ∼ 8 bits precision. Therefore,
one TNPU consists of eight XNOR multipliers for binarized
inputs (1 bit) and eight integer multipliers for quantized inputs
(> 1 bit). Moreover, these TNPU instances can support the
runtime reconfiguration of Sign, ReLU, Sigmoid, tanh, and Multi-
Threshold activation functions. Because Multi-Threshold activa-
tion function requires 2n − 1 thresholds for n-bits quantization,
which leads to high resource consumption, the four instances
we implemented limit the supporting quantization precision as
1 ∼ 4 bits and 1 ∼ 8 bits separately requiring 15 and 255
thresholds for one TNPU. According to the resource utilization
on Ultra96-V2 platform shown on Table IV, Multi-Threshold
activation is not a suitable activation function for the high-
precision quantization. The two TNPU instances supporting the
maximum 8-bit quantization consume more than 27% LUTs on
Ultra96-V2 platform. Therefore, for the NetPU-M instances we
implemented in this work, we limit the supported quantization
precision range of Multi-Threshold activation to 1 ∼ 4 bits. For
the other selectable runtime-reconfigurable activation functions,
such as ReLU and Sigmoid, the supported precision range is
1 ∼ 8 bits. Furthermore, based on the macro definition and
generation block we applied in our Verilog codes, we explored

TABLE IV: Resource Utilization of Single TNPU on Ultra-96 V2

Precision Activation Input Input Entire XNOR Mul DSP Mul LUT Mul Max. Multi-Thres. BN Mul LUTs Utilization DSPs Utilization FF Utilization
Number WIdth Inputs Width Number Number Number Supported bits Mode Number Rate Number Rate Number Rate

1-8 All 8× 2 8× 2 64× 2 8 8 0
8 DSP 19049 27.00% 16 4.44% 32 0.02%

LUT 20138 28.54% 12 3.33% 32 0.02%

4 DSP 2705 3.83% 16 4.44% 32 0.02%
LUT 3794 5.38% 12 3.33% 32 0.02%

Total Resource Number: 70560 - 360 - 141120 -

TABLE V: Simulation and Resource Utilization of NetPU-M Architecture on Ultra-96 V2 based on 100MHz Clock

LPU TNPU Num Applied BN LUTs Utilization DSPs Utilization FF Utilization BRAM Utilization Inference Latency in Simulation

Number in LPU Activation Folding Number Rate Number Rate Number Rate Number Rate TFC SFC LFC
(63x3) (256x3) (1024x3)

2 8 Multi-Thres Yes
59755 84.69% 256 71.11% 14601 10.35% 129.5 59.95%

172.165us 882.085us 7408.225us
No 175.805us 895.805us 7462.205us

Sign - 38.745us 133.785us 974.745us

Total Resource Number: 70560 - 360 - 141120 - 216 -

TABLE VI: Comparison between NetPU-M and FINN

Work Implementation Target Platform Clock (MHz) Resource Utilization Precision Latency (us)
LUT BRAM DSP TFC (64X3) Pwall (W) SFC (256X3) Pwall (W) LFC (1024X3) Pwall (W)

NetPU CGM-64 Ultra96-V2 100 66,494 126.5 256
W1A1 44.64 6.94 139.75 6.86 980.63 6.99
W2A2 178.180 7.05 888.000 6.90 - -
W1A2 - - - - 7414.13 6.88

FINN

SFC-max

Zynq7000 200

91,131 4.5 - W1A1 - - 0.31 21.2 - -
LFC-max 82,988 396 - W1A1 - - - - 2.44 22.6
SFC-fix 5,155 16 - W1A1 - - 240 8.1 - -
LFC-fix 5,636 114.5 - W1A1 - - - - 282 7.9

the different multiplier computation resource settings in these
four TNPU instances. When Verilog macro definitions make the
generation block create the BN and MUL submodules shown
in Figure 3 applying LUT/DSP-based multipliers, four TNPU
instances consume different hardware resources, which can be
used to suit different FPGA platforms meeting their resource
limitation. In the final applied hardware setting for our NetPU-M
instance, BN and MUL submodules apply pure DSP multipliers
to balance the LUT resource consumption.

Based on the TNPU setting mentioned above, we implemented
a NetPU-M instance for simulation and actual measurement
on Ultra96-V2 platform. Table V shows the synthesis and
simulation of this instance. We explored the inference of six
pre-trained 1/2bits quantized MLP models from FINN [30]
and Brevitas [23] in this NetPU-M instance, TFC-w1a1, TFC-
w2a2, SFC-w1a1, SFC-w2a2, LFC-w1a1, LFC-w1a2. These
models apply the MNIST dataset (28 × 28 handwritten digit
images) [19] and contain one input layer for input quantization,
three hidden layers with 64 (TFC), 256 (SFC), and 1024 neurons
(LFC), separately, and one output layer based on the MaxOut
activation. wnam means the weights and activation inputs in this
model have been quantized to n and m bits. For the binarized
network models (TFC-w1a1, SFC-w1a1, and LFC-w1a1), we
configure the NetPU-M instance to apply the Sign activation and
folding the BN into the Sign threshold like the BNN models in
FINN works [30]. For the other network models, we configured
the NetPU-M instance working on Multi-Threshold activation
and explored the different latency when these models fold the
BN layer or not. The simulation results in Table V show that
our NetPU-M instance can infer all six network models with
different precision, activation functions, and BN folding options,
without the hardware regeneration. Binarized network models
reduce the inference latency compared with 2-bit quantized
network models. Folding the BN layer into thresholds can also
speed up the inference.

Furthermore, we measured the actual inference latency of
these six models on our NetPU-M instance and compared the

results with FINN [30] instances. In the actual measurement,
the 2-bit quantized network models have been configured as
BN folding mode. As shown in Table VI, the measured latency
has a slight increase compared to the simulation results, caused
by the DMA transmission and Processing System (PS) control
of Zynq Ultrascale+ system. FINN [30] work explored four
instances optimized for SFC-w1a1 and LFC-w1a1 models. max
instances consume more resources for higher performance,
fix instances can highly reduce resource consumption but
cause a high inference latency. Compared with four FINN
instances, our NetPU-M instance can infer all six models in one
implementation. And in principle, our current implementation
can support a maximum of 4096 neurons in each hidden layer
for one quantized MLP model. Moreover, our implementation
can use the DSP resource on FPGA to reduce the consumption
of LUTs for large instances in a lightweight FPGA platform.
As a trade-off between achieving generic support for different
MLP models, our implementation has a higher inference latency
compared with most FINN instances. Moreover, Table VI also
listed the power consumption of different models inferring on
our instance compared with four FINN instances. The Pwall

means the measurement results from a wall power meter. Our
implementation requires less power than four FINN instances.

V. FURTHER WORKS

A. Optimization of Hardware Design
Compared with previous works, our design can achieve a

high generality, but the NN inference is slower than related
works. To extend and optimize our designs, we have four major
ongoing improvements for NetPU-M architecture in the current:

• According to the Table V and the analysis in section IV,
the bottleneck of parameter loading causes most of the
inference latency. Therefore, optimizing the data loading
schemes is necessary for NetPU-M to improve the module’s
efficiency.

• Moreover, we will also optimize the buffer implementation
in LPU. For example, when LPU is working in BN folding,

the BN scale and offset buffer is not working, which causes
the waste of hardware resource. We are exploring buffer
reuse for different network models.

• For the current design, when the precision of inferring
network model is 2-8bits, NetPU-M needs to load the data
as 8bits for each layer. This means, for example, for 2-bit
data, there are 6 bits as the placeholder, which causes the
lower data streaming speed and the waste of hardware
resources and power consumption. Therefore, in the next
step, we will explore the multi-channel schemes for low
precision (< 8bits) situations to speed up the data loading
and computing efficiency.

• NetPU-M architecture supports the inference of MLP
models now. Therefore, the following steps of our work will
extend the network support range of NetPU-M architecture
to meet the acceleration of CNN, ResNet, LSTM, SNN, etc.

VI. SUMMARY AND CONCLUSION

Our work explored a new hybrid architecture for generic MLP
inference, NetPU-M, based on widely-applied HSD and PEM
architecture for the implementation of FPGA-based NN infer-
ence accelerators. This architecture achieved the generic support
for different network models meeting few resource consumption
without hardware regeneration and complex runtime control.
The current design supports the 1-8bit quantization and mix-
precision model. According to the measurement and simulation,
our work can achieve a more generic acceleration of different
MLP models with limited hardware resources compared with
the implementation in FINN [30].

REFERENCES
[1] Hesham Amin, K Memy Curtis, and Barrie R Hayes-Gill. “Piecewise

linear approximation applied to nonlinear function of a neural network”.
In: IEE Proceedings-Circuits, Devices and Systems 144.6 (1997),
pp. 313–317.

[2] Myat Thu Linn Aung et al. “DeepFire: Acceleration of Convolutional
Spiking Neural Network on Modern Field Programmable Gate Arrays”.
In: 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL). IEEE. 2021, pp. 28–32.

[3] Michaela Blott et al. “FINN-R: An end-to-end deep-learning framework
for fast exploration of quantized neural networks”. In: ACM Transactions
on Reconfigurable Technology and Systems (TRETS) 11.3 (2018), pp. 1–
23.

[4] Safa Bouguezzi et al. “An Efficient FPGA-Based Convolutional Neural
Network for Classification: Ad-MobileNet”. In: Electronics 10.18
(2021), p. 2272.

[5] Adrian Bulat and Georgios Tzimiropoulos. “XNOR-Net++: Improved
Binary Neural Networks”. In: CoRR abs/1909.13863 (2019). arXiv:
1909.13863.

[6] Zhaowei Cai et al. “Deep Learning with Low Precision by Half-wave
Gaussian Quantization”. In: CoRR abs/1702.00953 (2017). arXiv: 1702.
00953.

[7] Farah Fahim et al. “hls4ml: An Open-Source Co-Design Workflow
to Empower Scientific Low-Power Machine Learning Devices”. In:
Research Symposium on Tiny Machine Learning. 2021.

[8] Farah Fahim et al. “hls4ml: An Open-Source Codesign Workflow to
Empower Scientific Low-Power Machine Learning Devices”. In: CoRR
abs/2103.05579 (2021). arXiv: 2103.05579.

[9] Julian Faraone et al. “Syq: Learning symmetric quantization for efficient
deep neural networks”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 4300–4309.

[10] Jeremy Fowers et al. “A Configurable Cloud-Scale DNN Processor for
Real-Time AI”. In: Proceedings of the 45th International Symposium
on Computer Architecture, 2018. ACM, 2018.

[11] Yury Gorbachev et al. “OpenVINO deep learning workbench: Com-
prehensive analysis and tuning of neural networks inference”. In:
Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops. 2019, pp. 0–0.

[12] Giuseppe Di Guglielmo et al. “Compressing deep neural networks on
FPGAs to binary and ternary precision with HLS4ML”. In: CoRR
abs/2003.06308 (2020). arXiv: 2003.06308.

[13] Kaiyuan Guo et al. “Angel-Eye: A Complete Design Flow for Mapping
CNN Onto Embedded FPGA”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37.1 (2018), pp. 35–47.

[14] Gustafson and Yonemoto. “Beating Floating Point at Its Own Game:
Posit Arithmetic”. In: Supercomput. Front. Innov.: Int. J. 4.2 (June
2017), 71–86.

[15] John L Gustafson. “Posit arithmetic”. In: Mathematica Notebook
describing the posit number system 30 (2017).

[16] Benoit Jacob et al. “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2018.

[17] Vinod Kathail. “Xilinx Vitis Unified Software Platform”. In: Pro-
ceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’20. Seaside, CA, USA: Association
for Computing Machinery, 2020, 173–174.

[18] Raghuraman Krishnamoorthi. “Quantizing deep convolutional net-
works for efficient inference: A whitepaper”. In: arXiv preprint
arXiv:1806.08342 (2018).

[19] Yann LeCun et al. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[20] Yuhao Liu et al. “NetPU: Prototyping a Generic Reconfigurable Neural
Network Accelerator Architecture”. In: 2022 International Conference
on Field-Programmable Technology (ICFPT). 2022, pp. 1–1.

[21] Jian Meng et al. “FixyFPGA: Efficient FPGA Accelerator for Deep
Neural Networks with High Element-Wise Sparsity and without External
Memory Access”. In: 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL). IEEE. 2021, pp. 9–16.

[22] Suresh Nambi et al. “¡italic¿ExPAN(N)D¡/italic¿: Exploring Posits for
Efficient Artificial Neural Network Design in FPGA-Based Systems”.
In: IEEE Access 9 (2021), pp. 103691–103708.

[23] Alessandro Pappalardo. Xilinx/brevitas.
[24] Mohammad Rastegari et al. “Xnor-net: Imagenet classification using

binary convolutional neural networks”. In: European conference on
computer vision. Springer. 2016, pp. 525–542.

[25] Vladimir Rybalkin et al. “FINN-L: Library extensions and design trade-
off analysis for variable precision LSTM networks on FPGAs”. In:
2018 28th international conference on field programmable logic and
applications (FPL). IEEE. 2018, pp. 89–897.

[26] Hardik Sharma et al. “From high-level deep neural models to FP-
GAs”. In: Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE. 2016, pp. 1–12.

[27] Jiang Su et al. “Accuracy to throughput trade-offs for reduced precision
neural networks on reconfigurable logic”. In: International Symposium
on Applied Reconfigurable Computing. Springer. 2018, pp. 29–42.

[28] Salim Ullah et al. “High-Performance Accurate and Approximate Multi-
pliers for FPGA-based Hardware Accelerators”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2021),
pp. 1–1.

[29] Yaman Umuroglu and Magnus Jahre. “Streamlined Deployment for
Quantized Neural Networks”. In: CoRR abs/1709.04060 (2017). arXiv:
1709.04060.

[30] Yaman Umuroglu et al. “Finn: A framework for fast, scalable binarized
neural network inference”. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 2017,
pp. 65–74.

[31] Yaman Umuroglu et al. “High-throughput dnn inference with logic-
nets”. In: 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE. 2020,
pp. 238–238.

[32] Yaman Umuroglu et al. “LogicNets: Co-Designed Neural Networks
and Circuits for Extreme-Throughput Applications”. In: 2020 30th In-
ternational Conference on Field-Programmable Logic and Applications
(FPL). IEEE. 2020, pp. 291–297.

[33] Ying Wang et al. “DeepBurning: Automatic generation of FPGA-based
learning accelerators for the Neural Network family”. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 2016, pp. 1–6.

[34] Chen Wu et al. “MP-OPU: A Mixed Precision FPGA-based Overlay
Processor for Convolutional Neural Networks”. In: 2021 31st Inter-
national Conference on Field-Programmable Logic and Applications
(FPL). IEEE. 2021, pp. 33–37.

[35] Jiwei Yang et al. “Quantization Networks”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2019.

[36] Ming Zhang, Stamatis Vassiliadis, and Jose G. Delgado-Frias. “Sigmoid
generators for neural computing using piecewise approximations”. In:
IEEE transactions on Computers 45.9 (1996), pp. 1045–1049.

[37] Gaofeng Zhou, Jianyang Zhou, and Haijun Lin. “Research on NVIDIA
Deep Learning Accelerator”. In: 2018 12th IEEE International Confer-
ence on Anti-counterfeiting, Security, and Identification (ASID). 2018,
pp. 192–195.

https://arxiv.org/abs/1909.13863
https://arxiv.org/abs/1702.00953
https://arxiv.org/abs/1702.00953
https://arxiv.org/abs/2103.05579
https://arxiv.org/abs/2003.06308
https://arxiv.org/abs/1709.04060

	Introduction
	Contributions
	Potential Application Scenarios
	Organization

	Background
	HSD and PEM Architectures
	PEM Architecture
	HSD Architecture

	Quantization
	Activation and Batch Normalization

	Implementation
	Introduction of NetPU-M Architecture
	Implementation of NetPU-M Architecture
	Transformable Neural Processing Units (TNPU)
	Layer Processing Unit (LPU)
	Network Processing Unit (NetPU)

	Evaluation
	Further Works
	Optimization of Hardware Design

	Summary and Conclusion

