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Abstract—With the scaling of CMOS technology almost over,
non-volatile memories based on emerging technologies are gain-
ing considerable popularity. Particularly, spintronic-based Race-
track memories (RTMs) exhibit unprecedented storage capacity,
as well as reduced energy per operation and high write en-
durance, which make them promising candidates to revolutionize
the architecture of memory sub-systems. However, since RTM
exploits shifting of magnetic domains to align the required data
with the access port, its read/write latency is not constant. Due
to this behaviour, several performance optimizations related to
the target application may be introduced either on memory
architecture or data placement or both. To this purpose, specific
tools able to emulate the timing characteristics of RTMs are
highly desired. Unfortunately, existing software-based simulators
show poor flexibility and run-time. To address such limitations,
this paper presents a new emulation system for RTMs based on
heterogeneous FPGA-CPU Systems-on-Chips (SoCs). Thanks to
its high flexibility, the proposed emulator can be easily configured
to evaluate different memory architectures. In addition, the
CPU can be used to stimulate the RTM architecture under
test with appropriate benchmarks, thus providing a fast self-
contained evaluation environment. As case study, ERMES has
been implemented within the Xilinx Zynq Ultrascale XCUZ9EG
SoC to evaluate performances of several memory configurations
when running benchmark applications from the MiBench suite,
experiencing a speed-up higher than ×146 over software-based
simulators.

Index Terms—Racetrack Memories, FPGA-based emulator,
Computer aided design techniques

I. INTRODUCTION

In the era of the Internet-of-Things (IoT), memory-hungry
applications, such as big data analytics, multimedia processing
and machine learning algorithms, have become particularly
popular [1]. As illustrated in Fig. 1, IoT edge platforms
typically rely on embedded devices, with one or more com-
puting components, such as Central Processing Unit (CPU),
Graphical Processor Unit (GPU) and custom hardware acceler-
ators. Each computing unit has its own internal memory bank,
responsible for caching data and instructions that are accessed
frequently. Furthermore, specific memory sub-systems are
used to favour data sharing among different computing units
and with other external memory peripherals.

In the above mentioned scenarios, designing memory sub-
systems with large storage capacity and suitable to operate
in energy-, area- and time-constrained environment has be-
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Fig. 1. Architecture of a typical IoT edge platform.

come quite challenging [2]. Technological limits shown by
conventional SRAM and DRAM architectures have driven
the research community towards new emerging technologies
characterized by more favourable scalability factors and lower
power dissipation. In the recent past, several non-volatile
memories (NVMs) have emerged as promising alternatives,
such as spin transfer torque RAMs (STT-RAMs) [3], phase
change memories (PCMs) [4], resistive RAMs (ReRAMs) [5]
and racetrack memories (RTMs) [6]. However, while on the
one hand the above NVMs offer high energy efficiency, on the
other hand most of them [3]- [5] suffer from limited endurance,
high write time and large cell size, which restrict their ap-
plicability in embedded devices. Most representative memory
architectures are compared in terms of performance, area and
energy in Fig. 2. It can be observed that RTMs combine
strengths of different technologies, providing lower energy per
operation and the write endurance closer to traditional RAMs,
a very low leakage dissipation and an unprecedented storage
density capacity [7].

The information in RTM is stored within magnetic
nanowires (or tracks), with the magnetic domains serving as
bits (0 or 1 depending on the magnetization of each domain).
Each track is equipped with one or more Magnetic Tunnel
Junction (MTJ) devices used as access ports for read/write
operations. Conversely to conventional 2-D array-based RAM
architectures, where the single bit information can be retrieved
by selecting the specific cell and connecting it to the bit line,
accessing the desired cell within a track requires shifting all
the magnetic domains to align the information to the access
port. Due to this unique characteristic, using RTM in practical
environments poses new challenges, since both latency and
energy per access are not deterministic, but they depend on
the position of the accessed domain with respect to the access
port.
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Fig. 2. Comparing different memory technologies (*shift latency not ac-
counted).

With the aim to reduce the impact of shift operations on
latency and energy consumption, RTM designers can act at
different levels, either by changing the length and the shape
of the tracks [8], the number [9] and the management of access
ports [10], or varying the port update strategy [7] and the data
placement policy [11]. However, leveraging the full potential
of RTMs requires accounting for several trade-offs [12]. As
an example, increasing the number of access ports allows
reducing the average shift latency at the cost of a considerable
area overhead, due to the use of multiple MTJs. It follows that
examining performances of different memory configurations
and choosing the most proper one, also depending on the target
application, requires a rapid evaluation framework. Existing
solutions rely on software environments, where the memory
device is first modeled using tools such as CACTI [13] or
Destiny [14] to extract simulation-independent parameters;
then, software simulators, like NVMain [15] and gem5 [16],
are exploited to analyze the memory access statistics over a
suite of benchmarks. However, such traditional approaches,
being based on slow cycle-level simulations, do not meet the
aforementioned requirements of rapid evaluation. In addition,
these environments hinder the simulation of hybrid memory
sub-systems [17].

To fill this gap, in this paper we present ERMES, a new em-
ulation system for RTMs based on heterogeneous FPGA-CPU
Systems-on-Chips (SoCs) platforms. The latter is an excellent
candidate for emulation scopes, ensuring a high configurability
degree and rapid evaluation. Moreover, the possibility to run
benchmarks on the embedded processor gives designers a
self-contained environment capable of easily testing different
RTM architectures and data placement strategies. The main
contributions of this paper are reported in the following.

• We present a new hardware architecture that emulates
the behaviour of RTMs and efficiently uses the logic
resources available within modern FPGA devices. The
proposed architecture is fully configurable, thus it al-
lows exploring the design space by changing design
parameters, such as the number and the length of tracks
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Fig. 3. Racetrack horizontal and vertical placement on a silicon wafer.
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Fig. 4. Example of racetrack as shift register: (a) initial status; (b) after
accessing the position 0× 5.

and the number of access ports per track. Then, after
configuration, it can be used to evaluate different data
placement strategies without requiring any further hard-
ware modification.

• The proposed emulator includes an on purpose designed
memory controller that manages bit shifts in both direc-
tions optimizing the data access times.

• Result of experiments performed running several ap-
plication benchmarks from the MiBench suite [18] are
also presented and discussed to demonstrate the high
flexibility and fast runtimes of ERMES. To the best of
our knowledge, this is the first work proposing a complete
FPGA-based emulator for RTMs.

II. BACKGROUND AND MOTIVATION

A. Racetrack memory

An RTM is a three-dimensional structure consisting of
magnetic nanowires that are placed horizontally or vertically
on the surface of a silicon wafer, as depicted in Fig. 3.
Within each nanowire (or track), multiple magnetic domains
are separated by domain walls. The magnetization state of each
domain (i.e. pointing up or down) serves as bit, allowing to
represent 0 and 1, respectively. To perform a read operation,
firstly, shift current pulses Is are used to exert spin-transfer
torque, thus shifting all magnetic domain walls along the
track in the same direction. When the desired information has
reached the access port, the magnetization state is determined
by the MTJ device. Conversely, for a write operation, a larger
current pulse is injected through the access port, thus switching
the magnetization state of the corresponding magnetic domain
wall. Obviously, since the access ports can perform only-read,
only-write or read-write operations, the corresponding MTJ
device has to be properly sized for the specific situation.
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Fig. 5. RTM architecture.

From a logical point of view, tracks behave as shift reg-
isters. The number of shifts required to perform an access is
determined by the distance between the address to be accessed
and the position of the access port. As a consequence, at
any access, the content of all magnetic domains in a track
changes, with the access port serving as head whose status
is dynamically updated to the last accessed domain address.
Fig. 4 illustrates an example of this running for a track
composed by N=8 domains and one access port originally
aligned to the address 0× 2 (Fig. 4(a)) . When the bit at the
position 0×5 is requested, three left shifts are needed to align
the bit-data F to the access port. The track content is therefore
updated as reported in Fig. 4(b), while the track head is set to
0×5. It is worth noting that, in tape-shaped RTMs, some bits,
usually referred to as overflow bits, may be lost because of
the shifts occurring at the outermost positions. To avoid this,
the number of domains in the nanowire could be increased to
twice the number of bits effectively stored [10]. Even though
such a solution has no significant influence on the overall area,
which is mostly determined by the MTJ transistors, it affects
the average read/write access time because of the increased
length and number of possible shifts. An effective alternative
is given by ring-shaped RTMs [8], which link the outermost
positions (i.e. 0 and N -1) to provide a toroidal storage without
additional domains.

To reduce the average shift latency, RTM tracks can be
equipped with more than one access port. Depending on the
adopted management policy, the shift controller establishes
which port is in the most favourable position to access the
data, computes the required number of shifts and updates the
status of all access ports. Basically, two access policies are
currently adopted [7]. The former, named static, is based
on a fixed assignment of a set of domains to each port. In
such a case, the logic implemented by the shift controller is
quite simple because each domain may be accessed only by
its assigned access port and no further elaboration is needed.
The latter, referred to as dynamic, is thought to optimize the
shift latency. In such a case, the controller firstly computes
the number of shifts needed to align each access port to the
desired domain and chooses the access port leading to the
shortest path.

SoC device

Programmable Logic

CPU DDR
RTM 
core

DDR 

Memory 

controller

Processing System

Fig. 6. Top-level architecture of ERMES.

The sequential nature of RTMs poses several challenges in
how data should be organized within the memory architecture.
It is typically structured as shown in Fig. 5 and contains an
array of basic building blocks named Domain Block Clusters
(DBCs). Each DBC accommodates several tracks, any of
which can be used to store either an entire w-bit data word
or single bits belonging to different words. However, the first
approach leads to considerable performance degradation since
multiple cycles are needed to access a single word. On the
contrary, as schematized in the inset of Fig. 5, where the
generic bi

j indicates the i-th bit of the j-th word, the second
approach allows accessing all the w bits in parallel and moving
all the tracks within the DBC in a lockstep fashion [7]. In this
case, with M and N being the number of DBCs and the length
of each track, respectively, the RTM architecture illustrated in
Fig. 5 can store M ×N w-bit data words.

B. Motivation of this work

Designing memory sub-systems based on RTMs requires
facing new and challenging issues because of their unique
characteristics. Current design aid tools based on software
simulation allow a cycle-by-cycle evaluation based on specific
models of the memory architecture to be performed. However,
due to their long simulation times (i.e. in the order of a few
hundred minutes per simulation [19]), they hinder the design-
ers in examining different memory configurations and their
impact on different benchmarks. Furthermore, such traditional
aid tools do not fit well with the design of hybrid memory sub-
systems [20]- [21], composed by both dynamic/static RAMs
and RTMs. For these reasons, hardware-based emulation plat-
forms equipped with configurable controllers and suitable to
facilitate the communication between heterogeneous memories
are essential.

In the recent past, FPGA-based emulation platforms for
emerging NVMs have received a great deal of attention [17],
[22]- [24]. These platforms have been proposed mainly with
the aim of analyzing the asymmetric access times that most
NVMs suffer from. They typically use a memory controller
responsible for managing memory requests, one or more
delay modules, which emulate delay injection, and an ex-
ternal DRAM that acts in place of the NVM. The above
cited emulators may be exploited for the evaluation of STT-
RAMs, ReRAMs, PCMs and other NVM architectures based
on conventional 2D arrays. However, they cannot be useful
in the case of RTMs, since there the access to a specific
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Fig. 7. Internal architecture of the RTM core.

1:  INPUT: Address ART  
2:  OUTPUT: shift direction DSO, number of shifts NSO 
3: PreviousJump ← 0; 
4: for i from 0 to P-1 do 
5:      H(i)← INITHEAD(i); Jump(i)

 
← ART – H(i); 

6:      if  |Jump(i)|≤ N/2 do 
7:           NS(i)

 
 ←|Jump(i)|; 

8:           if Jump(i)
 
<0 do //Right direction 

9:                DS(i)
 
←1;  else //Left direction 

10:               DS(i)
 
←0; 

11:      else 
12:          NS(i)

 
 ←N-|Jump(i)|; 

13:          if Jump(i)
 
<0 do // Left direction 

14:               DS(i)
 
←0;  else // Right direction 

15:               DS(i)
 
←1;   

16: [NSO, Id] ←min(NS(1:P)) ; // NSO=min value, Id=min position 
17: DSO ← DS(Id); PreviousJump ← (-1)DSO

 
×NSO; 

18: for i from 0 to P-1  do 
19:      if i = Id do 
20:           H(i)← ART;  else 
21:           H(i)← H(i) + PreviousJump; 

 
Fig. 8. Pseudo code describing operations performed by the shift controller.

position results in a change in all the other domains within
the track, and this influences the following accesses. For this
reason, RTM emulators must keep trace of how domains have
been moved after any read/write access, besides managing
its variable latency. Based on these considerations, this work
presents for the first time an efficient and flexible FPGA-based
emulation platform for RTMs.

III. THE PROPOSED ERMES DESIGN

Fig. 6 shows the top-level architecture of the proposed
emulation system. It includes the Processing System (PS) and
the Programmable Logic (PL) sections. The CPU in the PS
runs the benchmark software routines and generates memory
requests to be forwarded to the configurable RTM core imple-
mented in the PL. The RTM core communicates with the PS
through the AXI-Lite protocol. It outputs the number of shifts
needed to access the requested address, a validation signal
to indicate that the access has been correctly executed, and
eventually the read data. The PS also communicates with an
external Double Data Rate (DDR) DRAM memory to support
the evaluation of hybrid memory sub-systems.

A. RTM core

The custom RTM core has been designed by the Very High-
Speed Integrated Circuits Hardware Description Language

(VHDL) at the Register-Transfer-Level of abstraction, taking
into account the memory architecture described in Section II.
Depending on the user’s requirements, the number of DBCs
M , the number of tracks per DBC (i.e. the data word size
w) and the number of positions per track N can be easily
configured. Moreover, the number of access ports per track P
is chosen by the designer.

Its internal architecture is illustrated in Fig. 7; it consists
of a decoder, a shift controller and M DBCs. The access
request sent by the CPU includes the address to be accessed
(i.e. Addr), the type of operation to be performed (i.e. write
WE or read RE), and the w-bit Din word to be written. The
Addr signal is represented on y bits, with y = ⌈log2(M×N)⌉;
its most significant bits (AddrDBC) identify the selected
DBC, whereas the least significant bits (AddrRT ) identify the
specific position in the racetracks. Then, the shift controller
establishes the minimum latency direction (DSO) to fulfil the
access request and the expected number of shifts. To this aim,
the shift controller has to also consider the current alignment of
the access ports with the racetrack cells. An M :1 multiplexer
is therefore employed to select the H set referred to the
addressed DBC. The operations performed by the controllers
to manage write and read accesses, as well as port updating,
are reported in the pseudo-code of Fig. 8. Here INITHEAD
represents the initial alignment of the P ports within the N -
sized track. The shift controller computes the number of shifts
required by each port to access AddrRT (lines 5-15). Then, it
computes the number of shifts NSO and the direction DSO
of the port leading to the shortest path (i.e. port Id). Such an
information is transferred to the CPU to evaluate the access
latency. It is worth noting that, after the alignment between
the access port and the requested bit-data has been reached,
the status of all the ports must be updated. Therefore, while
the current head of the selected port H(Id) is updated with
the accessed address, heads of the other ports are computed
taking into account how many shifts have been performed in
the previous access request (line 21).

To emulate the behaviour of a bidirectional shift register,
each track within the DBC has been described as N registers
connected to as many multiplexers. Depending on the selector
DSO, the generic register Rj receives the bit-data on either
its left (Rj−1) or its right (Rj+1). The ShiftEN signal
coming from the shift controller is then driven high for a time
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Fig. 9. Analysis of ERMES hardware requirements for different DBC configurations: (a) w=8; (b) w=16; (c) w=32.

long enough to perform the computed number of shifts, thus
allowing the requested bit-data to be aligned with the selected
access port.

B. Interfacing CPU and RTM core

Application benchmarks used to test the memory sub-
system are executed by the CPU embedded within the PS.
Depending on the requested memory address, the CPU es-
tablishes if it has to be transferred the to either the external
memory or to the RTM core implemented in the PL. In the
latter case, an address re-mapping is done to ensure that the
application memory request complies with the address space
assigned to the custom RTM core connected through the AXI-
Lite protocol. To extend interoperability with other system-
simulation environments, ERMES can be easily interfaced
with an external host general-purpose processor. This option
just requires enabling the PCI Express (PCIe) interface im-
plemented by either hard or soft IP blocks, depending on the
target FPGA platform.

IV. RESULTS AND DISCUSSION

For evaluation purposes, ERMES has been implemented
on the Xilinx ZCU102 development board equipped with
the Zynq XCZU9EG heterogeneous SoC. The overall system
has been characterized using the Xilinx Vivado 2021.2 de-
velopment tool, imposing a timing constraint of 10 ns for
the PL running frequency. In this section, we first present
hardware implementation results achieved by different DBC
configurations. Then, we analyze the impact of some design
settings, like M , N , and P , and different data placement
policies on the latency performance exhibited by the proposed
emulation system when running sample benchmarks from the
MiBench suite [18].

A. FPGA implementation

As described in the previous section, each DBC within
the RTM core architecture contains w N -sized tracks and

one module responsible for updating the status of the P
access ports. Depending on such design parameters, different
configurations may be realized. Fig. 9 shows the impact of
varying N , w and P over the number of occupied Look-Up-
Tables (LUTs) and registers per DBC. At a glance, it can
be observed that, at a parity of P , the number of LUTs and
registers increases with a different rate at the growing of the
DBC storage capacity w × N . As expected, the number of
registers is proportional to such capacity, with slight deviations
due to the contribution of the module implementing the access
ports updating. On the contrary, logic resources needed to
implement shift registers are proportional to N /2. This is due
to the synthesis optimizations made on the generic N -sized
track to pack more multiplexers within the same LUT. As
visible in Fig. 9, the number of occupied LUTs is significantly
dependent on P . Eqs. (1)-(3) provide analytical estimation of
the amount of required LUT and FF resources as function of
N , w and P . It can be seen that, while the contribution of
the shift controller (i.e. LUTC and REGC) is mainly due to
the number of access ports P and the track length N , the
area occupied by a DBC (i.e. LUTD and REGD) is mostly
influenced by its number of racetracks w.

LUT = LUTC + LUTD,

REG = REGC +REGD

(1)

LUTC = P × (log2(N) + 2),

REGC = (3P + 1)× (log2(N) + 1)
(2)

LUTD = (w ×N/2)× P (log2(N) + 1),

REGD = (w ×N)× P (log2(N) + 1)
(3)

As a final remark, it is worth noting that several different
configurations could lead to a specific DBC storage capacity.
As an example, a DBC can store 512 bits by setting (w, N ) to
either (8, 64), (16, 32) or (32, 16). This significantly influences
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TABLE I
APPLICATIONS SPECIFICATIONS

Application Description Memory footprint Number of Effective RTM
memory accesses accesses

qsort Quick sort algorithm on array of strings 2.47MB 648233 3762
patriciaSmall Routing algorithm for network applications 2.53MB 663772 4194
bitcountSmall Count the number of bits in array of integers 17.47MB 4581094 817803

stringsearchSmall Search words into phrases 2.52MB 661964 10110
dijkstra Analysis of graphs to solve the shortest path problem 2.47MB 649897 15639
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Fig. 10. Analysis of ERMES shift latency for different memory configurations and benchmarks.

the performance-area trade-off of the RTM. High w and low N
values allow more bits can be accessed in parallel at a reduced
average access latency. However, such an approach has the
drawback of larger area occupancy [11]. Conversely, low w
and high N values ensure a more compact RTM design, but
they degrade the average speed performance. In such a case,
other countermeasures (i.e. increasing P ) can be investigated
to trade-off latency and area.

B. Benchmarks evaluation

Table I summarizes the main characteristics of the evaluated
applications from the MiBench suite [18]. It is worth noting
that, considering the amount of hardware resources available
on the XCZU9EG chip, the largest memory size that can be
emulated is 32kBytes. Therefore, the CPU running the bench-
marks selects a portion of memory requests, corresponding to
a specific addresses space, and transfers them to the RTM core
through the AXI-Lite interface. In such a case, the RTM core
acts as a scratchpad backed up to the external DRAM, which
is used for the remaining access requests as typically happens
in hybrid NVM-DRAM memory sub-systems. The effective
number of memory accesses requested to the RTM core is
reported in Table I. Several configurations of the 32kBytes
RTM core have been analyzed by varying the number of
access ports per track P and the memory array partitioning

(i.e. length of tracks N and number of DBCs M ), while
keeping the data word size w=32. Fig. 10 illustrates the overall
number of shift operations required to run each application
for the chosen configurations. As expected, increasing the
length of the tracks at a parity of P generally leads to higher
number of shift operations. As an example, when P=1, moving
N from 16 to 32 and 64 impacts on the total number of
shift operations by ×2.13 and ×2.91 factors, on average,
respectively. Conversely, at a parity of N=32, increasing the
number of access ports P from one to two and four contributes
to reduce the latency, respectively, by 1.3 and 2.1 times, on
average. It is worth observing the particular behavior exhibited
by the dijkstra application, which does not appear to benefit
from the increasing of the number of access ports for larger
tracks (i.e. N=64). Further investigations were conducted on
this benchmark and we noted that the above effect is influenced
by the initial position of the access ports. In such a case, we
realized that alignments with addresses lower than 0×18 lead
to a 54% reduction on the shift latency. The optimization of
the access port alignment is beyond the scope of this work,
but it can be easily performed by using ERMES.

Table II reports hardware requirements for the 32kBytes
RTM configurations analyzed, including resources employed
by DBCs and shift controller. In such a case, being
M=32kBytes/(4 × N ) the number of DBCs, the total oc-
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TABLE II
HARDWARE REQUIREMENTS FOR DIFFERENT 32KBYTES RTM

CONFIGURATIONS
(M , N ) (512, 16) (256, 32) (128, 64)
P=1 180.2k LUTs, 154.5k LUTs, 141.4k LUTs,

258.5k Regs 257.5k Regs 256.8k Regs
P=2 216k LUTs, 172.8k LUTs, 150.8k LUTs,

261k Regs 259k Regs 257.7k Regs
P=4 Not 209.3k LUTs, 169.4k LUTs,

implementable 262k Regs 259.5k Regs

cupancy of LUTs and registers decreases with N , while it
increases when more access ports are used.

Notably, the proposed emulation system can be adopted
to evaluate different data placement policies and examine
the latency required by different applications for a given
memory configuration. As an example, in our experiments we
analysed the shift behaviour of the RTM core configured with
M=128, w=32, N=64 and P=1 when two state-of-the-art data
placement policies are used. The former, named First Come
First Store (FCFS), stores data into racetracks according with
the order it is required. The latter, known as Most Access
First (MEF), orders data within the racetracks depending
on its occurrence (i.e. from the most to the least frequently
accessed data). Fig. 11 compares the average number of shifts
per application benchmarks obtained by FCFS, MEF and No
strategy (i.e. data is put within the RTM based on original
trace addresses). In general,it is evident that using particular
strategies on the basis of simple assumption about the data
access patterns significantly alleviates the impact of shifts in
RTMs. According to the literature, for the selected bench-
marks, the FCFS strategy allows the lowest latency, which
is the result of quite sequential and no-repetitive patterns. It is
worth noting that such kind of investigation does not require
any re-synthesis of the emulator architecture.

C. Performance Analysis

A direct comparison with state-of-the-art FPGA-based emu-
lators [17], [22]– [24] is not possible, due to the the different
supported features. As an example, the system presented in
[17] is based on a host CPU that communicates with the FPGA
through PCIe interface; the programmable logic just accom-
modates the Hybrid Memory Manager Unit (HMMU) core,
which is used to forward the memory access requests produced
by the host CPU to either DRAM or NVM. In such a case,
the generic NVM device is supposed to be external, which
prevents from keeping trace of how information are moved
after any read/write access in the case of RTMs. Conversely,
the FPGA-based platforms [22], [23] and [24] emulate the
NVM device through the DRAM. To this aim, they model the
asymmetric read/write latency of NVMs through controlled
delay-injection modules. However, being based on DRAM,
this emulation environment is suitable only for NVM tech-
nologies based on conventional 2D arrays (i.e. STT-RAMs,
ReRAMs and PCMs). Therefore, we evaluated ERMES speed-
up over software-based simulators [25] running on the Intel
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Fig. 11. Analysis of shift latency for different data placement policies.
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Fig. 12. Normalized simulation/emulation time running applications from the
MiBench suite.

i7-477 core. Fig. 12 reports a comparison in terms of average
simulation times for the MiBench applications. In comparison
to the cycle-level gem5 and MARSS×86 simulators, which
imitate the operations of the simulated memory for each cycle,
the proposed emulation system experiences an ×28000 and
×10000 speedup, respectively. Parallel simulators like ZSim,
being based on multi-thread processes, significantly reduce
simulation times with respect to the cycle-level counterparts.
Nonetheless, thanks to its on-purpose designed architecture,
ERMES exhibits an ×146 speed-up over ZSim.

Finally, ERMES latency results are used to analyze the
actual speed-up achieved by RTMs over other traditional NVM
technologies, for the applications mentioned above. It is worth
noting that, thanks to their constant access latencies, SRAM
and DRAM devices achieve average performances at least
2.6 times higher than the RTM counterpart for the same set
of benchmarks. However, as above mentioned, such CMOS
technologies suffer for high leakage and considerable area
overhead, which make them unattractive for low-energy and
area-constrained applications. Fig. 13 shows the total access
time exhibited by the ReRAM, STT-RAM and RTM technolo-
gies normalized to the slowest PCM counterpart, taking into
account data reported in [21]. The chosen architecture for the
RTM is M=512, N=16 and P=1. It is evident that the RTM
outperforms competitors in all evaluated benchmarks; this is
because the additional shift latency accounts for only 10% of
the total access time, on average.

V. CONCLUSIONS AND FUTURE TRENDS

Thanks to their low-area and low-energy performances,
emerging RTMs are effective candidates for current IoT edge
devices. However, since such memories involve shifting of
magnetic domains to retrieve information within the tracks
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Fig. 13. Normalized access time for the analyzed benchmarks on different
NVM technologies.

and align it to the access port, the latency per operation is
not deterministic. This unique characteristic revolutionizes the
design of such memory sub-systems, since several application-
related optimizations can be introduced either on architecture
or data placement or both to reduce the impact of shift opera-
tions. Current design aid tools based on software simulations
offer a cycle-by-cycle evaluation on specific memory models,
with prohibitive simulation times and limited flexibility. In
this paper we presented ERMES: an emulation system based
on heterogeneous FPGA-CPU Systems-on-Chips for fast and
accurate analysis of RTM architectures. The proposed con-
figurable platform assists in designing RTM architectures and
evaluating the impact of design choices and data placement
policies over the latency. Experiments conducted on bench-
mark applications from the MiBench suite show that our RTM
emulator implemented within the Zynq XCZU9EG SoC is
significantly faster than the gem5 software simulator. Finally,
the results obtained in terms of emulation speed and prototyp-
ing flexibility stimulate investigation of new approaches for
data placement and access policies, also based on approximate
operations. In order to encourage research in this direction
and provide an effective support, ERMES will be made open-
source at https://cfaed.tu-dresden.de/pd-downloads.
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