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Blocks: Challenging SIMDs and VLIWs
With a Reconfigurable Architecture

M. Wijtvliet , A. Kumar , Senior Member, IEEE, and H. Corporaal

Abstract—Demand for coarse grain reconfigurable architec-
tures (CGRAs) has significantly increased in recent years as
architectures need to be both energy efficient and flexible.
However, most CGRAs are optimized for performance instead
of energy efficiency. In this work, a novel paradigm for recon-
figurable architectures, Blocks, is presented. Blocks uses two
separate circuit-switched networks, one for control and one
for the data path. This enables the runtime construction of
energy-efficient application-specific VLIW-SIMD processors on
a reconfigurable fabric. Its energy efficiency is demonstrated by
comparing Blocks to four reference architectures, a VLIW, an
SIMD, a commercial low-power microprocessor, and a traditional
CGRA. All comparisons are based on commercial low-power
40-nm CMOS layout, including memories. Results show that
Blocks can achieve a mean total energy reduction of 2.05×,
1.84×, 8.01×, and 1.22× over a VLIW, an SIMD, an energy-
efficient microprocessor and a traditional CGRA, respectively. At
the same time, Blocks delivers equal or higher performance per
area due to its ability to adapt to applications by reconfiguration.

Index Terms—Coarse grain reconfigurable architecture
(CGRA), energy efficiency, reconfigurable architecture.

I. INTRODUCTION

DEVICES containing reconfigurable logic have become
increasingly popular in recent years. In part, this can be

attributed to increased performance and cost reduction. Post
production updates and rapid development of new algorithms
and standards are another reason. Whereas, ASICs would
require silicon updates and a new production run, devices like
field-programmable gate arrays (FPGAs) can be reconfigured
to correct an error or implement new functionality.

Reconfigurability comes, of course, at a cost. Taking FPGAs
as an example: the reconfigurable interconnect causes longer
wires between gates than those in ASICs, reducing the
maximum frequency and performance, and increasing area
and power. The large configuration memory controlling the
interconnect and operation of the configurable logic causes
high static power dissipation [1], [2], reducing energy effi-
ciency. FPGA manufacturers have introduced more coarse-
grained building blocks, such as digital signal processing
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(DSP)-blocks [3], [4], RAM-blocks, and dedicated interfaces
to reduce area for typical DSP applications and improve
performance. These coarse-grained blocks focus at higher bit-
width operations, doing so allows FPGAs to become more
energy and area efficient.

However, easy programming of FPGAs is still a concern.
High-level languages, such as OpenCL [5], improve FPGA
programmability by allowing FPGAs to be programmed in a
similar way as graphical processors, enabling easier transition
toward reconfigurable devices. However, OpenCL describes
the structure of the application on a much more coarse-grained
level. This implies that, when used for FPGAs, the gate-level
reconfigurable logic is used at a more coarse-grained level,
thereby not using the FPGA at maximum efficiency. Both of
these trends, the introduction of coarse-grained building blocks
and high-level languages, indicate a need for more coarse-
grained architectures [6].

On the other side of the spectrum, combinations of general-
purpose processors and hardware accelerators are being
used more extensively. Accelerators provide the required
performance for certain applications at much higher energy
efficiencies than general-purpose processors [7]. To optimize
area efficiency and to increase flexibility of the processor,
devices such as the Xilinx Zynq [8] and Intel SoC [9]
have emerged. These devices tightly couple high performance
general-purpose processors with an FPGA fabric, allowing
accelerators to be configured at runtime. Many accelerators
used in mobile devices, where energy efficiency is the key,
perform DSP applications and generally do not require the
bit-level reconfigurability of the FPGA.

Coarse-grained reconfigurable architectures (CGRAs) allow
reconfiguration at a granularity (far) above the gate level,
such as functional units (FUs) or lightweight processors that
can be connected via a static or dynamically reconfigurable
network. In DSP applications, where it is much more com-
mon to use multibit arithmetic rather than bit-level operations,
CGRA style FUs are more efficient in performance, area, and
energy compared to FPGAs. Despite the possible gains in
energy efficiency, most CGRAs in the past decades focused
on performance [10]. With increasing demands on energy
efficiency, combined with flexibility, CGRAs will have a
strong advantage over FPGAs [6]. The question is whether the
penalty of flexibility is not too high when compared to energy
efficiency of SIMD, VLIW, or more dedicated architectures.

In this article, an energy-efficient CGRA, called Blocks, is
presented. Blocks is unique due to its separation of the con-
trol path and data path. The architecture allows lightweight
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instruction fetcher and instruction decoder units (IFIDs) to be
arbitrarily connected to one or more FUs over a statically con-
figured interconnect. By doing so, the designer can instantiate
a processor that matches the parallelism properties of the appli-
cations. For example, one IFID can be connected to more than
one FU to construct a vector operation.

The main contributions of this article are as follows.
1) An introduction into how Blocks can be used to

construct SIMD and VLIW processors, as well as
application-specific structures.

2) A comparison between Blocks, an SIMD, VLIW, and
microprocessor. To the best of our knowledge, this is the
first post place-and-route comparison on a commercial
(40-nm low-power) technology of a CGRA and refer-
ence architectures. The evaluation shows that Blocks
can be more energy efficient than fixed architectures and
provide better performance at the same time.

3) A flexibility analysis of Blocks with respect to a VLIW,
SIMD, ARM Cortex M0, and a traditional CGRA.

Some of these contributions appear in our earlier work [11].
The goal of this work was to show the advantage of separating
control and data for CGRAs. For this reason, a more traditional
CGRA was compared to Blocks. The goal of this work is dif-
ferent and extends our earlier work by showing that Blocks can
approach, and often beat, the energy efficiency of fixed proces-
sor architectures. To achieve this, Blocks is compared against
three fixed reference architectures: 1) a VLIW; 2) an SIMD;
and 3) a microprocessor. Furthermore, a flexibility analysis is
provided.

The remainder of this article is organized as follows,
Section II describes applicable related works, Section III
describes architectural details of Blocks, and Section IV
describes how various processor structures can be instantiated
on Blocks. Section V describes the experimental setup and
reference architectures, and Section VI evaluates the obtained
results. Finally, Section VII concludes this work and describes
future work.

II. RELATED WORK

FPGAs typically provide bit-level architectural flexibility;
the overhead from the interconnect and look-up tables (LUTs)
can be quite significant. Modern FPGAs reduce the over-
head by introducing specialized, more coarse grained, building
blocks. Some FPGAs even support floating point operations
in hardware [3]. Research architectures have explored other
angles for power reduction; examples thereof are the Astra [12]
architecture which essentially is a more coarse-grained FPGA
consisting of 8-bit building blocks, and [13] which is special-
ized for FIR filter processing. An Astra building block supports
multiple configurations that can be selected at runtime, plac-
ing Astra on the border between FPGAs and CGRAs. Blocks
uses an FPGA-style circuit switched network to interconnect
the data path of FUs and extends this to the control path
as well. In contrast to other reconfigurable architectures, this
allows the control to be reused for multiple FUs and thus allow
SIMD implementations. Blocks is also much more coarse-
grained than multibit FPGA architectures, a functional unit

in Blocks typically is an arithmetic and logic unit (ALU) or
a load-store unit. FPGA designers have also explored other
angles to achieve a reduction in reconfiguration overhead. An
example thereof is [14], which presents an energy efficient
FPGA that supports partial reconfiguration. This FPGA par-
tially integrates into the processing pipeline of a Internet of
Things sensor node.

In the past decades, several CGRA architectures have been
proposed; there are several survey works that provide an exten-
sive overview of these architectures [15], [16]. Some of the
best-known CGRA architectures are probably Xputer [17],
TRIPS [18], ADRES [19], and RAW [20]. Wijtvliet et al. [10]
evaluated 36 CGRAs and conclude that most are not aimed
at energy efficiency. TRIPS, for example, performs power-
hungry out of order operations. In fact, only four of these
36 works present energy or power numbers, one of which
compares power to signal processors (in 130-nm technol-
ogy). While ADRES focusses on energy efficiency it has
local register files per functional unit and cannot perform
SIMD operations. The architecture proposed in this work is
intended for low-energy processing and achieves this goal in
a unique way: by separating control and data and allowing
flexible construction of arbitrary VLIW-like processors with
true SIMD support at runtime. The approach that Blocks uses
has parallels with application-specific instruction-set processor
(ASIP) design [21], [22]. ASIPs are, typically, not reconfig-
urable at runtime but provide optimized architectures for (a
small set of) applications or an application domain. These
processors are often VLIW processors with optimized instruc-
tions and bypasses between issue slots. Although much more
energy efficient, these architecture instances lack the flexi-
bility to be generally applicable. Blocks, however, allows to
define the structure of these processors at runtime, especially
with respect to instruction-level and data-level parallelism.
An architecture that performs partial separation of control
is KAHRISMA [23], which has instruction fetchers that can
translate several traditional ISAs into an ISA supported by
the architecture. However, in contrast to Blocks these trans-
lated instructions are then forwarded to each individual FU and
stored locally before execution starts. Each of the KAHRISMA
FUs is effectively an independent processor after it receives
the translated kernel and aimed at performance and flexibility
rather than energy efficiency.

Other interesting CGRAs that aim at energy reduction
are HARTMP [24], X-CGRA [25], and Versat [26]. All
three CGRAs approach energy efficiency improvements in
very different ways. HARTMP implements a CGRA in the
pipeline of a RISC processor. Repeated instruction patterns
are automatically recognized and dynamically scheduled on
the accelerator. X-CGRA implements a configurable level
of approximation within its function units. This results in
an approximate CGRA that can dynamically adjust to qual-
ity requirements. Versat supports fast partial reconfiguration
of the array. This allows on the fly switching between
configurations, thus adapting the hardware to (part of) the
application. Blocks is intended to work next to a pro-
cessor as an accelerator, or a stand-alone device. In the
future it is possible to add X-CGRA like approximation to
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(a) (b) (c) (d)

Fig. 1. Various control schemes used in existing CGRAs. The sequencer is responsible for controlling the program flow. Control (Con.) is responsible for
loading the configuration or instructions into the PEs. (a) Global sequencing, local decoding. (b) Local decoding and sequencing. (c) Global context switching.
(d) Blocks control scheme.

Blocks as a independent, complementary, energy reduction
technique.

Many-core architectures are another flexible solu-
tion [27]–[29], they typically consist of several independent
processors as opposed to a CGRA where a processing
element is usually not a complete processor. The processor
nodes are connected via a network, which in contrast to
FPGAs is not static but a dynamically routed network.
These networks are usually packet switched and not circuit
switched. The design of many-cores gives a high amount
of flexibility but at high power consumption. An interesting
architecture is Transmuter [30], this reconfigurable many-core
provides a reconfigurable cross-bar between processor tiles
and between processing elements (PEs) in these tiles. Energy
efficiency is achieved by allowing these PEs to operate as
reconfigurable systolic arrays. Blocks supports only statically
routed circuit switched networks for energy efficiency consid-
erations. However, the Blocks FUs allow a connected network
source to be selected at every cycle. Blocks also supports
multiple independent PC generators inside its fabric, allowing
construction of multiple independent application-specific
VLIW-SIMD processors. According to [7], in which the
authors performed an extensive evaluation of overhead in
general-purpose and signal processors, specialized data paths
exploiting instruction-level and data-level parallelism through
adaptation to an application can obtain significant energy
efficiency gains. The goal of Blocks is to allow this kind of
adaptation, but by using reconfiguration instead of design
time optimization.

III. BLOCKS ARCHITECTURE

This section describes the motivation behind control path
and data path separation found in Blocks and gives an intro-
duction into the architectural details, such as the functional
units, the memory hierarchy, the ISA, and tool-flow. Fig. 2
shows an example Blocks instance with different types of
functional units, as well as the memory hierarchy around the
architecture. This specific Blocks instance is shown for illus-
trative purposes only, and is not used for the benchmark results
in this work.

A. Separation of Control Path and Data Path

In most processor architectures, instruction fetching and
decoding significantly contributes to the total power [7]. This

is certainly the case for CGRAs, where FUs perform local
decoding [Fig. 1(a) and (b)] or are connected to a global
configuration context [Fig. 1(c)]. In Blocks, the sequencer
and control units are part of the reconfigurable fabric as
individual building blocks, as shown in Fig. 1(d). By doing
so, Blocks enables reconfiguration of the control structure as
well as the data path. The reconfigurable control structure of
Blocks allows construction of processors that support VLIW
and SIMD programming models as well as combinations of
these. These processors behave similar to VLIW-SIMD pro-
cessors, but with extensive explicit bypassing. This means
that intermediate results are directly passed from one func-
tion unit to another, instead of via register files. Doing so
reduces register file (RF) reads and writes, thus reducing
energy. The processors configured onto the Blocks fabric can
include application-specific structures, such as reduction trees
or (parts of) filters in the spatial layout, which can be con-
trolled in an SIMD manner. This allows the architecture to take
advantage of spatial layout of applications and enable software
pipelining, reducing RF pressure and memory accesses, and
increasing energy efficiency.

The Blocks fabric is realized by two FPGA-like networks
operating on data buses instead of individual wires, both are
configured once per application and are static during program
execution. The data network (shown in blue in Fig. 2) allows
the inputs and outputs of FUs to be connected to allow direct
data transfer between FUs. The second network is the control-
network (shown in red in Fig. 2), this network allows IFIDs to
be connected to one or more FUs to create SIMD processors.
By connecting multiple IFIDs to the same PC, generated by the
accumulate and branch unit (ABU), VLIW-SIMD processors
can be instantiated. If there is more than one ABU present
within a Blocks instance, there can be multiple independently
operating processors on the Blocks fabric.

B. Functional Units

The Blocks architecture features several types of functional
units, each responsible for providing different functionality to
the configured processor. Most FUs have multiple input ports
and output registers connected to the data network, which
are selected by the instruction, see Fig. 3. The instruction is
provided by the IFID connected to the FU over the control
network. Table I shows an overview of the available FUs and
their function in Blocks.
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TABLE I
SUMMARY OF FUNCTIONAL UNIT PROPERTIES. THERE ARE SIX TYPES OF FUNCTION UNITS: THE ARITHMETIC

AND LOGIC UNIT (ALU), THE ACCUMULATE AND BRANCH UNIT (ABU), THE LOAD-STORE UNIT (LSU),
THE MULTIPLIER UNIT (MUL), THE REGISTER FILE (RF), AND THE IMMEDIATE UNIT (IU)

Fig. 2. Example blocks instance showing a VLIW-SIMD processor imple-
mented on the fabric. The networks, data, and control are shown in blue (front)
and red (back), respectively.

Fig. 3. Generalization of the functional unit structure with four data inputs
and two data outputs, the control network connection is marked with “instr.”

C. Memory Hierarchy

Blocks contains a large global 32-bit wide global data
memory (GM), all load-store units (LSUs) are connected to
this memory via a global memory arbiter. The arbiter serves
memory requests on a work-preserving round robin basis and
detects coalesced memory accesses. For read operations, this
means that if requests are made that access the same memory
row, these requests are coalesced and read at once. Similarly, if
write operations to the same memory row do not conflict, the

Fig. 4. Generalization of a switch-box, as used in both the data and the
control network. The outputs each have a multiplexer which selects from
the available inputs (indicated with a dot). The solid green line represents a
selected connection.

requests are grouped and written at once. Conflicting accesses
are performed sequentially. When not all memory requests can
be performed within a single access the processor is stalled
until all requests are completed. Besides the GM, every LSU
has a local memory (LM), due to the small size of these mem-
ories they are implemented as a low-power RF macro from
a commercial vendor which internally consists of flip-flops.
The local memories are private to an LSU and therefore never
cause processor stalls. When data reuse is possible inside a
kernel, the local memories will be used to store intermediate
results if they cannot be kept inside the processing pipeline.

D. Interconnect Network

Since the goal of Blocks is to reduce energy, a statically
configured data network is used [31]. The network configu-
ration is part of the bit-stream that is used to configure the
Blocks platform at runtime. Typically, the network is config-
ured just before the start of an application, or a loop-nest
within an application. This configuration contains specifica-
tions like: connect the left port of the switch-box to the bottom
port of the switch-box, as shown in Fig. 4 with a solid green
line. This figure shows a generalization of a switch-box as
currently used in Blocks. The dots on the output ports are mul-
tiplexers which are configured to select one of the available
inputs.

The number of connections (channels) on each side of the
switch-box is a design parameter. It is also possible for switch-
boxes to have no inputs or outputs on one or more sides, this
is generally the case for switch-boxes on the outside of the
Blocks fabric. Switch-boxes that are close to function units can
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Fig. 5. Connection of function units to the Blocks reconfigurable network.
The outputs of function units can be selected in the switch-box configuration,
just like any other input on the switch-box. Inputs to a function unit are
considered an output on a switch-box, allowing it to select any of the inputs
as a source.

have inputs or outputs to these function units. In the Blocks
framework, this is typically represented by a diagonal connec-
tion, as shown in Fig. 5. The left switch-box (gray) serves as
an input to the function unit. To do so, it has an extra output.
The right switch-box serves as a sink for the outputs of the
function unit.

E. Instruction Set Architecture

The operations that the Blocks FUs support are quite sim-
ilar to RISC operations. The main difference is that Blocks
has its own set of operations for each type of functional unit,
allowing opcodes to be reused. A second difference is that
unlike most RISC architectures the arguments of the opera-
tion do not specify register numbers, instead an input source
number and a destination output port are specified. This is
because the data available to each FU is dictated by the con-
figuration of the data network; there is no knowledge of these
connections in the operation itself. This helps to keep the
instruction width very small [12-bit for all units except the
Immediate Unit (IU)] and allows construction of VLIW-like
processors without much instruction fetch overhead. A typical
Blocks instruction has the following form:
mnemonic destination, inputA, inputB

where destination is one of the output registers and
inputA and inputB are inputs selected by multiplexers.
These function units can have more inputs than operands that
are required for the operation. Throughout this article, most
function units are configured to have four inputs (sources from
the network).

The Blocks architecture is, as long as at least one ABU
and one ALU are present in the virtual architecture, Turing
complete. The ABU allows branches to take place, and the
ALU allows for comparisons with data to control whether the
branches are taken or fall-through.

F. Tool-Flow

Fig. 6 shows the Blocks tool-flow. A physical architecture
description details the FUs present in the design and control
and data network properties. It is used to generate Verilog that
will be synthesized (c), placed-and-routed (f), and eventually
exported as GDSII. This tool-flow path has to be executed only
once for a specific Blocks instance. Only when the designs
resources change, this path has to be rerun.

A virtual architecture describes the architecture that will
be instantiated onto the physical architecture and contains the

Fig. 6. Blocks tool flow.

connections between FUs and between IFIDs and FUs. The
virtual architecture is used to perform automated placement
and routing on the Blocks fabric (a). Placement is performed
using simulated annealing and routing is performed using the
pathfinder algorithm. The placed-and-routed design is trans-
lated into a bit-file that is used to configure the Blocks fabric
(d). An LLVM compiler back-end (b) generates functional
code, but for the benchmarks in this work, the assembly is
hand optimized. Finally, the assembled program code and bit-
stream are merged into a binary format (g) supported by the
Blocks hardware bootstrapper.

IV. SIMD AND VLIW SUPPORT IN BLOCKS

With its flexibility Blocks allows various architecture types
to be specified. These structures can be very similar to exist-
ing processors, such as VLIWs and SIMDs. However, they
can also be completely adapted to the application and provide
spatial layout for (part of) the application.

A. Constructing VLIW Processors

VLIW processors execute instructions which specify
multiple operations. These operations control multiple issue-
slots at the same clock cycle.

Instead of using a single instruction fetch and decode
unit that loads a very wide instruction, Blocks uses multiple
instruction fetch and decode units that are connected to the
same PC. To do so, each IFID has a connection to the data
network to connect to the output of an ABU, which produces
a PC value. Fig. 7 shows an example of such a structure for
two IFIDs. By doing so, it comes under the control of the
sequencing provided by the ABU. As the PC is the same for
every connected instruction decoder, all decoders will run in
the lock step. Each instruction decoder is connected to its own
instruction memory.

The advantage of the Blocks method is that the width
of the VLIW processor (i.e., the number of issue-slots) can
be easily matched to the requirements of the applications.
The disadvantage of the flexible processor construction that
Blocks uses is that some VLIW optimizations cannot easily
be applied. For example, VLIW processors can reduce some
of their power by applying instruction compression. Blocks
stores instructions for each instruction decoder in separate
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Fig. 7. Construction of a 2-issue VLIW processor using the Blocks fabric.
The PC is distributed to multiple instruction decoders to make these operate
in lock-step and form a VLIW processor.

(a) (b)

Fig. 8. SIMD processors, (a) typical approach and (b) Blocks approach.

instruction memories. Furthermore, which instruction decoders
are going to be used in a specific configuration is unknown
at design time. Therefore, it is not possible to compress over
multiple instruction decoders. Predefined clusters of instruc-
tion decoders could be a solution for this, at the expense of
some flexibility.

Since the flexibility of Blocks allows the architecture to
adapt to the application it is often possible to apply software
pipelining. The idea behind software pipelining is to over-
lap different iterations of loop bodies in time; i.e., the next
iteration starts while the current iteration still has to finish.
This shortens the effective iteration time. In the extreme case,
the iteration interval becomes a single cycle. Blocks can, as
long as there are sufficient resources, efficiently realize this
by instantiating a VLIW processor with the right number of
issue slot and bypass connections to allow spatial mapping of
a kernel.

B. Constructing SIMD Processors

The SIMD processors constructed on the Blocks fabric dif-
fer from typical SIMD processors [shown in Fig. 8(a)] where
only one of the function units (other than the RF) is active
at one time. An example architecture instance for Blocks is
given in Fig. 8(b). Since the function units are specialized
and controlled by their own instruction decoder the Blocks
approach results in a VLIW-SIMD processor. This means that
the vector lanes for each function unit type effectively form
an issue-slot of a VLIW processor. Although the total num-
ber of instruction bits is wider than that in the typical SIMD
processor (in this example 48 bit for Blocks versus typically
32 bit in the SIMD), the instruction for the example application
can be software pipelined with an iteration interval of a sin-
gle cycle. This reduces power in the instruction decoders and
their attached instruction memories due to reduced toggling of
the address and data lines of the instruction memories as well
as the control signals for the function units. Additionally, the

Fig. 9. Construction of an SIMD processor using the Blocks fabric. The
ALU and LSU function units are controlled as a vector lane of four elements
wide.

Blocks approach will provide a higher throughput since the
operations can be pipelined.

A more detailed example of supporting SIMD lanes by
Blocks is shown in Fig. 9. SIMD significantly reduces the
instruction overhead compared to the local or global decoding
used by traditional CGRAs. The construction of vector lanes
is very similar to constructing a VLIW issue-slot as described
in Section IV-A. An ABU is used to control the sequencing of
an instruction decoder. This instruction decoder then loads and
decodes the corresponding instructions. The decoded instruc-
tions are made available on the control network and routed to
multiple function units.

C. Application-Specific Data Paths

Besides the typical processor structures, it is possible to
create very application-specific designs. Doing so can signif-
icantly improve the performance or energy efficiency of the
application as this allows Blocks to create a (near) spatial lay-
out of applications. In some cases, part, or whole, of these
special structures can be controlled with a single instruction
decoder. For example, when multiple values have to be added
together an adder tree can be constructed.

V. EXPERIMENTAL SETUP

All architectures are placed-and-routed using commercial
ASIC design tools and a 40-nm technology library. Power
and energy results are based on real toggling rates on the
full layout. Four reference architectures are used: 1) a CGRA;
2) an 8-lane SIMD; 3) an 8-issue VLIW; and 4) an ARM
Cortex-M0 microprocessor. Additionally, application-specific
processors (ASPs) are instantiated per benchmark application.
The SIMD, VLIW, and ASP architectures are all easily real-
izable with the Blocks framework but use fixed connections
instead of a reconfigurable fabric.

All architectures contain a two-ported (one read and one
write port) GM of 32 kB, sufficient to hold the initial and
resulting data for all benchmarks. The ARM-M0 uses a single
ported memory due to AHB-bus limitations. All LSUs, with
exception of the ARM Cortex-M0, contain a 1 kB two-ported
LM. This memory is private to an LSU and, therefore, does
not need arbitration. Its size is chosen such that it allows some
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TABLE II
SUMMARY OF ARCHITECTURE PROPERTIES. * EIGHT OF THESE ALUS ARE ONLY USED AS 2-REGISTER DATA BUFFER

Fig. 10. Blocks architecture instance used for the benchmark kernels. For
clarity, the networks are omitted.

local data reuse without allowing the whole input dataset to
be available locally.

The overall goal is to ensure fair comparisons, as much as
possible. For this reason, the compute area (excluding area for
memories and switch-boxes) is designed to be as similar as
possible between Blocks, the traditional CGRA, VLIW, and
SIMD. Any remaining area differences are corrected for by
using the performance per area metric.

A. Blocks Architecture Instance

The instantiated Blocks architecture is reused for all ker-
nels and, therefore, contains the superset (union) of FUs in
the ASPs. It includes 9 LSUs, 17 ALUs, 9 multipliers, 2 IUs,
1 RF, and 1 ABU, as shown in Fig. 10. When an FU is not
used, the inputs are tied to a fixed value by configuration to
reduce power. These compute resources are very similar to
the 8-lane reference SIMD with control processor but the RFs
are replaced by ALUs which are used as two-element register
files in the “FIR,” “IIR,” and “2-D convolution” benchmarks
and unused in other kernels. These benchmarks do not require
many registers due to spatial layout and ALUs are cheaper in
area and power. Blocks also contains eight IFIDs to control
groups of these functional units. The two networks (control
and data) have different widths and number of connections
per switch-box. The data network in the Blocks instances in
this work is 32-bit wide (but can be configured at design time
to be 8, 16, 32, or 64-bit wide). The control network has a
fixed width of 16 bit and transports the decoded instructions.
The interconnect network is set up for three vertical and two
horizontal connections (on each side). This number of connec-
tions was determined using our automated routing tool. First,
only one horizontal and one vertical channel were allotted to
each of the switch-boxes, which causes routing to fail due

to insufficient resources. For the next iteration, the number
of horizontal channels was incremented by one, followed by
the number of vertical channels. This procedure was repeated
until routing became feasible for all benchmark applications.
Although, this does not necessarily result in the minimum
required number of channels it should be quite close. In this
work, the interconnect pattern is a full mesh. However, the
tool flow is designed to allow other connection schemes as
well. Currently, only full-mesh is implemented.

B. Reference Architectures

A reference CGRA is used to compare the traditional way
of controlling a CGRA with the Blocks method. The available
functional units, their capabilities, and the data network are
identical to Blocks to ensure a fair comparison. Blocks-based
ASPs with fixed connections and FUs are used to evaluate
the overhead of Blocks. The VLIW and SIMD processors are
used to compare the performance and energy efficiency of
Blocks with processor types typically used for DSP applica-
tions. The goal is to show that Blocks can achieve similar
performance per area and energy efficiency as the best suited
general-purpose processor for each benchmark kernel. The
ARM-Cortex-M0 is used to compare the performance per
area and energy with a general-purpose low-power micropro-
cessor. Blocks is expected to show better energy efficiency
by adapting to the application, despite the very low power
of the microprocessor. Table II summarizes the architecture
properties for all architectures.

1) ARM Cortex-M0: This architecture was chosen for its
popularity in commercial applications and reputation as a very
low-power architecture. It uses a Cortex-M0 logic core com-
bined with an instruction and data memory. The largest binary
for this architecture is approximately 12 kB but since the same
memory is also used as RAM 32-kB memory is required. The
instruction memory is single ported.

2) 8-Lane SIMD With Control Processor: The SIMD refer-
ence processor is based on the architecture presented in [32].
It contains a control processor and 8-lanes with bypass support
between ALU, Multiplier Unit (MUL), and LSU. The control
processor controls branches and can broadcast values to the
lanes in the vector processor, as shown in Fig. 11. All lanes
contain a register file, ALU, multiplier, and LSU. The lanes
and control processor have a neighborhood network, allow-
ing results to be communicated between lanes. The instruction
memory of the SIMD holds 256 instructions, the next power
of 2 needed to fit the largest kernel. Only one of the FUs
inside each lane (ALU, MUL, LSU) can be active at a clock
cycle.
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Fig. 11. 8-lane SIMD reference architecture.

Fig. 12. 8-issue slot VLIW reference architecture.

Fig. 13. Traditional CGRA. The instruction memories are marked with “IM.”
For clarity, the data network is omitted.

3) 8-Issue Slot VLIW: The VLIW reference architecture,
shown in Fig. 12, has eight issue slots with private register
files, neighborhood communication, and bypass support. If a
VLIW with a shared RF would have been used the power
results would have been worse due to the many required reg-
ister ports. One issue slot supports branching. The instruction
memory holds 256 instructions, although these instructions are
significantly wider than for the SIMD. Half of the issue slots
contain an LSU, which is a higher than average percentage
for a VLIW. Memory operations can be spread out over time,
which prevents memory congestion and therefore stall cycles.

4) Traditional CGRA: The traditional CGRA is a special
version of Blocks without separation in the control and data
paths, it is referenced throughout this work as “traditional.” It
contains the same specialized FUs as Blocks, but with local
instruction memories for each unit, as shown in Fig. 13. Since
each functional unit performs local instruction decoding, the
control network is no longer required and is removed. This
CGRA is used as a reference since comparisons with the
existing CGRAs are often inaccurate. Either no power/energy
numbers are given or are for a very different technology.
Furthermore, what is included in the energy numbers is often

unclear (e.g., if it includes memory accesses). In our opinion,
using a Blocks-based reference, CGRA provides the fairest
comparison to show the benefits of separating the control and
datapath.

5) Application-Specific Blocks Instances (Blocks-ASP):
The application-specific Blocks instances contain fixed wiring
between FUs instead of the reconfigurable data and control
network. For each application, the unused FUs are removed.
This results in a dedicated processor, which contains only the
hardware (connections, functional units, and memories) that is
required for executing a specific kernel, called Blocks-ASP.

C. Synthesis and Place-and-Route

Synthesis and place-and-route of the reference architectures
is performed using the Cadence ASIC tools on a commer-
cial 40-nm low-power library. To obtain accurate results, all
memories are implemented using commercial 40-nm memory
macros that can be taped out. The resulting netlist also includes
the clock tree and I/O buffers. In this work, all designs are
synthesized for 100 MHz in order to be able to make a fair
comparison. At this frequency, there are not many effects
from the synthesis tools selecting larger gates to reach the
desired clock frequency. In practice, Blocks has been suc-
cessfully placed-and-routed at 300 MHz (worst case corner at
125 ◦C and 0.99 V). The reference architectures can be syn-
thesized up to 300, 470, 300, and 450 MHz for the traditional
CGRA, VLIW, SIMD, and ARM Cortex-M0, respectively.
For Blocks, VLIW, and SIMD, the memory arbitration unit
eventually becomes the critical path of the design. The max-
imum frequency is higher for the VLIW as it only contains
four LSUs while the SIMD contains nine. Each switch-box
introduces a delay of 0.2 ns, and the worst case functional
unit, the multiplier, introduces a delay of approximately 2 ns.
This means that even when the multiplier is used, it is still
possible to route the signal over six switch-boxes before the
maximum frequency has to be reduced. A higher achievable
frequency allows voltage scaling and further energy reduction.
However, Section VI shows that Blocks obtains a significantly
higher performance at the same frequency compared to the
reference architectures. Therefore, Blocks can achieve similar
performance while still scale to lower voltages.

The performance and power results are obtained by sim-
ulating the placed-and-routed net list at the typical corners,
including delay annotation and capacitances. This has the
advantage that functionality can be verified after the whole
design flow, as well as obtaining an accurate activity file
(TCF). The net list combined with the activity file is used
by the Cadence flow to perform power analysis. Since this
is performed on a post-place-and-route design, wire and
cell capacitances are included. The same technology library
and synthesis settings are used for all architectures and all
benchmarks.

D. Benchmarks

Eight benchmarks kernels are carefully selected to ensure
a realistic comparison between the traditional CGRA and
Blocks. Additionally, the benchmark set is selected such that
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TABLE III
OVERVIEW OF BENCHMARK KERNELS

some applications perform well on SIMD processors and oth-
ers on VLIW processors. The benchmark kernels include
typical operations that can be found in many signal processing
applications. For example, “Binarization” includes threshold-
ing, “Erosion,” and “Convolution” include “2-D convolution”,
FIR includes 1-D convolution, “FFT” includes butterfly oper-
ations on complex numbers, and IIR includes more irregular
patterns. Table III gives an overview of the benchmarks used
for evaluation. All kernels are written in assembly (except
for the ARM Cortex-M0) and optimized per architecture. The
benchmarks for the M0 are written in C and compiled with
the “-O3” flag using GCC, version 4.9.3. For all benchmarks
and architectures, the initial data are assumed to be in the GM,
the local memories are considered to be uninitialized.

The benchmark kernels Binarization, Erosion, “Projection,”
and “FFoS” are expected to perform well on an SIMD pro-
cessor since they can be relatively easily vectorized, even
though the Erosion benchmark does require some neighbor-
hood communication. Applications that require more irregular
communication (not strictly neighbor to neighbor) such as FFT
and IIR are expected to perform better on the VLIW.

VI. EVALUATION

This section describes the performance, power, energy, and
area results for Blocks and the reference architectures. The
evaluation is split into two parts. First, a comparison is made
between Blocks, the reference CGRA, and the dedicated archi-
tectures to evaluate overhead. Second, Blocks is compared
with the nonreconfigurable reference architectures.

A. Reconfiguration Overhead of Blocks

This section is a summary of the extensive overhead eval-
uation presented in [11]. The goal of Blocks is to reduce
reconfiguration overhead in reconfigurable architectures. To
evaluate the effectiveness of Blocks, ASPs for each bench-
mark are compared with Blocks and the traditional CGRA in
terms of energy and area. Performance is the same for these
architectures since the underlying virtual architecture and the
scheduled instructions on it are the same, see Fig. 14. The
more densely shaded areas in the bottom of each bar repre-
sent the cycles stalled due to memory arbitration. In Blocks,
data-level-parallelism results in one instruction decoder con-
trolling multiple FUs whereas in the traditional CGRA, the
instructions are replicated over functional units.

Fig. 14. Number of cycles for the benchmark kernels. Shaded are stalled
cycles due to global memory accesses.

1) Energy: Fig. 15 shows that the energy of Blocks is lower
than the traditional CGRA for all benchmark applications.
Since the virtual architectures mapped on the reconfigurable
Blocks are the same as the Blocks-ASP architectures, the
reconfiguration overhead of the traditional CGRA and Blocks
can be analyzed. The overhead consists of both the recon-
figurable networks and the unused FUs in the reconfigurable
version of Blocks. The energy overhead reduction of Blocks
compared to the traditional CGRA is between 1.46× and
1.76×. The system-level energy reduction of Blocks com-
pared to the traditional CGRA is between 9% and 29%
(average 22%).

2) Area: The architectures for Blocks and the traditional
CGRA are kept the same for all benchmarks. Only the
Blocks-ASP instances have different areas as they are bench-
mark specific. The area of Blocks is 19.1% smaller than
the traditional CGRA. The area occupied by switch-boxes
in Blocks is 49.2%, see Fig. 16. The traditional CGRA has
46% of area dedicated to switch-boxes but 14.4% to instruc-
tion memories, while in Blocks this is only 5.2%. Again,
the overhead reduction that can be achieved by SIMD sup-
port, and therefore a reduction in instruction memories, is
what is largely responsible for this difference. The Blocks-
ASP instances do not include reconfigurable networks and
are therefore much smaller than Blocks and the traditional
CGRA.
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Fig. 15. Energy per architecture per benchmark.

Fig. 16. Area breakdown for all architectures. The lower eight are
Blocks-ASP instances for their respective benchmarks. The categories marked
SWB(C) and SWB(D) indicate the switchboxes in the control network and
data network, respectively.

B. Comparison With Fixed SIMD and VLIW Architectures

The real benefit of a reconfigurable architecture is that it
can adapt itself to the type(s) of parallelism available in the
application it is going to execute. Fixed architectures, such as
VLIW and SIMD processors do not have any reconfiguration
overhead. On the other hand, their supported parallelism mix
is determined at design time. Blocks would show its value
when it can perform similar, performance and energy wise,
compared to a VLIW and SIMD over a range of applications.
This section will show that Blocks is able to do so.

1) Performance: Although each benchmark kernel has been
optimized for each architecture, Blocks achieves similar or
better performance for almost all benchmark kernels. For
Erosion, Projection, and FFoS, Blocks is instantiated with
bypass channels between the processing elements. Compared
to the SIMD and VLIW, where the neighborhood network is

fixed, this saves cycles needed to move data between lanes.
The benchmarks FIR, IIR, and 2-D convolution are imple-
mented spatially. This reduces the number of instructions in
the loop-nest significantly, for FIR and 2-D convolution, the
loop-nest becomes a single cycle. For Binarization and FFT,
Blocks requires more cycles than the VLIW. In Binarization,
this is caused by LSU read and write address initialization
(13 cycles). For FFT, Blocks uses resources to construct two
spatial butterfly units. The VLIW and SIMD process one but-
terfly per lane since further-than-neighbor communication is
expensive. For FFT, Blocks uses only a single register file,
since more RFs are not required by the other kernels. This
causes a small performance penalty for FFT on Blocks, but
does not outweigh the energy and area penalty for the other
kernels. Overall, adapting the data path to the application
Blocks provides an improvement of a factor 2.7× and 3.2×
over the SIMD and VLIW, respectively.

Kernels containing data-level parallelism perform well on
the SIMD. An exception to this is Binarization because the
SIMD always loads data with eight LSUs, causing memory
stalls due to memory bus width. The VLIW reduces the loop-
nest of this kernel to a single cycle by performing a load,
store, and arithmetic operation in parallel. The VLIW per-
forms worse on kernels where the local memories are used
extensively, such as erosion and FFoS, since only half of the
issue-slots contain LSUs. Despite the SIMD incurs stall cycles
for accessing 8 bytes in parallel over an 4-byte memory bus,
the VLIW needs to move loaded data to neighboring issue
slots before the next memory access can be made. The SIMD
performs worse on kernels with further-than-neighbor com-
munication. IIR, for example, requires intermediate results
from other lanes causing communication over the neighbor-
hood network. To prevent this, the IIR filter is unrolled which
leads to recomputation, but performs better on the SIMD. The
mean performance difference between the SIMD and VLIW is
small, showing that the reference architectures and benchmark
applications are representative.

The ARM Cortex-M0 takes significantly more cycles, there
are several reasons to this: it cannot perform parallel compu-
tations, control flow instructions are interleaved with compu-
tation and there is no hardware multiplier. However, the ARM
Cortex-M0 is mainly included to compare energy numbers.
To predict how much difference a more powerful micropro-
cessor makes, the cycle accurate simulator OVPsim is used
to predict speed-up using an ARM Cortex-M4 and Cortex-
A9. The highest speed-up is 2.47× and 2.59× for FFT on
the Cortex-M4 and Cortex-A9, respectively. Similar speed-up
is achieved for FIR, IIR, and “2-D convolution,” all contain-
ing multiplications. There is almost no speed-up for the other
kernels. However, core power for the Cortex-M4 increases
by 2.3× according to [33], [34], canceling out any energy
gains.

2) Power and Energy: Blocks has a higher power draw
due to reconfigurability overheads, a geometric mean power
increase of 1.32× and 1.51× compared to SIMD and VLIW,
respectively. However, the performance increase due to archi-
tectural flexibility of Blocks outweighs this power increase
in terms of energy. Blocks shows an energy reduction of
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(a)

(b)

(c)

Fig. 17. Power breakdown for SIMD and VLIW architectures. The categories
marked SWB(C) and SWB(D) indicate the switchboxes in the control network
and data network, respectively. (a) Energy breakdown for Blocks. (b) Energy
breakdown for VLIW. (c) Energy breakdown for SIMD.

2.05× and 1.84× when compared to the SIMD and VLIW,
see Fig. 15. The cause of this can be seen when Fig. 17(c)
and (b) are compared with Fig. 17(a). Blocks shows a much
better utilization of the multipliers and ALUs, leading to the
energy reduction. For Binarization, Blocks performs slightly
worse in energy than the VLIW because there is virtually no
possibility for data reuse in this kernel. For FFT, the number of
cycles cannot be significantly reduced due to the limited num-
ber of register files. This leads to a somewhat higher energy
for the FFT benchmark, although roughly on par with the
SIMD architecture. Power draw for Blocks-ASP is on par with
the SIMD and VLIW architectures while outperforming these
architectures in execution time by approximately 3×, leading
to a significant energy reduction. This shows the gains that
are possible when adapting architecture to the algorithm. The
ARM Cortex-M0 has a very low-power footprint. Interesting
for this architecture is to observe that kernels containing many
multiplications result in a lower power draw, this is caused by
the large number of cycles required to perform multiplications
with respect to the low number of memory accesses.

3) Area: The area of Blocks without switch-box area in
Fig. 16 is very similar compared to the area of the VLIW and
SIMD. This shows that the reference architectures are well
balanced with respect to the Blocks architecture, and that the
extra area is caused by the Blocks reconfigurable fabric. The
area distribution of Blocks is very similar to the SIMD. As
expected, the VLIW uses more area for instruction memory
while the SIMD has more area in the FUs. The ARM Cortex-
M0 processor is small in comparison with its memories, as
can be observed in Fig. 16, even though the ARM Cortex-
M0 memories are single-ported as opposed to the two-ported
memories in the other architectures, reducing their relative
size.

4) Flexibility: Some methods to classify flexibility have
been proposed, these either base their metric on the ability
of a design unit to connect to any other design unit [35], or
its insensitivity to performance differences [36].

According to the metric described in [35], Blocks would
always be able to connect every design unit to every other
design unit, thus making it the most flexible architecture
available for the four architectures evaluated in this section.

The second metric defines “versatility” as the geometric
mean of all speed-ups relative to the best performing proces-
sor for each individual benchmark kernel. As the “versatility”
metric does not take performance differences into account,
the ARM Cortex-M0 gets a very poor versatility rating even
though it is, instinctively, very flexible (Section IV). The same
holds, albeit to a lesser extent, for the SIMD and VLIW
processors.

Since Blocks aims at energy efficiency it seems apt to clas-
sify flexibility based on the energy spent to perform the work
required to compute a benchmark kernel. The larger the spread
in the amount of energy spent between benchmark kernels,
the lower the flexibility. An ASIC, for example, will spend
very little energy to perform a kernel that it is designed for
but may take lots of energy to perform one that does not
match its architecture (if it is capable to perform it at all).
This means that the variation will be high. For a very flexi-
ble architecture, such as a microprocessor, the variation would
be much smaller as it is able to perform all applications with
reasonable efficiency. However, the magnitude of the spread
depends on the absolute differences between benchmark ker-
nels. For this reason, the energy numbers should be normalized
per architecture. This method is not perfect either as it will
consider architectures that have a relatively high energy over-
head compared to their active energy to be more flexible. For
each architecture, the standard deviation of the normalized
energy numbers is taken, as shown in (1), subsequently, the
results for all architectures are scaled such that the maximum
is at one [(2) and (3)]. This means that this flexibility met-
ric is relative between the evaluated architectures; it cannot
be used to compare with architectures outside of the evalua-
tion set without recomputing (2) and (3). In these equations,
Earchitecture denotes the energy metrics for all benchmarks for
a specific architecture. The results of this metric are shown
in Table IV as “energy flexibility.” It can be observed that
both the ARM Cortex-M0 now scores much better in terms
of flexibility compared to the “versatility” metric. The energy
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TABLE IV
VERSATILITY OF THE REFERENCE ARCHITECTURES

COMPARED TO BLOCKS

TABLE V
IMPROVEMENT OF BLOCKS COMPARED TO REFERENCE ARCHITECTURES

efficiency for Blocks is also higher than for the ARM and
VLIW, as could be expected. However, the SIMD processor
scores best in this metric. This is due to the relatively large
static energy consumption, which “dampens out” the variations
between benchmarks. However, since Blocks can be used to
implement processors that are similar to the SIMD, this intu-
itively suggests a more flexible architecture. We can conclude
that although this metric is not perfect, it is less sensitive to
speed-up relative to the fastest performing processor in the set.
In both metrics, however, Blocks scores well with respect to
flexibility

Farchitecture = σ

(
Earchitecture − min(Earchitecture)

max(Earchitecture) − min(Earchitecture)

)
(1)

Farchitectures =
[
F1

architectureF2
architecture · · · FN

architecture

]
(2)

Flexibility = Farchitectures

(max(Farchitectures)
. (3)

C. Summary of Results

Blocks performs well on performance and energy by provid-
ing speed-ups over fixed architectures, as shown in Table V.
Like all reconfigurable architectures Blocks trades flexibility
for area and consequently has a larger area than fixed archi-
tectures. The Energy-Delay-Area-Product (EDAP) of Blocks is
better than all nonapplication-specific reference architectures.

When performance per area is considered Blocks performs
similarly or better as the VLIW, SIMD for most benchmarks,
and always better than the traditional CGRA and the ARM
Cortex-M0, as shown in Fig. 18. The dedicated architectures
have a better performance per area since performance is iden-
tical to Blocks but all overhead is removed. The benchmarks
where the VLIW or SIMD outperform Blocks are Binarization
and FFT where Blocks has similar execution time.

The Blocks instance shown in Fig. 10 can achieve 26 oper-
ations per clock cycle if only the multipliers and ALUs are
taken into account. When the load-store operations performed
by the LSUs are also taken into account this results in a
total of 44 operations per cycle (the LSUs can perform a
load and store simultaneously). The energy consumption for
Blocks in this case is approximately 299 pJ per cycle, includ-
ing switch-boxes, arbiter, register operations, etc. Furthermore,
it is assumed that all function units (including function units

Fig. 18. Normalized performance per area, all results are normalized to the
performance per area of Blocks.

that do not count as useful operations, such as RF, IU,
and ABU) are fully occupied and performing 32-bit opera-
tions. Memory energy is not included in this number. This
results in a performance of 11.5 pJ per operation when only
multiplications and additions are considered, and 6.8 pJ per
operation when the LSU operations are also taken into account.
When compared with peak energy efficiency for various archi-
tectures in the literature this is quite acceptable. For example, a
TTA-like VLIW architecture, optimized for machine learning,
achieves 5.3 pJ/operation (28 nm FDSOI at 0.35 V) [37] while
Dally et al. [38] stated that a typical VLIW achieves an energy
efficiency of around 10 pJ/operation. The symbiote [39] VLIW
coprocessor achieves 28 pJ/operation. Similarly, a highly opti-
mized SIMD for computer vision achieves 1.9 pJ/operation
(180-nm CMOS) [40] while another, more generic, SIMD
achieves 4.8 pJ/operation (40-nm CMOS) [41]. Systolic
CGRA architectures generally perform somewhat better but
are less flexible than Blocks. Examples of such architectures
are PHVArray [42] (20 pJ/op, 550 nm), REMUS_HPP [44]
(5.5 pJ/op, 65 nm), and REMUS_LPP [44] (1.3 pJ/op, 65
nm). The latter two are video decoding optimized systolic
arrays with many function units (256), which helps to amortize
overhead. These energy efficiencies are estimates since cer-
tain parameters are assumptions, for example: 100% utilization
of FUs. The individual benchmarks results show that Blocks
can get close to the peak energy efficiency while maintaining
flexibility.

VII. CONCLUSION

The results presented in this work showed that Blocks,
with the separation of data path and control path, significantly
reduces reconfiguration overhead even when compared to an
already optimized but more traditional CGRA. All evaluations
have been performed on post-place-and-route results on fully
working RTL implementations of all architectures. Compared
to a traditional CGRA, Blocks reduces reconfiguration energy
overhead between 46% and 76% (average 60%), depending
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on the benchmark, without performance penalty. The system-
level energy reduction is between 9% and 29% (average
22%). This showed that separation of control and data for
energy-efficient CGRAs makes sense. In many applications,
especially in applications where data-level parallelism is avail-
able, Blocks will achieve better energy efficiency. Furthermore,
Blocks enables area reduction for applications, where data-
level parallelism can be exploited. A first version of Blocks
has been taped out and shown to be fully functionally correct.

Blocks is also compared against fixed architectures, an 8-
lane SIMD with control processor and a 8-issue slot VLIW.
The geometric mean of the performance improvement of
Blocks is 3.1× and 2.4× over the SIMD and VLIW, respec-
tively. Despite reconfiguration overhead, energy consumption
is 2.1× and 1.8× lower for Blocks. Furthermore, Blocks
energy is over 8× lower compared to an ARM Cortex-M0,
while achieving a speed-up of 68.9×. The results show that
although there is a price to pay for flexibility, it might be lower
than expected [45]. To the best of our knowledge, this work
contains the first architecture comparison on post place-and-
route layouts of full processor designs on a 40-nm commercial
library.

When performance per area is considered, Blocks even out-
performs the fixed architectures and reference CGRA. In the
case of the reference architectures, this is achieved by higher
performance, while in the case of the reference CGRA, this is
achieved by an area reduction.

A. Future Work

Current architectural improvements that are investigated are
latch-based memory designs to reduce the area of the instruc-
tion memories and local memories, in multigranular FUs that
can adapt to the required data-width, and in instantiation of
multiprocessors on the Blocks fabric by using more than one
ABU. For any architecture to be widely accepted, tool support
is crucial; therefore, our research includes improving compiler
support for Blocks. An initial LLVM backend is developed but
does not yet take full advantage of all hardware possibilities.
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