
IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION) 1

Area-optimized Accurate and Approximate
Softcore Signed Multiplier Architectures

Salim Ullah, Hendrik Schmidl, Siva Satyendra Sahoo,
Semeen Rehman and Akash Kumar

Abstract—Multiplication is one of the most extensively used arithmetic
operations in a wide range of applications. In order to provide resource-
efficient and high-performance multipliers, previous works have pro-
posed different designs of accurate and approximate multipliers—mainly
for ASIC-based systems. However, the architectural differences be-
tween ASICs and FPGA-based systems limit the effectiveness of these
multipliers for FPGA-based systems. Moreover, most of these multi-
plier designs are valid only for unsigned numbers. To bridge this gap,
we propose a novel implementation technique for designing resource-
efficient and low-power accurate and approximate signed multipliers
which are optimized for FPGA-based systems. Compared to Vivado’s
area-optimized multiplier IPs, the designs obtained using our proposed
technique occupy 47% to 63% less area (Lookup Tables). To accel-
erate further research in this direction and reproduce the presented
results, the RTL and behavioral models of our proposed methodology
are available as an open-source library at https:// cfaed.tu-dresden.de/
pd-downloads.

Index Terms—Signed Multiplier, Booth’s Multiplication, Accurate, Ap-
proximate Computing, FPGA, Energy Efficiency.

F

1 INTRODUCTION
State-of-the-art field-programmable gate arrays (FPGAs), such
as Intel Stratix-10 and Xilinx UltraScale+, use hard digital signal
processing (DSP) blocks to provide high-performance multipli-
ers and accumulators for a wide range of DSP applications.
These DSP blocks are manually optimized, like an application-
specific integrated circuit (ASIC), to provide energy and per-
formance gains for different applications. However, the fixed
locations and fixed bit-widths of these DSP blocks may result
in degraded performance for some applications. We have pre-
viously reported the results of two different implementations—
with and without DSP blocks—for different DSP applications,
such as Nova and Viterbi decoder, in [10]. Our results show
that the fixed locations of the allotted DSP blocks results in
increasing the routing and critical path delays for some applica-
tions. For small applications, it may be possible to improve the
critical path delays of the applications by performing manual
floorplanning. However, for larger applications with competing
resource requirements, such as contentions for DSP blocks and
Block RAMs, it might not be possible to take significant ad-
vantage of the manual floorplanning for optimizing the overall
performance of an application. Further, we have also reported
in [10] that the implementation of some applications may con-
sume a large number of the available DSP blocks for performing
different arithmetic operations. An exhaustive utilization of
DSP blocks, by a single application, will result in utilizing
logic-based soft arithmetic blocks for other concurrently run-
ning applications (or functions) on the same FPGA. Moreover,
the utilization of DSP blocks having M×M multipliers for
obtaining Y×Y and Z×Z multipliers, where M>Y and M<Z,
can degrade the performance of overall implementations [3].
Similar results about the potential limitations associated with
DSP blocks utilization are also reported in [2]. Therefore, it is
always advantageous to have low area and high performance
logic-based soft multipliers along with DSP blocks, as provided
by modern FPGAs vendor, such as Xilinx [4].
Among famous multiplier options, the Wallace [5] and
Dadda [6] multipliers have high resource requirements for

• S. Ullah, H. Schmidl, S. S. Sahoo and A. Kumar are with Technische
Universität Dresden, Germany.

• S. Rehman is with Technische Universität Wien, Austria.
Manuscript received 20 Mar. 2019; revised 29 Mar. 2020; accepted 5 Apr.
2020.
(Corresponding author: Salim Ullah.)
Recommended for acceptance by G. Constantinides.
The work presented in this article is supported by the German Research
Foundation (DFG) funded project ReAp (Project Number: 380524764).
Digital Object Identifier no. 10.1109/TC.2020.2988404

achieving high performance by parallel summation of partial
products. The Booth’s multiplication algorithm [7] reduces
the number of partial products by encoding multiplier bits
to achieve performance gains and area efficiency. The Baugh-
Wooley’s algorithm [8] focuses on the elimination of sign exten-
sion of partial products to obtain low-area and reduced power
multipliers for ASICs. Utilizing Booth’s algorithm, Kumm et
al. have presented an area efficient radix-4 unsigned accurate
multiplier implementation for Xilinx FPGAs [9]. Their imple-
mentation can also support the multiply-accumulate (MAC)
operation. Walters has also used 6-input LUTs to implement
signed multipliers for Xilinx FPGAs [30], [31]. However, these
implementations do not discuss the possibility of supporting
MAC operations. Parandeh-Afshar et al. have used Booth’s
and Baugh-Wooley’s multiplication algorithms for area-efficient
multiplier implementation using Altera (now Intel) FPGAs [12].
The authors of [32] have also used the adaptive logic module
(ALM) of Intel FPGAs for implementing soft multipliers. How-
ever, the implementation results only describe LUTs utilization.
The critical path delay and the energy consumption of the
implementations have not been discussed.
For a wide range of applications, the exactness of intermediate
operations can be compromised without significantly degrad-
ing the quality of final output to obtain area, energy and
performance gains [13]. Such applications can have inherent
resilience to approximations in input data and intermediate
operations. Examples of such applications are mostly in the
domain of digital signal processing, machine learning and
data mining. Error-resilient applications such as deep neural
networks have millions of multiply-accumulate operations. For
example, Deep Residual Learning (ResNet-152) [33] has 11.3
billions MAC operations per forward pass for the processing of
a single image. Therefore, for these applications, approximate
multipliers can be utilized for obtaining area-optimized and
energy-efficient implementations. Utilizing the inherent error-
resilience of such applications, previous works have proposed
different approximate multiplier designs. The authors of [14],
[15], [20], [21] have proposed different approximate partial
products reduction trees for performance and energy gains.
Similarly, a method to generate approximate partial products
for radix-4 Booth multiplication has been proposed in [28].
Utilizing the concept of modular implementation of multipliers
[22], the authors of [16], [17], [18] have presented approximate
4×4 and 2×2 multipliers for generating higher order multi-
pliers. The work in [11] proposed approximate 4×2 and 4×4
multipliers for efficiently utilizing the 6-input lookup tables of
modern FPGAs such as Xilinx Ultrascale+. Utilizing different
approximate adders and multipliers from literature, an open
source library of 8-bit approximate adders and multipliers,
EvoApprox8b, has been presented in [19]. Using the dom-
inating design points of EvoApprox8b, a library of FPGA-
optimized approximate multipliers—SMApproxLib—has been
presented in [10]. However, due to the following limitations,
these works cannot be considered for designing approximate
signed multipliers for FPGA-based systems.

1) The approximation techniques presented in most of
these works, such as [17], [18] and [28], ignore the
architectural specifications of FPGAs; therefore, these
techniques are less effective in gaining ASIC like en-
ergy, performance and area gains when used for FPGA-
based systems. Fig. 1 shows the comparison of ASIC
and FPGA-based implementation results for four mul-
tipliers, D1–D4, randomly selected from EvoApprox8b
library [19] and an 8×8 approximate multiplier D5
from [17]. These results describe the performance gains
of different approximate multipliers with respect to an
accurate multiplier implementation. The ASIC-based
implementation results for D1–D4 and D5 are obtained
from [19] and [17] respectively. For obtaining FPGA-
based implementation results, D1–D4 and D5 multi-
pliers are implemented on Kintex-7 FPGA using Xil-
inx Vivado 17.4 tool. As shown in Fig. 1, the per-
formance gains, reported for ASIC-based implemen-
tations, are not proportionally translated for FPGA-
based implementations. The architectural differences
between ASICs and FPGAs are the main reasons for this

https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads

IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION) 2

Fig. 1. Implementation results of �ve state-of-the-art approximate multi-
pliers on ASICs and FPGAs

dissimilar performance gains for FPGA-based imple-
mentations. FPGAs consist of lookup tables (LUTs) and
carry chains. Any approximation techniques, optimized
for FPGA-based systems, must consider the structure
and con�gurations of these LUTs and carry chains.

2) Most of these techniques are for unsigned numbers
only. For example, the hundreds of approximate mul-
tipliers presented in EvoApprox8b [19] and SMAp-
proxLib [10] focus on unsigned numbers only. The
4� 2 and 4� 4 approximate multipliers in [11] and the
2� 2 approximate multiplier modules used in [17] and
[18] are for unsigned numbers only. The inaccurate
4:2 counter [16] and the partial products reduction
techniques in [14], [15], [20] and [21] do not discuss the
applicability of their approaches for signed numbers.
Therefore, these techniques cannot be directly used for
the approximate multiplication of signed numbers.

3) The modular approach of designing bigger multipli-
ers using smaller multipliers, used by [11], [16], [17],
[18], is advantageous for designing smaller multipliers
only. Our empirical results show that this technique
consumes more FPGA resources for higher bit-width
multipliers.

Our Novel Contributions
To address the above limitations of state-of-the-art multipliers,
we present a novel methodology for implementing accurate
and approximate signed array-multipliers for FPGA-based sys-
tems. Fig. 2 presents an overview of the different stages of our
proposed methodology. Our contributions include:

� Accurate signed multiplier implementation: Utilizing the 6-
input LUTs and associated fast carry chains of modern
FPGAs, we present an area-optimized implementation
of radix-4 accurate Booth multiplier—that we refer to
as Booth-Mult. The proposed M � N Booth-Mult further
supports the addition of an M � bit number to pro-
vide a sort of Multiply-Accumulate (MAC) functionality.
We then analyze Booth-Mult and perform FPGA-speci�c
area optimizations to propose Booth-Optmultiplier with
further reduction in the overall area of the multiplier.
Our implementation of a 24 � 24 Booth-Opt multiplier

Fig. 2. Overview of proposed methodology

offers 47% reduction in the area when compared with
the area-optimized multiplier IP provided by Vivado [4].

� Analysis for possible approximation: We present an analysis
of our Booth-Optmultiplier for identi�cation of possible
venues for approximations to achieve area, energy and
performance gains. One of the challenges during this
exploration is the preservation of correct sign-bit in
the �nal product to reduce the maximum output error.
Based on the work of [23], we identify the starting ele-
ments of each partial product row as possible positions
for approximations. This choice ensures the preservation
of correct sign-bit in the �nal product during multiplica-
tion by reducing the propagation of erroneous carry bits
to higher order bits.

� Approximate signed multiplier: Based on our analysis, we
then present an approximate signed array multiplier
Booth-Approxwith further area, energy and performance
gains. When compared with the Vivado area-optimized
multiplier IP, the proposed Booth-Approximplementa-
tion of a 24� 24 signed multiplier provides 49% and
38% gains in terms of resource utilization and energy
consumption, respectively. To the best of our knowl-
edge, this is the �rst attempt towards implementation
of FPGA-based approximate signed array multipliers.

� High-level application testing environment: We provide a
high-level application environment for testing the ef�-
cacy of different accurate and approximate arithmetic
components. Our application environment utilizes Ge-
netic Algorithm-based multi-objectivedesign space explo-
ration, and it is applicable for convolution based signal
processing applications. Utilizing the environment, we
have tested our accurate and approximate multipliers
for Gaussian Image Smoothing application and evalu-
ated the trade-off between output quality and area re-
ductions. The approximate multiplier-based implemen-
tation of Gaussian Image Smoothing application results
in up to 57.9% reduction in resource utilization, with
minimal degradation in the image output quality, when
compared with the Vivado's area-optimized multiplier
IP-based implementations.

The rest of the paper is organized as follows: Section 2
brie�y discusses the preliminaries required for understanding
the paper, followed by the proposed methodology in Section 3.
Section 4 discusses the experimental setup, implementation
results and behavioral outputs for real-world applications. Fi-
nally, Section 5 concludes the paper.

2 PRELIMINARIES

2.1 Xilinx FPGA Slice Structure
The con�gurable logic block (CLB) is the main computational
block of FPGAs for implementing any kind of circuits on
FPGAs. The CLB of a modern Xilinx FPGA, such as Xilinx
UltraScale+, consists of one slice having eight 6-input lookup
tables (referred to as LUT6 2), 8-bit long carry chain and sixteen
�ip-�ops [24]. The same resources are arranged in two slices in
a Xilinx 7 series FPGA [25]—which has been used for all imple-
mentations in this paper. As shown in Fig. 3, a LUT6 2 can be
used to implement either a single 6-input combinational circuit
or two 5-input combinational circuits. For the con�guration of
LUT6 2, a 64-bit INIT value is assigned to it. This INIT value
denotes all the input combinations of LUT6 2 for which a “1”
is received at the output. Utilizing O5 as carry-generate signal
and O6 as the carry-propagate signal, a carry-lookahead adder
can be implemented using the associated carry chain. However,
O5 can be bypassed by the external IX signal for providing
the carry-generate signal. The input carry, “CIN”, can be either
assigned to constant `0/1' or to “COUT” of another carry chain
from a different slice.

2.2 Booth's Multiplication Algorithm
Booth's multiplication algorithm reduces the number of partial
products to enhance the performance of a multiplier. A radix-4
Booth's multiplier halves the total number of partial products
for an M � N signed multiplier. Equation (1) shows the 2's

IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION) 3

Fig. 3. Xilinx 6-input lookup table and associate carry chain

TABLE 1
Booth's Encoding

S.No. bn+1 bn bn-1 BE s c z
0 0 0 0 0 0 0 1
1 0 0 1 1 0 0 0
2 0 1 0 1 0 0 0
3 0 1 1 2 1 0 0
4 1 0 0 2 1 1 0
5 1 0 1 1 0 1 0
6 1 1 0 1 0 1 0
7 1 1 1 0 0 0 1

complement representations of multiplicand A and multiplier B,
and the corresponding radix-4 booth's multiplication is sum-
marized in (2).

A = � aM � 12M � 1 + � � � + a222 + a121 + a0

B = � bN � 12N � 1 + � � � + b222 + b121 + b0
(1)

A � B =
N= 2X

n =0

B � BE 2n 22n

where BE 2n = � 2a2n +1 + a2n + a2n � 1

(2)

The values of Booth's encoding (BE) in (2) are in the range
of � 0; � 1; � 2 and can be computed as shown in Table 1. These
values are computed by LUT6 2s in our proposed designs. A
partial product is shifted left if BE = 2 (denoted by s = 1).
Similarly, for a negative value of BE (denoted by c = 1), the 2's
complement of the corresponding partial product is calculated
by initially taking 1's complement of the partial product and
adding a `1' to the LSB position. For BE = 0 (denoted by z =
1), the corresponding partial product is replaced by a string of
zeros.

Our proposed implementation and the implementations
presented by Kumm [9] and Walters [30], [31] have utilized
similar con�gurations of the 6-input LUTs to realize the radix-
4 booth-encoding. However, Kumm has considered unsigned
numbers only and, therefore, has used a different con�guration

TABLE 2
Sign Extension for Booth's Multiplier

bn+1 bn bn-1 BE MSB Multiplicand SE
0 0 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 0 1 1 1
0 1 1 2 0 0
0 1 1 2 1 1
1 0 0 2 0 1
1 0 0 2 1 0
1 0 1 1 0 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0

Fig. 4. Sign extension of partial products in Booth's multiplier [26]

for the most signi�cant LUTs in each partial product row. Ours
and Walters' designs have considered signed numbers, and the
most signi�cant LUTs are responsible for computing the correct
sign of a partial product row. However, both implementations
have used different LUT con�gurations. The technique used by
our implementation is discussed in Section 2.3. Moreover, these
state-of-the-art works do not present any analysis for possible
approximations to obtain performance gains. We present a
methodology for obtaining approximate multipliers, the re-
quired LUTs con�gurations for approximations, and an in-
depth analysis of these approximations on the output accuracy.

2.3 Sign Extension for Booth's Multiplier
All the partial products, in a signed multiplication, must be
properly sign extended before reducing them to a �nal product.
As shown by rows number 4, 5 and 6 in Table 1, the Booth's
encoding can result in negative partial products. However, the
correct sign of a partial product in Booth's multiplier depends
on the BE and the MSB of the multiplicand. If the MSB of the
multiplicand is `0' and the BE is either a positive number or `0',
the partial product will be 0-extended. Similarly, if the MSB of
the multiplicand is `1' and the BE is a non-zero positive number,
the partial product will be extended with `1'. A complete list of
all possible sign extension cases, denoted by `SE', is presented
in Table 2. Utilizing the method presented by Bewick in [26],
Fig. 4 shows an ef�cient technique for sign extension in 6 � 6
Booth's multiplier. The C 0, C1 and C2 will be `1' for negative
partial products to represent them in 2's complement notation.
The `E' bits are the complement of corresponding `SE' bits in
Table 2. This technique signi�cantly reduces the sign extension
of each partial product row to a maximum of two more bit-
positions.

Our proposed accurate (Booth-Mult and Booth-Opt) and
approximate (Booth-Approx) implementations do not solely
depend on FPGA synthesis and implementation tools for the
optimization of multipliers. We ef�ciently utilize the character-
istics of LUT6 2s and associated carry chains for the proposed
implementations. The accurate multiplier design presented by
Kumm in [9] underutilizes the least signi�cant LUTs in each
partial product row of a multiplier. Our proposed LUT con-
�gurations ef�ciently utilize the LUT6 2s to reduce the total
number of utilized LUTs. Moreover, the designs presented
in [9], [30], and [31] have used a separate LUT6 2, at the
most signi�cant bit location of each partial product row, for
forwarding the sign extension information to succeeding partial
product row. The design presented in [31] has shown this LUT
location by providing a constant `1' to the carry chain. However,
our proposed accurate multiplier Booth-Opt does not require
such con�gurations and reduces the total LUTs utilization. The
proposed Booth-Approxfurther improves the utilization of the
con�gurable logic block.

3 PROPOSED METHODOLOGY

Utilizing the concepts of Booth's multiplication (Section 2.2)
and the ef�cient sign extension technique (Section 2.3), we
present our technique for optimization of resource utilization
and energy ef�ciency for both accurate and approximate signed
multipliers. The Booth's encoding scheme, shown in Table 1,
is implemented by the LUT con�guration type-A shown in
Fig. 5(a). It receives six inputs i.e. am , am-1 (from multiplicand),
bn+1, bn, bn-1 (from multiplier) and pp in (partial product sum
from previous row). Depending upon the shift �ag `s', either
am or am-1 will be forwarded. Similarly, depending upon the
complement �ag `c', the 1's complement of a partial product

IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION) 4

Fig. 5. Con�guration of LUTs used in proposed methodology

can be forwarded. The third MUX, controlled by zero �ag `z',
can make partial product zero if the `z' �ag =1. The output
of the third MUX is XORed with the partial sum (pp in) and
forwarded to associated carry chain as carry propagate signal.
The carry generate signal for the carry chain is provided by the
pp in .
The sign extension of each partial product is implemented by
the LUT con�gurations type-B and type-Z, shown in Fig. 5(b)
and (c) respectively. LUT type-B performs XOR operation be-
tween the SE and ppin signals. The output of this operation is
forwarded as propagate signal to the carry chain. The pp in is
also used as the carry-generate signal. LUT type-Z represents
the most signi�cant constant `1' in a partial product row, as
shown in Fig. 4 and is used for forwarding the sign extension
information to higher order partial product rows using sum
and carry output bits of the carry chain.

3.1 Accurate Signed Multiplier: Booth-Mult
Utilizing LUTs of type A, B and Z, Fig. 6 shows the imple-
mentation of a 6� 6 signed multiplier. As described in Fig. 4,
a Cx is added at the LSB position of each partial product for
representing it in 2's complement format. This task of �nding
the correct Cx is performed by the rightmost LUT in each partial
product row in Fig. 6. This carry will be used by the carry chain
element of next LUT of type-A. The most signi�cant two LUTs,
LUT type-B and LUT type-Z, in each partial product row are
responsible for implementing correct sign extension. LUT type-
B computes the correct sign bit, and the LUT type-Z is used for
adding the constant `1' as shown in Fig. 4. However, the last
partial product row does not contain a LUT of type-Z. Due to
the very regular pattern of our proposed multiplier implemen-
tation, the LUTs required for implementing an M � N multiplier
can be estimated by (3), where `M' is the multiplicand and `N' is
the multiplier. Since `N' de�nes the number of partial product
rows in an implementation, mutual swapping of multiplicand
and multiplier for, Multiplicand < Multiplier , can result in a
more resource ef�cient design. As shown in Fig. 6, the `pp in '
signals of LUT type-A have been initialized to constant `0'
in the �rst partial product row. For an M � N implementation
of the proposed multiplier, an M-bit number can be further
added using these `ppin ' signals of the �rst partial product row
to achieve the MAC operation. Since digital signal processing
applications frequently utilize MAC operations, our proposed
accurate multiplier can be very useful for such applications to
obtain signi�cant area gains.

LUT s for M � N multiplier = (M + 4) �
l N

2

m
� 1 (3)

3.2 Area Optimized Accurate Signed Multiplier: Booth-Opt
The analysis of the implementation shown in Fig. 6 reveals the
following observations:

� The �rst two LUTs in each partial product row are un-
derutilized. The �rst LUT has three constant `0' inputs,
and only the carry output of its associated carry chain
is used. Similarly, the second LUT has also a constant
`0' input. It is possible to achieve the functionalities of
these two LUTs, in each partial product row, using a
single modi�ed LUT shown in Fig. 7(a). The non-shaded
MUXes and XOR gate perform similarly to those in LUT
type-A. However, the shaded MUXes are responsible

Fig. 6. A 6� 6 accurate multiplier implementation (Booth-Mult)

Fig. 7. Modi�ed con�guration of LUTs

for generating and forwarding the correct carry to the
next LUT type-A in the same partial product row. The
generated carry is also used for producing the least
signi�cant product bit, of the respective partial product
row, using the shaded XOR gate.

� LUT type-Z, in each partial product row, is used for
forwarding sign extension information to other partial
product rows. It forwards a constant `1' as the carry-
propagate signal to the associated carry chain. As shown
in Fig. 3, this will result in SUM = CIN and COUT
= CIN. The CIN is then used by a LUT type-A in
the succeeding partial product row. However, instead of
using LUT type-Z for generating CIN , the LUT type-A
can be modi�ed to invert an incoming signal internally.
This results in LUT type-A2 shown in Fig. 7(b).

Utilizing LUTs type-A1 and type-A2, Fig. 8, shows an area-
optimized implementation of a 6� 6 accurate signed multiplier.
Each partial product row starts with LUT type-A1. The LUT
type-A2, in �rst partial product row, with inputs a 5 and con-
stant `1' is identical to LUT-type A with inputs a 5 and constant
`0'. The LUT type-A in �rst partial product row is replaced with
LUT type-A2 for making the �rst partial product row identical
to other partial product rows. A carry out of carry chain element
associated with a LUT type-B is forwarded to LUT type-A2
and type-B in succeeding partial product row. For this area
optimized multiplier implementation, the total number of LUTs
required for implementing an M � N multiplier is represented in
(4).

LUT s for M � N multiplier = (M + 2) �
l N

2

m
(4)

Fig. 8. A 6� 6 area-optimized accurate multiplier (Booth-Opt)

IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION) 5

Fig. 9. A 6� 6 approximate multiplier implementation (Booth-Approx)

3.3 Approximate Signed Multiplier: Booth-Approx

Utilizing the proposed area optimized accurate signed
multiplier—Booth-Opt— as a base architecture, we perform a
detailed analysis of the possible trade-offs between �nal output
accuracy, latency and energy gains. For describing the accuracy
of the �nal product of the approximate multipliers, we have
used a variety of quality metrics, such as the number of error
occurrences, maximum error magnitude, average error, average
relative error, and the normalized mean error distance. These
quality metrics are commonly used in the literature for the
characterization of the approximate arithmetic circuits [11],
[17], [18], [19]. Multiple uniform distributions of all input
combinations for an N � N multiplier, are used to estimate
the power dissipation in each of the instantiated LUTs of the
implementation. Our analysis reveals that the �rst two LUTs in
each partial product row contribute more to the dynamic power
consumption and critical path delay of the multiplier. For
instance, for an 8� 8 multiplier the highest power dissipation of
170�W is observed for the �rst LUT compared to 84�W for the
fourth LUT in the fourth partial product row. Further, three of
the four �rst-placed LUTs in the partial product rows contribute
to all of the top �ve worst critical path delays. Therefore,
approximating the functionalities of the �rst two LUTs in each
partial product row can lead to signi�cant power and latency
gains. We recommend the following modi�cations/suggestions
to an N � N base architecture for achieving a latency and power-
optimized approximate signed multiplier.

� We propose truncation of the �rst LUT, for the LSB, in
each partial product row of an N � N multiplier to static
`0'. This truncation results in a signi�cant decrease in
dynamic power consumption.

� To approximate the output of second LUT in each partial
product row, we propose LUT con�guration type-Am,
shown in Fig. 7(c). LUT type-Am does not use the
associated carry chain and predicts the missing input
carry, using signal `i', to generate an approximate out-
put. The detailed error-analysis of the outputs gener-
ated by second LUTs in each partial product row of
our base architecture, reveals that in the absence of an
input carry, most errors are generated for the Booth's
Encoding 1; 2; 2. To reduce the number of these wrong
outputs, LUT type-Am predicts the missing input carry
as constant `1' for Booth's Encoding 1; 2; 2 and uses it for
computing the approximate output.

� As shown by [23], the chances of errors in higher order
output bits, produced by an initial incorrect input carry,
decreases with the increasing length of the carry chain.
Our proposed approach recommends a constant `0/1'
input carry to the �rst LUT of type-A in a partial product
row. The exhaustive error analysis of a 8 � 8 multiplier
reveals that providing a constant '1' as input carry
results in a decreased relative error in the �nal output.
However, as the most signi�cant partial product row has
the maximum contribution in the accuracy of the �nal
product, the carry generation in the most signi�cant par-
tial product row should remain unaffected. Therefore,
the most signi�cant partial product row utilizes a LUT
type-A1 (denoted by A1 *) only for carry generation and
the ppout signal of A1 * is truncated to constant `0'.

Utilizing these guidelines, the architecture of a 6 � 6 approx-
imate signed multiplier is presented in Fig. 9. The resource
utilization for our proposed approximate signed multiplier can
be estimated by (5).

LUT s for M � N multiplier = (M + 1) �
l N

2

m
+ 1 (5)

4 RESULTS AND DISCUSSION

4.1 Experimental Setup
We have used VHDL, Xilinx Vivado 17.4 and XC7V585T device
of Virtex-7 FPGA (unless stated otherwise) for the implementa-
tion of all presented multipliers. Vivado Simulator and Power
Analyzer tools have been used for the calculation of dynamic
power values. We have compared our proposed accurate signed
multiplier with the accurate multiplier IPs provided by Xilinx
Vivado [4], “ S4” [9], “ S6” [30], “ S7” [31], and “ S8” [32]. Fur-
ther, the proposed signed approximate multiplier is compared
with the implementations presented in “ S1” [17], “ S2” [18],
“ S3” [11], a randomly selected 8 � 8 multiplier from “ S5” [19] *

and precision-reduced “Trunc” multipliers. For an M � N
“Trunc” multiplier, the two LSBs of each input operand have
been truncated, and an (M-2) � (N-2) multiplier has been used
to implement a precision-reduced multiplier. This technique
is different from two other possible design approaches – (1)
truncating the four LSBs in the �nal product of an accurate
M � N multiplier to '0' after performing multiplication. This
method does not provide any reduction in overall resource
utilization, critical path delay, and energy consumption. (2)
Removing the logic for the computation of the four LSBs in the
�nal product of an M � N multiplier, and generating the rest of
the product bits (M + N � 4 MSBs) accurately. For example, to
implement accurate 12 MSBs in this second design for an 8 � 8
multiplier, 353 LUTs are utilized—an increase of 301% over the
88 LUTs of Vivado's area optimized 8 � 8 design.
For the unsigned multipliers presented in [9], [11], [17], [18]
and [19], we have shown implementation results with/without
implementing signed-unsigned converters. These converters
have been used to provide 2's complement signed numbersto
the unsigned multipliers. To produce precise area (LUTs) uti-
lization, critical path delay (CPD) and dynamic power con-
sumption values, we have implemented each design multiple
times with different timing constraint. In each iteration of the
design implementation, the critical path is adjusted according
to the worst negative slack from the previous iteration. For this
article, we have �xed the maximum number of iterations to
10. The accuracy of the proposed approximate multiplier has
been computed for multiple uniform distributions of all input
combinations. Moreover, the C and Python-based behavioral
models of proposed accurate/approximate multipliers are also
deployed in Gaussian Image Smoothing application and an
arti�cial neural network (ANN) for testing the effects of the
proposed multipliers in the real-world application.

4.2 Performance Characterization of Proposed Multipliers
Table 3 shows the comparison of the resource utilization, critical
path delay and energy consumption of the proposed accurate
(Booth-Opt) and approximate (Booth-Approx) multipliers with
different state-of-the-art accurate and approximate multipliers.
To compare Booth-Opt with “S6” and “S7” and “S8” , we have
used the implementation results presented in the respective
articles [30], [31] and [32] respectively. For “S6” and “S7” , the
total number of LUTs used has been computed considering the
carry chains required for implementing the designs. Booth-Opt
is more resource-ef�cient than “S6” across different bit-widths.
For example, compared to the 12 � 12 “S6” , Booth-Opt offers
a 13% reduction in the total utilized LUTs. “S7” has the same
LUTs utilization as offered by our proposed Booth-Opt imple-
mentation. However, the implementations in [30] and [31] have
used a target design period of 1ns, and the corresponding
results show that none of the implementations meets the target
design period. Nonetheless, to compare the performance of
our Booth-Opt design with “S6” and “S7” , we have used the

*A generic and open-source implementation for every size of mul-
tiplier was not available.

IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION) 6

TABLE 3
Implementation results of different multipliers. The `S1', `S2', `S3', `S4' and `S5' multipliers are implemented with the signed-unsigned converters.

The CPD and PDP are in ns and pJ , respectively. The shaded rows show approximate designs.

Design 4 � 4 6 � 6 8 � 8 12 � 12 16 � 16 24 � 24
LUTs CPD PDP LUTs CPD PDP LUTs CPD PDP LUTs CPD PDP LUTs CPD PDP LUTs CPD PDP

Booth-Opt. 12 2.15 1.09 24 3.09 2.67 40 4.25 5.14 84 6.31 11.96 144 7.64 21.15 312 11.37 49.17
Booth-Approx. 11 1.94 0.81 22 2.64 2.18 37 3.41 4.22 79 5.30 10.17 137 6.88 19.14 301 10.99 48.26
S1: Rehman [17] 18 2.23 0.86 49 4.82 3.78 92 4.99 7.10 228 6.98 20.80 404 7.03 22.32 895 9.43 101.63
S2: Kulkarni [18] 20 2.12 0.87 52 4.83 4.91 86 4.89 7.42 189 6.37 20.77 330 6.59 20.39 777 9.45 97.48
S3: Ullah [11] 22 3.34 1.19 46 5.03 3.98 81 5.19 7.41 185 7.11 20.39 296 7.33 18.58 697 9.69 92.35
S4: Kumm [9] 24 3.84 2.00 49 5.10 6.87 73 6.08 9.69 138 7.65 21.65 217 9.52 32.93 427 13.38 85.66
S5: Mrazek [19] - - - - - - 110 4.43 9.75 - - - - - - - -
Trunc 2 0.659 0.056 23 1.576 1.21 43 2.15 3.06 102 3.52 8.97 214 4.107 14.76 514 6.07 53.97
S6: Walters [30] - - - - - - 43 - - 97 - - 155 - - - - -
S7: Walters [31] - - - 24 - - 40 - - 84 - - 144 - - 312 - -
Vivado speed 18 2.14 1.06 41 3.43 3.26 74 3.54 5.73 162 4.20 19.79 286 4.27 34.35 627 5.98 77.25
Vivado area 30 2.91 2.25 47 3.39 4.73 88 3.45 9.07 175 5.00 15.33 326 5.04 35.25 592 5.55 78.41

critical path delays of these designs normalized to the critical
path delay of Vivado speed-optimized IPs. For “S6” and “S7” ,
the normalized values have been acquired from [30] and [31].
Booth-Opt provides better overall performance than “S7” by
offering a 5.4% reduction in the average normalized critical
path delay across different sizes of multipliers. Similarly, for
comparison with the Intel FPGA-based unsigned design “S8” ,
we compare the reductions in resource utilization of “S8” over
the Intel Megafunction IP with Booth-Opt over Vivado speed-
optimized IP. Booth-Opt provides better resource utilization
than “S8” for all sizes of multipliers. Moreover, “S8” pro-
vides reductions in resource utilization for only some sizes
of multipliers. For example, for 4 � 4 and 8 � 8 multipliers,
“S8” offers 27% and 0% reductions in resources, respectively,
whereas Booth-Opt offers 33% and 46% reductions for the two
sizes of multipliers, respectively.

The results in Table 3 also incorporate the signed-unsigned
converters for the unsigned multipliers “ S1”, “ S2”, “ S3”, “ S4”
and “ S5”. As discussed previously, the “ S5” multiplier has
been implemented for obtaining only 8 � 8 approximate mul-
tiplication, and hence only a single point is shown for it in
Table 3. As shown by the results, the proposed Booth-Opt
and Booth-Approx always require less number of LUTs than
other state-of-the-art accurate and approximate multipliers for
different sizes of multipliers. The area reductions with respect
to the Vivado's area-optimized multiplier IPs vary between 47%
(for 24� 24) and 63% (for 4� 4). For example, compared to the
8� 8 multiplier IP, the proposed Booth-opt and Booth-Approx
show 54.6% and 57.9% area reduction respectively. Similarly,
compared to the 24� 24 accurate “S4” multiplier, the proposed
Booth-Opt offers 27% area reductions.

Compared to the state-of-the-art approximate multipliers
and Vivado's area/speed optimized-IPs, the proposed accurate
and approximate multipliers offer comparable critical path
delays, as shown in Table 3. The small increase in the critical
path delays of the proposed multipliers is due to the sequential
computation of booth-encoded partial products as discussed in
Section 3.2. However, the proposed accurate and approximate
multipliers always offer reduced critical path delays than ac-
curate “S4” multiplier. Compared to the 8 � 8 “S4” multiplier,
Booth-Opt and Booth-Approx offer 30% and 44% reduction in
critical path delays respectively.

The energy consumption of the proposed multipliers has

Fig. 10. Products of normalized performance metrics. Values are nor-
malized to Vivado area-optimized multiplier IP. A smaller value re�ects
better performance. Approximate designs have shaded backgrounds.

TABLE 4
Comparison of implementation results of proposed multipliers with

unsigned multipliers

8x8 16x16
Design Area

[LUTs] CPD [ns] PDP [pJ] Area
[LUTs] CPD [ns] PDP [pJ]

Booth-Opt 40 4.25 5.14 144 7.64 21.15
Booth-Approx 37 3.41 4.22 137 6.88 19.14
S1 [17] 57 3.13 4.70 377 4.57 24.03
S2 [18] 80 2.33 5.13 294 4.06 21.73
S3 [11] 57 3.13 4.70 245 5.02 20.77
S4 [9] 51 3.87 6.26 167 6.87 23.57

been compared to other multipliers using Power-Delay product
(PDP). It can be observed from Table 3 that the proposed
multipliers offer better energy ef�ciency across different sizes of
multipliers. The proposed 24 � 24 Booth-Opt and Booth-Approx
show 37% and 38% reduction in energy when compared to
Vivado's area-optimized IP. Similarly, compared to the 24 � 24
“ S4” multiplier, our Booth-Opt offers 42.5% reduction in en-
ergy.

To highlight the ef�cacy of our proposed accurate and ap-
proximate multipliers, Fig. 10 shows the product of normalized
values of total utilized LUTs, CPD, and PDP for each design
across different bit-widths. All values have been normalized to
the corresponding values of Vivado area-optimized multiplier
IP. A smaller value of the product (LUTs � CPD � PDP) presents
an implementation with a better performance. The proposed
Booth-Opt provides better performance than state-of-the-art
accurate multipliers. Although for smaller designs, the “Trunc”
multiplier performs better than Booth-Approx, the performance
gains do not scale proportionally for higher-order “Trunc” mul-
tipliers. For example, in 24� 24 multipliers, Booth-Approx pro-
vides a 5.2% reduction in the product of the normalized perfor-
mance metrics compared to the “Trunc” multiplier. Moreover,
the error analysis of the approximate multipliers, presented
in the next subsection, shows the lower accuracy of “Trunc”
multipliers across all error metrics.

We have also compared proposed designs with the state-of-
the-art unsigneddesigns “S1”, “ S2” “ S3” and “ S4” without us-
ing signed-unsigned convertersfor them. As shown by the results
in Table 4, our proposed accurate and approximate signedde-
signs still offer better area reductions than all other implemen-
tations. The unsigned implementations have slightly reduced
critical path delays than the proposed multipliers. However,
the energy consumption of Booth-Opt and Booth-Approx is still
better than many of the state-of-the-art designs. For example,
compared to the unsigned16� 16 “S4” multiplier, the Booth-
Opt and Booth-Approx offer 10% and 19% energy reductions
respectively. Similarly, Booth-Opt and Booth-Approx offer 12%
and 20% reductions in energy consumption, respectively, when
compared with the 16 � 16 unsigned multiplier “ S1”.

4.3 Error Analysis of Proposed Approximate Multiplier
Table 5 presents the error analysis of the proposed approx-
imate multiplier along with precision-reduced “Trunc” and
other state-of-the-art approximate multipliers (using signed-
unsigned converters). Since the number “ � 128” cannot be
represented using sign-magnitude format for 8 � 8 multipliers
with 8-bit operands, the observed maximum errormagnitude

IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION) 7

TABLE 5
Error analysis of 8� 8 approximate multipliers

Design
Error Oc-
currences

%
Maximum

Error
Average

Error
Max.

Relative
Error

Avg.
Relative

Error
NMED

Booth-Approx 90.56 361 85.01 6 0.091 0.0051
S1 [17] 86.46 7225 1842.44 1 0.362 0.112
S2 [18] 34.19 882 118.875 1 0.0223 0.0072
S3 [11] 8.42 2312 101.94 1 0.0121 0.0062
S5 [19] 84.43 544 127.11 5.6 0.049 0.0077
Trunc (6� 6) 93 759 149.78 15 0.121 0.0091

(a) (b) (c)

Fig. 11. Error probabilities in individual product bits (a) Inaccuracy bit
histogram (b) PMFs of error values (c) Relative error distribution

in “ S1”, “ S2”, “ S3” and “ S5” is 16384. However, to show
a fair comparison, the 8-bit operands' range for computing
the maximum error is limited to [� 127, +127] for designs in
“ S1”, “ S2”, “ S3” and “ S5”. As shown by the highlighted
cells in the table, the Booth-Approx has the least maximum
error magnitude, average error and normalized mean error
distance (NMED) among all presented multipliers. Further, it
can be observed that Booth-Approx is better than the “Trunc”
multiplier across all the presented error parameters. To further
explore the error occurrences of the proposed approximate
multiplier, Fig. 11 presents the probabilistic error analysis for an
8� 8 Booth-Approx multiplier. These results have been obtained
for a uniform distribution of all input combinations. As shown
by the bit inaccuracy histograms in Fig. 11(a), the probability
of errors in individual product bits reduces for higher order
product bits. The probability mass functions (PMF) of errors,
depicted in Fig. 11(b), also show that the majority of occurred
errors have small values. This is also veri�ed by the relative
error distribution plot shown in Fig. 11(c). As shown by the re-
sults, most of the �nal products have very small relative errors
(on average less than0:1). This behavior is in accordance with
our design modi�cations discussed in Section 3.3. Since higher
order multipliers have long carry chains, therefore, the errors
generated by incorrect input carries diminish for higher order
product bits. Moreover, a constant `0' multiplicand/multiplier
results in an accurate `0' result.

Further, Fig. 12 shows the error metrics of our proposed
design compared to that of truncated and truthfully rounded
multipliers. The maximum, average and mean squared error of
each design is normalized with 2n , 2n and 22n respectively–
n being the input bit-width [34]. As seen in the �gure, our
proposed design outperforms the other designs for normalized
maximum error for larger designs. The faithful rounding, after
truncation, usually involves some form of compensation to
reduce the error [38]. This additional compensation logic is

Fig. 12. Comparison with truncated and rounded multipliers: JFM [35],
CFM [36], SFM [37], WFM [34]

Fig. 13. Design space showing the area-accuracy trade-off of different
designs for an 8 � 8 multiplier (Pareto points are in green).

TABLE 6
Comparison of all � accurate and all � approximate

multipliers-based FIR �lters

Convolution
window size

Relative area reduction
(w.r.t. Vivado's IP in %)

PSNR SSIM

Booth-Opt Booth-Approx 2D 2S 2D 2S
3 x 3 54.6 57.95 50.50 45.72 0.98 0.96
5 x 5 54.6 57.95 51.85 45.19 0.99 0.97
7 x 7 54.6 57.95 52.36 47.55 0.99 0.95

optimized for ASIC-based implementation and can result in
large overheads in FPGAs. For instance, the implementation
of the compensation logic used in [38] results in 90 LUTs being
used for a 8 � 8 multiplier.

Fig. 13 shows the area and accuracy trade-offs for some
of the multiplier implementations discussed in this article. In
addition to truncation of two LSBs (Trunc) and the related state-
of-the-art approximate implementations, we show two design
points which are a combination of Trunc and the proposed
Booth-based designs–Trunc+Booth-Optand Trunc+Booth-Approx.
As seen in the �gure, the Pareto front in this design space com-
prises of the implementations based on our proposed designs.

4.4 High-level Application Testing
The proposed signed multiplier architectures were used in
the implementation of Finite Impulse Response (FIR) �lter for
image processing applications. Typical hardware realization of
FIR �lters involves the implementation of N multipliers and N
adders—N being the number of tapsin the �lter—to implement
convolution. For our current work, we have used Gaussian
Smoothingas a test case for evaluating the ef�ciency of using the
proposed signed multipliers. Gaussian smoothing of an image
involves 2-dimensional (2D) convolution of the image with a
gaussian-kernel. This 2D convolution can also be achieved by a 2-
stage (2S) method that entails successive one-dimensional (1D)
convolutions along each of the two directions—horizontal and
vertical. These two methods can have large differences in the
resource utilization of their realizations— O(n + m) and O(nm)
for a window size of n � m for 2S and 2D respectively.

We performed experiments for convolution window sizes of
3� 3, 5� 5 and 7� 7, and compared the effects of using accurate
and approximate signed multipliers (8 � 8) on the resource
utilization and the degradation in processed images quality.
We have used the resource utilization—in terms of LUT s used
for the multipliers only—of Vivado's area-optimized multiplier
IP-based implementation and the corresponding output image
quality as the baseline for comparison. Two metrics were used
for processed image quality – (1) PSNR, an estimation of the
noise component in the image, and (2) SSIM-index, a measure
of the structural similarity between the two images.

TABLE 6 shows the comparison results for Gaussian
smoothing using all-accurate(Booth-Opt multipliers only) and
all-approximate(Booth-Approx multipliers only) FIR �lters. The
table data denotes the average values from processing 15
miscellaneousimages in USC-SIPI Database [29]. Area reduc-
tion estimates are similar to those presented in Section 4.2.
The PSNR and SSIM values correspond to the comparison
of processed images from the all-accurateand all-approximate
implementations. Average PSNR of up to 52.36 and 47.55 were
observed for 2D and 2S modes respectively. Similarly, SSIM
of up to 0.99 and 0.97 were observed respectively for the two
modes using the approximate multipliers.

The all-accurateand all-approximateimplementations denote
the two extremes of the possible multiplier con�gurations in

	Introduction
	Preliminaries
	Xilinx FPGA Slice Structure
	Booth's Multiplication Algorithm
	Sign Extension for Booth's Multiplier

	Proposed Methodology
	Accurate Signed Multiplier: Booth-Mult
	Area Optimized Accurate Signed Multiplier: Booth-Opt
	Approximate Signed Multiplier: Booth-Approx

	Results and Discussion
	Experimental Setup
	Performance Characterization of Proposed Multipliers
	Error Analysis of Proposed Approximate Multiplier
	High-level Application Testing

	Conclusion
	References

