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Toward the Design of Fault-Tolerance- and Peak-
Power-Aware Multi-Core Mixed-Criticality Systems
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Abstract—Mixed-Criticality (MC) systems have recently been
devised to address the requirements of real-time systems in
industrial applications, where the system runs tasks with different
criticality levels on a single platform. In some workloads, a high-
critically task might overrun and overload the system, or a fault
can occur during the execution. However, these systems must be
fault-tolerant and guarantee the correct execution of all high-
criticality tasks by their deadlines to avoid catastrophic conse-
quences, in any situation. Furthermore, in these MC systems, the
peak power consumption of the system may increase, especially in
an overload situation and exceed the processor Thermal Design
Power (TDP) constraint. This may cause generating heat beyond
the cooling capacity, resulting the system stop to avoid excessive
heat and halting the processor. In this paper, we propose a
technique for dependent dual-criticality tasks in fault-tolerant
multi-core MC systems to manage peak power consumption and
temperature. The technique develops a tree of possible task
mapping and scheduling at design-time to cover all possible
scenarios and reduce the low-criticality task drop rate in the high-
criticality mode. At run-time, the system exploits the tree to select
a proper schedule according to fault occurrences and criticality
mode changes. Experimental results show that the average task
schedulability is 74.14% on average for the proposed method,
while the peak power consumption and maximum temperature
are improved by 16.65% and 14.9◦C on average, respectively,
compared to a recent work. In addition, for a real-life application,
our method reduces the peak power and maximum temperature
by up to 20.06% and 5◦C, respectively, compared to a state-of-
the-art approach.

Index Terms—Mixed-Criticality, Multi-Core Platforms, Peak
Power Management, Scheduling, Fault-Tolerance.

I. INTRODUCTION

RECENTLY, multi-core real-time embedded systems
where industrial applications with real-time constraints

are executed, becomes significant. These systems are respon-
sible for executing an application with a set of High-Criticality
(HC) and Low-Criticality (LC) tasks on a single platform [1]–
[3]. For instance, aerospace applications have flight-critical
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tasks that must be executed before the deadline and mission-
oriented tasks that are important, but they could be dropped
in critical situations [2]. These systems are called Mixed-
Criticality (MC) systems.

In order to map and schedule these MC tasks on multi-core
platforms, the Worst-Case Execution Time (WCET) of each
task is exploited to guarantee the correct execution of all tasks,
especially HC tasks, in any situation. However, the WCET of a
task is pessimistic, and the probability that the execution time
of the task will be as large as WCET is very low [4]. Therefore,
most of the time, the system processing capacity is wasted
because the execution time of tasks is less than the pessimistic
WCETs. To this end, MC systems consider two or multiple
WCETs for HC tasks [1], [4], [5], which are calculated using
different WCET-determination methodologies and tools (e.g.,
calculating pessimistic or optimistic WCET values). In this
paper, we consider a dual-criticality system where each task
has a low WCET and a high WCET.

In MC systems, if an HC task overruns (the task’s execution
time exceeds the low WCET), the system switches to a high-
criticality mode (HI mode). In this mode, the system considers
the high WCET for all the remaining tasks to guarantee the
safety of the system, and it stays in this mode until there is
no HC task in the ready queue of each core [1]–[3]. In this
situation, the execution of all LC and HC tasks requires higher
computational demands, which may exceed the processor’s
capacity, and the system becomes overloaded [6]. Thus, all
cores may execute tasks simultaneously to meet deadlines
of tasks, which increase the instantaneous processor power
beyond its Thermal Design Power (TDP) constraint [7]–[9].

TDP is the maximum sustainable power that a chip can
dissipate safely. The chip’s power consumption is the sum of
power consumption of all cores regardless of which kind of
tasks (LC or HC) they are executing. So, even underestimating
the power consumption of an LC task might violate the TDP
constraint which generates a large amount of heat that is
higher than the cooling capacity of the chip. Thus, it may
stop or restart the system by an integrated Dynamic Thermal
Management (DTM) unit [8]. Consequently, the deadlines of
HC tasks are missed, which leads to catastrophic damages.
Therefore, it is necessary to consider pessimistic power con-
sumption value for all tasks with any criticality level. Note
that, minimizing only the average power consumption is not
sufficient. Although it may decrease the instantaneous power,
there is no guarantee that the TDP is not violated [8].

In addition to meeting deadlines in case of tasks overrun,
MC systems must use fault-tolerance techniques like task re-
execution or duplication [10] to guarantee correct functionality
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when tasks are affected by transient faults [2], [11]. It should
be mentioned that it is possible that the system faces both task
overrun and one or multiple transient faults in one run. So,
the system must be designed carefully to execute all HC tasks
correctly before their deadlines, even in worst-case situations.

Previous works have proposed methods to schedule MC
tasks in both low-criticality mode (LO mode) and HI mode;
however, most of them have considered independent periodic
MC tasks. These methods are not suitable for MC tasks with
precedence constraints. Besides, some research works have
proposed methods to reduce average power consumption in
MC systems [12]–[17]. These works use the Dynamic Voltage
and Frequency Scaling (DVFS) technique [18] along with
dropping LC tasks in the HI mode to manage average power
consumption; however, none of them has considered managing
peak power consumption. It is noteworthy to mention that
some low-power techniques like DVFS, cannot be easily used
in the HI mode, specially in the overload situations [12]–[14],
because changing the voltage and frequency levels of cores
imposes high switching time overhead [7] that may cause
deadline violation of HC tasks and also degrade the reliability
level of tasks. On the other hand, some studies addressed peak
power management in hard real-time systems with only one
criticality level; therefore, they are not suitable for MC sys-
tems [7]–[9]. Table I presents a comparison between the state-
of-the-art approaches which we discuss in detail in Section II.

In this paper, we consider fault-tolerant MC multi-core
embedded systems with low and high criticality tasks. The
proposed method manages peak power and temperature to pre-
vent hot spots in homogeneous multi-core platforms. The task
set is characterized by a directed acyclic graph (DAG) [19],
and faults are tolerated through task re-execution. Since tasks
can overrun and a fault can occur at any time but occasionally,
using a single task’s mapping and scheduling to guarantee the
correct and on-time execution of all HC tasks without TDP
violation leads to inefficient utilization of resources.

To this end, we propose a method that exploits a tree of
schedules for dependent dual-criticality tasks. The proposed
technique generates a tree of schedules off-line (at design-
time) considering all possibility of fault occurrence scenarios
in different tasks (including both LC and HC tasks) and HC
task overrun. At run-time, when an HC task overruns or a fault
occurs in an LC or HC task, the scheduler chooses the proper
schedule from the tree to tolerate the faults or manage the
system mode switches with low overheads. Moreover, typical
MC systems drop or degrade most of the LC tasks in the HI
mode to guarantee the execution of all HC tasks. Therefore,
another goal of our technique is to improve the LC tasks’ QoS
(Quality of Service, the percentage of executed LC tasks to all
LC tasks [2], [20]) in the HI mode while all HC tasks meet
their deadlines. As a result, by generating the schedule tree
and exploiting it at run-time, the LC tasks’ QoS is maximized,
while the peak power consumption of the system is managed
and also the occurrence of possible faults is tolerated.

Contributions: To the best of our knowledge, this paper is
the first work to study the scheduling problem for fault-tolerant
MC systems with peak power and thermal consideration. The
main contributions of this paper are:

• Proposing a tree generation approach for mixed-criticality
systems, based on the all possibility of fault occurrence
scenarios and criticality mode changes.

• Peak power-aware task mapping and scheduling in multi-
core mixed-criticality systems for both LO and HI modes.

• Offline QoS-Aware task mapping and scheduling to guar-
antee the correct execution of most LC tasks in the HI
mode.

• Reducing the run-time timing overheads by generating all
schedules at design time and exploiting them at run-time.

To evaluate our proposed method, we obtain the peak power
consumption of tasks by running the benchmarks on the ARM
Cortex-A7 core of the ODROID XU3 platform. Then, with
the help of the platform’s extracted information, we evaluate
our method and state-of-the-art methods using HOTSPOT [21]
simulator. The experiments show that our scheme can schedule
74.14% of task sets on average (43.04% more, compared
to [22]), in which the TDP constraint and all deadlines are
met, while the system can tolerate occurrence of up to a
certain number of faults (four in our experiments). For a real
task graph, our method reduces the peak power and maximum
temperature by up to 20.06% and 5◦C respectively, compared
to the approach of [22], while the QoS is improved 9.09%. On
the other hand, although our method increases the maximum
temperature by 9.61%, compared to [23], we reduce the peak
power by 6.31% and improve the QoS by 81.82%.

The rest of the paper is organized as follows. In Section II,
we review related works. In Section III, we introduce models,
assumptions and define the problem. The motivational example
is presented in Section IV and then we describe our method in
detail. Finally, we analyze the experiments and conclude the
paper in Sections V and VI, respectively.

II. RELATED WORK

MC systems are the subject of recent research due to the
emergence of the Cyber Physical System (CPS). Table I sum-
marizes the recent studies with different target optimization
objectives. Since our focus is on power management and
fault-tolerance for dependent MC tasks, we only consider the
works presented for MC or non-MC systems with a similar
scope. There are some algorithms presented for independent
tasks such as Earliest Deadline First with Virtual Deadline
(EDF-VD) used in [2], or using different scheduling policies
for different criticality levels [6]. Hence, these algorithms
are presented for independent periodic tasks and cannot be
applied to the tasks with precedence constraints.Besides, as
can be seen, some papers, such as [19], [23]–[27], [33], have
considered periodic MC tasks with data dependency but none
of them have considered fault occurrence possibilities and
power management. Rows 1 and 2 show that the papers in this
area have focused on the feasibility of schedules and meeting
the timing constraints without considering power consumption
or fault-tolerance. From the perspective of guaranteeing LC
tasks’ minimum service level, most existing MC scheduling al-
gorithms (row 1) discard or degrade LC tasks when the system
switches to the HI mode. It causes serious service interruption
for LC tasks. Therefore, in addition to power management
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TABLE I: Summary of state-of-the-art approaches

# TDP Manag. Avg. Power Temp. Fault-Tolerance MC Tasks DAG Model LC tasks’ QoS

1 Socci’15 [23], Socci’19 [24],
Baruah’16 [19], Medina’17 [25] × × × × X X ×

2 Li’16 [26], Pathan’18 [27] × × × × X X X
3 Medina’18 [22], [28], Choi’18 [29], Bolchini’13 [30] × × × X X X X

4 Huang’14 [12], Li’14 [13], Ali’15 [14],
Narayana’16 [15], Taherin’18 [16], Awan’16 [17] × X × × X × ×

5 Lee’14 [7], Munawar’14 [8] X × × × × × -
6 Lee’10 [9] X × × × × X -
7 Ansari’19 [31] X X × × × X -
8 Li’19 [32] × X X × X × ×
9 Ranjbar’19 [33], Ranjbar’20 [5] × X X × X X X

10 Our Work X × X X X X X

and fault-tolerance in MC systems, improving the QoS of
LC tasks would be significant. In addition, the used MC task
model in [26] is different from the popular dependent MC task
model by defining a criticality level for each task graph, not
for each task in a graph. On the other hand, there are a few
works (row 3) that proposed a method to schedule dependent
MC tasks in multi-core systems [22], [28]. These papers have
considered fault occurrence possibilities, while they have not
considered power or hotspot management. In terms of fault
tolerance, researchers in [34] have proposed a design-time
task re-mapping approach to tolerate faults, however, these
techniques have not considered power management.

Research works have recently been presented on energy and
power management in multi-core MC systems by considering
periodic independent tasks (row 4). Most of these papers use
DVFS technique to manage power consumption in the LO
mode, and when the system enters into the HI mode, all HC
tasks are executed with the high frequency, and also all of
the LC tasks are dropped. Indeed, they interrupt the minimum
service level of LC tasks in the HI mode. In addition, due
to the high frequency in the HI mode, the system’s peak
power consumption may violate the TDP constraint. None of
these papers that studied MC systems managed instantaneous
power, especially when the system switches to the HI mode.
Besides, researchers in [35], [36] have proposed a design-time
task remapping approach to minimize the average power and
tolerate faults; however, in addition to not managing the peak
power in this method, it is not suitable for MC systems. On
the other hand, some papers focused on peak power manage-
ment of multi-core real-time systems (5-7). These works have
proposed hard real-time tasks with one criticality level which
is not practical for MC tasks. Although the authors in [31]
manage the peak power for the dependent task model, they
use DVFS to manage the peak power consumption. Hence, it
is not suitable for MC tasks, especially in the HI mode.

From the MC systems’ thermal management perspective,
researchers in [32] have considered thermal management for
independent MC tasks in single-core processors (row 8).
Besides, researchers in [5], [33] reduce the peak power and
manage the temperature in MC systems with the dependent
task model (row 9). these papers use the DVFS technique,
which is not acceptable, especially in the HI mode, and also,
they have not considered fault occurrence. There is also no
guarantee to manage peak power under TDP in their methods.

In this work, we study peak power and thermal management

for MC multi-core systems by considering fault-tolerance
techniques, which is not considered in existing MC works.

III. SYSTEM MODELS AND PROBLEM DEFINITION

A. Mixed-Criticality Task Model

The MC system is responsible for executing application A
consisting of multiple dependent periodic tasks. Analogous
to [5], [19], [22], [28], the application is modeled as a directed
acyclic graph G𝐴 (V𝐴,E𝐴) in which each task in the applica-
tion is either a HC or a LC task. Each node T𝑖 ∈ V𝐴 represents
a task and an edge e𝑖 𝑗 ∈ E𝐴 from T𝑖 to T 𝑗 indicates a
dependency between T𝑖 and T 𝑗 . A task is released and ready
to be executed if all its predecessor tasks have finished their
execution. We assume preemptive execution for tasks, which
means the tasks are interrupted during their execution on a
core that mapped on it. Each task T𝑖 is defined as:

T𝑖 = (𝜁𝑖 ,C𝐿𝑂𝑖 ,C𝐻𝐼𝑖 , d𝑖 ,P𝑖) (1)

Parameter 𝜁𝑖 denotes levels of criticality for each task (HC
or LC). Each task has a deadline (d𝑖), low WCET (C𝐿𝑂𝑖 ),
and high WCET (C𝐻𝐼𝑖 ). For each LC task, C𝐿𝑂𝑖 is equal
to C𝐻𝐼𝑖 , and for each HC task, C𝐿𝑂𝑖 is less than C𝐻𝐼𝑖 .
The communication time between tasks is considered as a
part of the predecessor task’s execution time. All tasks in
application A have an identical period (P𝑖), which is equal to
the period of the application (P𝐴) [33], [37]. Also, we assumed
the deadline and period of the task graph are equal for an
application (d𝐴 = P𝐴). A deadline 𝑑𝑖 is determined for each
task in order that all its successors can be scheduled before
their deadlines. Hence, the deadlines of tasks that have no
successors are equal to the task graph’s deadline.

MC system’s operational model: MC systems first start
the operation in the LO mode; if the execution time of at
least one HC task exceeds its low WCET (C𝐿𝑂𝑖 ), the system
switches to the HI mode. It stays in this mode until there is no
ready HC task in each core’s queue [19], [22], [28], [33]. In
the LO mode, the mapping and scheduling algorithms consider
the low WCET of tasks while in the HI mode, the algorithm
schedules tasks by their high WCETs.

The task graph model is popular for image processing in
automotive systems and pedestrian detection [38]. System
designers assign the criticality level of tasks based on their
functionalities. However, similar to previous studies in the
literature [19], [22], if an LC task is a predecessor of an HC
task, then it is considered as an HC task. Fig. 1 shows the task
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Fig. 1: An example of real-life application task graph (Unmanned Air Vehicle)

graph of Unmanned Air Vehicle (UAV), which is a real-life
MC application task graph [22]. This application is composed
of eight tasks. Tasks T1 to T3 are HC tasks that are responsible
for the avoidance, navigation, and stability of the system. Fail-
ure in the execution of these tasks before their deadline may
lead to a system failure, and irreparable damage to the system.
The roles of LC tasks (T4 to T8), are recording sensors data,
GPS coordination, and video transmissions [22]. The system
should execute these tasks to improve its QoS; however, the
system can skip executing them in harsh situations. Note that,
the QoS is defined as the percentage of executed LC tasks in
the HI mode to all LC tasks [2], [20] (𝑄𝑜𝑆 = 𝑛𝑠𝑢𝑐𝑐

𝐿
/𝑛𝐿 , where

𝑛𝐿 is the number of all LC tasks in a graph and 𝑛𝑠𝑢𝑐𝑐
𝐿

is the
number of executed LC tasks that, when the system switches
to the HI mode and 𝐹𝑖𝑛𝑖𝑠ℎ − 𝑡𝑖𝑚𝑒𝑖 ≤ 𝑑𝑖 & 𝜁𝑖 = 𝐿𝐶).
Dropping some LC tasks in the HI mode can be used for real-
time applications characterized by hard and firm deadlines.
The tasks with a hard deadline can be HC tasks, and with
firm deadlines can be LC tasks. The multimedia tasks are an
example of firm deadlines, where skipping a video frame once
in a while is better than processing it with a long delay or not
processing it completely [39].

B. Fault-Tolerance Model

Transient faults are the most common faults in embedded
systems [2], [11], [13]. To tolerate transient faults, fault
detection and correction mechanisms need to be applied. The
detail of these mechanisms is discussed in Appendix A.

For embedded safety-critical real-time systems, low-cost,
low power, and high accuracy checker should be employed
in each core. To check whether a fault occurs during the exe-
cution of a task, analogous to [2], [31], [37], an error detection
mechanism, is conducted to check the correctness of the task’s
output at the end of the task’s execution. ARGUS [40] is one
of the significant checker tools to detect errors, that has all
the features and has been used in many recent works [41].
It can be applied to any embedded systems with less than
11% chip area overhead and also check control flow, dataflow,
computation, and memory access separately, at run-time. Here,
the error detection time overhead is considered in the WCET
of tasks. Besides, the task re-execution technique is one of
the most popular ways to correct transient faults in embedded
systems [2], [10], which we employed in this article. We
assume that up to k transient faults may occur in one period of
the application [38], [42], [43]. If the system detects a faulty
task, it spends some time (𝜇) to discard the results of the faulty
task before re-executing the task.

C. Power Model

The total power consumption of a core in an embed-
ded system consists of three major components, Dynamic

power (𝑃𝑑), static power (𝑃𝑠), and frequency-independent
power (𝑃𝑖𝑛𝑑) [16], [33]. We consider a pessimistic approach
to obtain the dynamic power consumption of HC tasks as well
as LC tasks. 𝑃𝑑 is a frequency and workload dependent power
which is consumed when a task is run. 𝑃𝑠 is consumed in a
core even when the core is in idle mode and no task is run. The
frequency-independent power is the power used for memory
and I/O operations [13], [16]. The total power is:

𝑃(𝑉𝑖 , 𝑓𝑖) = 𝑃𝑑 + 𝑃𝑠 + 𝑃𝑖𝑛𝑑 = 𝛼𝐶𝑒 𝑓 𝑓 𝑉
2
𝑖 𝑓𝑖 + 𝐼𝑠𝑢𝑏𝑉𝑖 + 𝑃𝑖𝑛𝑑

(2)

where 𝛼, 𝐼𝑠𝑢𝑏 , 𝐶𝑒 𝑓 𝑓 , 𝑓𝑖 , and 𝑉𝑖 are transition rate, sub-
threshold leakage current, effective capacitance, core 𝑖 pro-
cessing frequency, and core 𝑖 supply voltage, respectively.

D. Problem Definition

Deadline Constraint: Each HC task 𝜏𝑖 , must finish its
execution ( 𝑓 𝑡𝑖) correctly before its deadline (𝑑𝑖) in both LO
and HI modes. In addition, all LC tasks should finish their
execution before their deadlines in the LO mode.

∀𝜏𝑖 , 𝜁𝑖 = 𝐻𝐶 : 𝑓 𝑡𝑖 ≤ 𝑑𝑖

∀𝜏𝑖 , 𝜁𝑖 = 𝐿𝐶 and 𝐶𝑟𝐿 = 𝐿𝑂 : 𝑓 𝑡𝑖 ≤ 𝑑𝑖 (3)

Task Dependability Constraint: Due to the precedence cor-
relations between tasks, the start time of task 𝜏𝑖 (𝑠𝑡𝑖) must
be greater than the finish time of all its predecessor tasks
(𝑃𝑟𝑒𝑑 (𝜏𝑖)).

∀𝜏𝑖 ,∀ 𝑗 ∈ 𝑃𝑟𝑒𝑑 (𝜏𝑖) =⇒ 𝑠𝑡𝑖 ≥ 𝑓 𝑡 𝑗 (4)

Mapping Constraint: A task (𝜏𝑖) can only be executed on a
single core in each time slot. If 𝑋𝑖 𝑗 denotes the mapping of
task 𝜏𝑖 on core 𝑗 , then:

∀𝜏𝑖 ,
∑︁

𝑗∈𝐶𝑜𝑟𝑒𝑠
𝑋𝑖 𝑗 = 1 (5)

Power Constraint: The chip’s overall power consumption
must not violate the chip’s TDP (𝑇𝐷𝑃𝑐ℎ𝑖𝑝) in any time slot.

∀𝑡 ∈ 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 :
∑︁

𝑗∈𝐶𝑜𝑟𝑒𝑠
𝑃𝑜𝑤 𝑗𝑡 ≤ 𝑇𝐷𝑃𝑐ℎ𝑖𝑝 , (6)

where 𝑃𝑜𝑤 𝑗𝑡 represents the power consumption of core 𝑗 in
time slot 𝑡.

When the system switches to the HI mode, the system drops
some LC tasks to meet the timing constraints, which degrades
the QoS of the system:

𝐶𝑟𝐿 = 𝐻𝐼 : 𝑄𝑜𝑆 = 𝑛𝑠𝑢𝑐𝑐𝐿 /𝑛𝐿 (7)

The problem is how to map and schedule dependent MC
tasks of application A on the system’s cores to satisfy the
aforementioned constraints (timing and peak power) and QoS
of the system. In this paper, we propose a heuristic method to
solve this NP-hard problem [8].

IV. PROPOSED METHOD
In this section, at first, a motivational example is presented

in Section IV-A for a better understanding of the problem and
the proposed solution. Then, the proposed method is explained
in detail in Section IV-B and IV-C.
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TABLE II: All possible scenarios of executing the task graph presented in Fig. 2 on a single core chip

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12 𝑆13 𝑆14

Overrun - - - - 𝑇1 𝑇2 𝑇1
* 1© 𝑇1 1© 𝑇1 1© 𝑇2 1© 𝑇2 1© 𝑇1 2© 𝑇2 2© 𝑇2 2©

Fault - 𝑇1 𝑇2 𝑇3 - - 𝑇1 2© 𝑇2 2© 𝑇3 2© 𝑇2 2© 𝑇3 2© 𝑇1 1© 𝑇1 1© 𝑇2 1©
Finish time 9 14 13 12 13 11 20*** 19*** 16 17 12 18 16 15

Exe time (drop 𝑇3) 7 12 11 10** 11 9 18 17 14** 15 10** 16 14 13
* The circles shows the order of the occurrence of fault and task overrun.
** In these cases, the system executes 𝑇3 and detects a fault occurs, but does not re-execute the task (drops the task).
*** In these cases, the system must drop task 𝑇3 to execute all HC tasks before their deadlines.

A. Motivational Example

Fig. 2 shows an application with three tasks, where tasks 𝑇1
and 𝑇2 have HC, and task 𝑇3 has LC. Deadline, low WCET,
and high WCET of each task are presented in the figure, and
the system takes 1ms to discard the output of a faulty task
(𝜇 = 1). Hence, the period of all tasks are the same and is equal
to 18ms. For the sake of simplicity, we considered that the
application runs on a single-core processor, and up to one fault
may occur during the execution of the application (𝑘 = 1). So,
the system cannot execute multiple tasks simultaneously on
different cores to violate TDP (we will discuss TDP challenge
later). The scheduling algorithm in the LO mode, executes
tasks 𝑇1, 𝑇2, and 𝑇3, respectively. The schedulability test [19]
shows that in the LO mode, all three tasks can be executed
even in the case of fault occurrence. In other words, the total
CPU utilization for application 𝐴 is less than one (𝑈𝐴 ≤ 1).
If we consider the HI mode, if a LC task 𝑇3 is executed in
addition to the two HC tasks in the case of fault occurrence,
the system becomes overloaded (𝑈𝐻𝐼

𝐴
>1) and the three tasks

cannot be scheduled. However, if we drop some LC tasks in
the HI mode (𝑇3 in this example) to guarantee the correct
execution of HC tasks, then the computation demand requested
by tasks is less than one and can be scheduled before their
deadline. As a result, the utilization of this example for both
LO and HI modes with the probability of one fault occurrence
is computed as follows, in which, just LC tasks are considered
to be executed in the HI mode.

𝑈𝐴 = 𝑀𝐴𝑋 (𝑈𝐿𝑂
𝐴 ,𝑈𝐻𝐼

𝐴 ) ≤ 1

𝑈𝐿𝑂
𝐴 = (

∑︁
𝑖∈{1,2,3}

𝐶𝐿𝑂
𝑖

𝑃𝐴
) +

𝑘 (max𝑖∈{1,2,3} (𝐶𝐿𝑂𝑖 ) + 𝜇)
𝑃𝐴

=
4
18
+ 3

18
+ 2

18
+ ( 4 + 1

18
) = 14

18
< 1

𝑈𝐻𝐼
𝐴 = (

∑︁
𝑖∈{1,2}

𝐶𝐻𝐼
𝑖

𝑃𝐴
) +

𝑘 (max𝑖∈{1,2} (𝐶𝐻𝐼𝑖 ) + 𝜇)
𝑃𝐴

=
6
18
+ 5

18
+ ( 6 + 1

18
) = 18

18
≤ 1

(8)

However, for this example, fourteen different scenarios
could happen during the execution of the application because
the time of the fault and task overruns are unknown. Table II
shows all these scenarios, and the execution time of the system
whether it drops LC task or not. In ten scenarios (𝑆5 to 𝑆14),
an HC task overruns, and the shows the system is in the HI
mode. However, as shown in Table II, only in two scenarios,
the system fails to execute all tasks (HC and LC tasks) before
the deadline (𝑆7 and 𝑆8). The reason is that, the system has

T1
(HC)

T2
(HC)

T3
(LC)

d1=13d2=18 d3=18

𝐶!"# = 4 𝐶!$% = 6𝐶&"# = 3, 𝐶&$% = 5 𝐶'"# = 2, 𝐶'$% = 2

Fig. 2: Task graph of an application with three tasks used in the example

S1

S4S3S2 S6S5

S9S8S7 S10 S11 S12 S13 S14

T3 
T2T1

T3 T2
T3 

T2T1

T 2
 ->

 H
I

Fig. 3: The tree constructed by our method for the task graph of Fig. 2

switched to the HI mode in these scenarios and also a fault
has occurred. it causes the system to be overloaded and the
computation demand for executing all tasks becomes more
than one (𝑈𝐴 > 1). Therefore, the LC task 𝑇3 would be
dropped. Although there are some scenarios such as 𝑆12 to
𝑆14, that the system is in the HI mode, we schedule the LC
task in this mode to improve the QoS. As shown in Table II,
the start time of 𝑇3 in 𝑆12 (𝑆14) is 16 (13), and since the
WCET of the LC task is 2, then it can be executed before the
application deadline (𝑑𝐴 = 18). This example clearly shows
that all situations should be considered in an MC system.
Therefore, the system is analyzed in detail at design-time, and
then, the proper schedule is exploited in the online phase to
minimize the drop ratio of LC tasks and enhance the QoS.

Fig. 3 shows the tree for the application task graph presented
in the motivational example, which is constructed in the offline
phase of our proposed approach. At run-time, the system starts
each period with 𝑆1 (the scheduling in the root of the tree),
which corresponds to the scenario where no fault occurs and
no HC tasks overruns. If an HC task overruns (for instance task
𝑇1), The system searches through the children of the current
node (𝑆1), finds the appropriate task mapping and scheduling,
and continues the execution based on the new schedule (𝑆6 in
this case). After that, if error detection unit detects a fault at
the end of a task execution (for instance task 𝑇2), the system
searches through the children of the current node (𝑆6), finds
the appropriate scenario, and continues the execution based on
the new task mapping and scheduling (𝑆14 in this case).

It is important to mention that each schedule has a different
start time, system mode, the expected number of faults, and
task set. Furthermore, scheduling of child nodes must be
compatible with the scheduling of their parent; so, the system
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Fig. 4: Design methodology

can change the schedule of tasks without any conflicts. For
instance, assume that in 𝑆1, the task execution order is 𝑇1, 𝑇2,
and 𝑇3. When the system employed 𝑆4, it implies that 𝑇1 and
𝑇2 are completed successfully, the system is in the LO mode,
and a fault is detected at the end of the first execution of 𝑇3.
So, the 𝑆4 should schedule tasks based on this information.

B. Design Methodology

The fault-tolerance and peak power-aware task mapping
and scheduling method consists of two phases, design-time,
and run-time. In this paper, we focus on system design at
design-time. For the sake of completeness, we provide a brief
overview of how to use the schedule tree in the run-time phase,
which is generated at design-time. Fig. 4 shows an overview
of the design methodology. In the design-time phase, there are
three functions which are used to generate the schedule tree,
MakeTreeRec, Schedule, and MapSch. Section IV-C provides
details of generating the tree, these functions, and how we
manage the peak power consumption. All scenarios are stored
in memory to be used in the run-time phase. At run-time, an
application follows the presented task mapping and scheduling
in the root of the tree. In the case of fault occurrence or mode
switching, the appropriate task mapping and scheduling for
the remaining un-executed tasks are fetched from memory.
After fetching, mapped tasks based on the previous scenario
are re-mapped based on the new scenario, and the system
continues its operation. In the following subsection, we explain
the design-time phase of our proposed method.

C. Tree Generation and Fault-Tolerant Scheduling & Mapping

As we discussed, multiple scenarios might happen during
the execution of an instance of the application, where, in most
of these scenarios, the system can execute all or most of LC
tasks without violating HC tasks’ deadline. To this end, the
proposed approach of this paper considers a different mapping
and scheduling for each scenario to handle HC tasks deadlines,
faults, and peak power violations while minimizing the number
of dropped LC tasks in the HI mode. In the run-time phase, in
general, the system is unaware of tasks that might overrun
or a fault occurs; so, the system cannot select the proper
schedule in advance. Therefore, this paper employs a tree data
structure in the offline phase to organize the mapping and
scheduling of tasks for all scenarios, corresponding to each HC
task overrunning, and/or up to 𝑘 faults occurrence during each
period. Now, we explain how the scheduling tree is generated.

1) Making Scheduling Tree: The main function of creating
the tree (Φ) is outlined in Algorithm 1. At first, we define a
priority queue called TaskPQ (line 3), which considers tasks’
release time as the priority. The release time of a task is
the time when all its predecessor tasks have finished their
execution (presented in Section III-A). Then, the algorithm
enqueues all tasks without any predecessor to the TaskPQ with
key equal to 0; because they are released at the beginning of
the period (line 4). Each node of the tree represents a particular
scenario, and it has two attributes called sch and childs. For
instance, in the root scenario, the system is in the LO mode,
and no fault occurs in the entire period. sch is the proper
mapping and scheduling of tasks for that scenario, and childs
is a list of children nodes of the current node.

The algorithm calls MapSch function (Algorithm 3, which
is discussed later in Section IV-C2) to schedule task for the
root node (line 5). The algorithm returns un-scheduled, if
MapSch function cannot find any feasible schedule with no
task dropping and violating the TDP constraint (lines 6-8).
Otherwise, the algorithm in line 9 continues to create the rest
of the tree recursively by calling MakeTreeRec function (which
is presented in lines 15-50 of this algorithm). If task scheduling
is feasible in all possible scenarios, MakeTreeRec function
returns a list of child nodes, and the algorithm returns the
tree (Φ); otherwise, the algorithm returns un-scheduled which
means it could not find a feasible solution (lines 10-13).

The MakeTreeRec function in Algorithm 1 recursively cre-
ates the tree. Each node in the tree might have two types
of child nodes. The first type of child node (HChild) has a
scenario similar to their parents, except that one of the HC
tasks overruns. Therefore, if the system is in the LO mode,
any unfinished HC task might overrun and change the system’s
mode. To this end, first, MakeTreeRec function collects all
unfinished HC tasks and creates an HC task graph (𝐺𝐻 ) by
changing the WCET of all tasks to high WCET (lines 18-
19). Then, for each unfinished HC task, the function considers
the scenario that the task overruns and schedules the task by
calling Schedules function, presented in Algorithm 2. If the
Schedules function finds feasible scheduling, the algorithm
recursively creates a tree for this node, where the system is in
the HI mode, and up 𝑘 faults may occur on the remaining tasks
by calling MakeTreeRec function (lines 20-32). It is important
to mention that switching to the HI mode has non-zero timing
overhead (𝑇𝑠𝑤 ) in realistic systems [44], but it is insignificant
in comparison with tasks’ WCETs (line 21). The second type
of child node (FChild) has a scenario similar to their parents,
except one fault occurs during the execution of one of the
remaining tasks. As we mentioned in Section III-B, the system
can tolerate up to 𝑘 faults in a period. If less than k faults occur
in a node scenario, a faulty execution of all remaining tasks
needs to be considered. Therefore, a child node is generated
for the faulty execution of each remaining task, and also for
each child node, the algorithm recursively constructs a tree by
calling MKTreeRec with k-1 faults (line 34-48). Finally, if the
algorithm finds a feasible solution for all scenarios, it returns
the list of child nodes (𝑆𝑐ℎ𝐿𝑖𝑠𝑡).

The Schedule function, schedules tasks for each situation by
calling MapSch function (Algorithm 3). If MapSch function
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Algorithm 1 Creating the Tree
Input: Task Graph (𝐺𝑇 ), List of Cores (𝑐), Number of Faults (𝑘).
Output: Scheduling Tree (Φ).
1: procedure MAKETREEMAIN
2: Φ← Empty Tree
3: TaskPQ ← Empty Priority Queue
4: Add all tasks without predecessor node to TaskPQ with key 0
5: Φ[𝑟𝑜𝑜𝑡 ].𝑠𝑐ℎ ← 𝑀𝑎𝑝𝑆𝑐ℎ (𝐺𝑇 , 𝑐, 0,∅, 𝑇 𝑎𝑠𝑘𝑃𝑄)
6: if Φ[𝑟𝑜𝑜𝑡 ].𝑠𝑐ℎ=un-scheduled then
7: return ∅
8: end if
9: Φ[𝑟𝑜𝑜𝑡 ].𝑐ℎ𝑖𝑙𝑑𝑠 ← 𝑀𝑎𝑘𝑒𝑇 𝑟𝑒𝑒𝑅𝑒𝑐 (𝐺𝑇 , 𝑐,

Φ[𝑟𝑜𝑜𝑡 ].𝑠𝑐ℎ, 0, 𝑘, 𝐿𝑂)
10: if Φ[𝑟𝑜𝑜𝑡 ].𝑐ℎ𝑖𝑙𝑑𝑠=un-scheduled then
11: return un-scheduled
12: end if
13: return Φ

14: end procedure
15: function MAKETREEREC(Task Graph (𝐺𝑇 ), List of Cores (𝑐), Parent

Schedule(𝑆𝑐ℎ), Time (𝑇 ), Number of Faults (𝑘), Mode of the System
(𝑀𝑜𝑑𝑒))

16: SchList ← Empty list of nodes
17: if Mode = LO then // HChild nodes
18: Tasks ← List of unfinished HC tasks in time T.
19: 𝐺𝐻 ← 𝐺𝑇 With High WCET.
20: for each 𝜏 in Tasks do
21: 𝑇𝑡𝑚𝑝 ← Finish time of 𝜏 in sch + 𝑇𝑠𝑤 .
22: S ← New node
23: S.sch = Schedules (𝐺𝐻 , c, 𝑇𝑡𝑚𝑝 , sch, TaskPQ)
24: if S.sch = un-scheduled then
25: return ∅.
26: end if
27: 𝑆.𝑐ℎ𝑖𝑙𝑑𝑠 ← 𝑀𝐾𝑇 𝑟𝑒𝑒𝑅𝑒𝑐 (𝐺𝐻 , 𝑐, 𝑆, 𝑇𝑡𝑚𝑝 , 𝑘, 𝐻 𝐼 )
28: if 𝑆.𝑐ℎ𝑖𝑙𝑑𝑠 = ∅ then
29: return ∅.
30: end if
31: Add 𝑆 to 𝑆𝑐ℎ𝐿𝑖𝑠𝑡
32: end for
33: end if
34: if k > 0 then
35: Tasks ← List of Unfinished Tasks in T.
36: for each 𝜏 in Tasks do
37: 𝑇𝑡𝑚𝑝 ← Finish Time of 𝜏𝑖 in sch.
38: S.sch = Schedules(𝐺𝑇 , sch, Time)
39: if S.sch = un-scheduled then
40: return un-scheduled.
41: end if
42: 𝑆.𝑐ℎ𝑖𝑙𝑑𝑠 ← 𝑀𝐾𝑇 𝑟𝑒𝑒𝑅𝑒𝑐 (𝐺𝑇 , 𝑐, 𝑆, 𝑇𝑡𝑚𝑝 , 𝑘−1, 𝑀𝑜𝑑𝑒)
43: if 𝑆.𝑐ℎ𝑖𝑙𝑑𝑠 = ∅ then
44: return ∅.
45: end if
46: Add 𝑆 to 𝑆𝑐ℎ𝐿𝑖𝑠𝑡
47: end for
48: end if
49: return 𝑆𝑐ℎ𝐿𝑖𝑠𝑡
50: end function

fails to find a feasible solution to meet the deadlines of
all tasks with respect to TDP constraint, Schedules function
drops the largest LC task (in terms of WCET) and calls
MapSch function again. The Schedules function repeats this
procedure to find a feasible schedule. If MapSch function
fails to find a feasible solution, and there is no more LC task
to drop, Schedules function returns un-scheduled (lines 2-12
Algorithm 2). We will discuss the MapSch function in the next
subsection. As we mentioned in this section, occurring faults
and a criticality mode change generate different scheduling
scenarios that correspond to a set of alternative schedules.
These scenarios are stored in the memory of the system as
a tree in the offline phase. At run-time, the system starts with

Algorithm 2 Schedule Procedure
Input: Task Graph (𝐺𝑇 ), List of Cores (𝐶𝑜𝑟𝑒𝑠), Time (𝑇 ), Parent Schedule

(𝑆𝑐ℎ𝑝𝑎𝑟 ), Ready Task Priority Queue (𝑇 𝑎𝑠𝑘𝑃𝑄).
Output: Schedule (𝑆𝑐ℎ)
1: procedure SCHEDULES
2: 𝑇𝑟 ← List of Tasks from 𝐺 that all predecessors

has started executing before time T.
3: Add 𝑇𝑟 Tasks to a Priority Queue (TaskPQ).
4: 𝑆𝑐ℎ ← 𝑆𝑐ℎ𝑝𝑎𝑟 [0 −𝑇 ]
5: 𝑆𝑐ℎ ← 𝑀𝑎𝑝𝑆𝑐ℎ (𝐺1, 𝐶𝑜𝑟𝑒𝑠, 𝑇 , 𝑆𝑐ℎ, 𝑇 𝑎𝑠𝑘𝑃𝑄)
6: if 𝑆𝑐ℎ = un-scheduled then
7: Find a LC Task with Largest execution time which has not started

in T and remove it from 𝐺 then goto line 2.
8: if Cannot find any LC task then
9: return un-scheduled.

10: end if
11: end if
12: return 𝑆𝑐ℎ
13: end procedure

the scheduling in the root node, which is for the scenario that
no fault or overrun happens. After that, if a fault occurs or an
HC task overruns, the system finds the appropriate scenario in
the child nodes of the current node and changes the scheduling
of the system to improve the number of executed LC tasks.

2) Mapping and Scheduling: In this section, we explain
the proposed mapping and scheduling algorithm, which man-
ages the peak power and hotspot distribution. It should be
mentioned that low power techniques, e.g., DVFS, cannot be
easily used in the HI mode, especially when the system is in
the overload situation due to the timing overhead. Therefore,
we manage the peak power by finding the proper mapping
and scheduling of tasks on free time slots of cores. This task
mapping and scheduling are feasible if the system’s power
consumption never exceeds the TDP constraint, and all tasks
finish their execution (even in the worst case) before their
deadline. So, MapSch algorithm decides the time and core
where each task should be executed.

Algorithm 3 outlines the pseudo-code of the MapSch algo-
rithm. Tasks are mapped and scheduled up to time T based on
the current node schedule. In the case of fault occurrence or
mode switches at time T, this algorithm maps and schedules
the rest of the tasks based on the new node schedule from
time T to the end of the application period (PERIOD). The
time is divided into a set of equal time slots (TS), and the
scheduler will put tasks into cores only at the beginning of
each time slot. In each time slot, at first, the algorithm sets an
empty array for ready tasks, and then it extracts all elements
of TaskPQ, where their key is equal to the current time slot.
This means that all predecessor tasks of these ready tasks have
finished their execution. If TaskPQ and ReadyTasks array are
both empty, the algorithm returns the final scheduling (Sch)
because it successfully schedules all tasks. If there is no ready
task to be scheduled in the current time slot (the ReadyTask
array is empty, but the TaskPQ is not empty), the algorithm
moves to the next time slot (lines 2-10).

The algorithm sorts the ready tasks in descending order of
their energy consumption (line 11). The energy consumption
of each task 𝜏𝑖 (𝐸𝑛𝑔𝑖) is calculated as follow:

𝐸𝑛𝑔𝑖 = 𝑃𝑜𝑤𝑖 × 𝑊𝐶𝐸𝑇𝑖 (9)
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Algorithm 3 Mapping and Scheduling Pseudo Code
Input: Task Graph (𝐺𝑇 ), List of Cores (𝐶𝑜𝑟𝑒𝑠), Time (𝑇), Scedule

up to the Time (𝑆𝑐ℎ), Ready Task Priority Queue (𝑇𝑎𝑠𝑘𝑃𝑄).
Output: Complete Schedule (𝑆𝑐ℎ)

1: procedure MAPSCH
2: for TS = 𝑇 to PERIOD do
3: 𝑅𝑒𝑎𝑑𝑦𝑇𝑎𝑠𝑘𝑠← ∅
4: Extract minimum element from TaskPQ and add it to

ReadyTasks while key of each element is equal to
TS and TaskPQ is not empty;

5: if TaskPQ.empty() = true and ReadyTasks = ∅ then
6: return 𝑆𝑐ℎ // Scheduling is done;
7: end if
8: if ReadyTasks = ∅ then
9: continue // No new task is ready in this TimeSlot

10: end if
11: SortedTasks ← Sort (ReadyTasks, Desc);
12: SortedCores ← Sort (Cores, Asc);
13: for task in SortedTasks do
14: for core in SortedCores do
15: Timetmp ← taskwcet
16: 𝑐𝑜𝑢𝑛𝑡 ← 0
17: 𝑆𝑐ℎ𝑡𝑚𝑝 ← 𝑆𝑐ℎ

18: 𝑆𝑦𝑠𝑃𝑜𝑤𝑡𝑚𝑝 ← 𝑆𝑦𝑠𝑃𝑜𝑤

19: while 𝑇𝑖𝑚𝑒𝑡𝑚𝑝 > 0 do
20: if 𝑆𝑐ℎ𝑡𝑚𝑝 (𝑇𝑆+𝑐𝑜𝑢𝑛𝑡, 𝑐𝑜𝑟𝑒) is empty &

𝑆𝑦𝑠𝑃𝑜𝑤𝑡𝑚𝑝 (𝑇𝑆+𝑐𝑜𝑢𝑛𝑡) + 𝑡𝑎𝑠𝑘 𝑝𝑜𝑤 <= 𝑇𝐷𝑃 then
21: 𝑆𝑐ℎ𝑡𝑚𝑝 (𝑇𝑆 + 𝑐𝑜𝑢𝑛𝑡, 𝑐𝑜𝑟𝑒) = 𝑡𝑎𝑠𝑘

22: 𝑆𝑦𝑠𝑃𝑜𝑤𝑡𝑚𝑝 (𝑇𝑆 + 𝑐𝑜𝑢𝑛𝑡) += 𝑡𝑎𝑠𝑘 𝑝𝑜𝑤
23: 𝑇𝑖𝑚𝑒𝑡𝑚𝑝 -= 1
24: end if
25: 𝑐𝑜𝑢𝑛𝑡 += 1;
26: end while
27: if 𝑇𝑆+𝑐𝑜𝑢𝑛𝑡 ≤ 𝑡𝑎𝑠𝑘𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 then
28: 𝑆𝑐ℎ← 𝑆𝑐ℎ𝑡𝑚𝑝
29: 𝑆𝑦𝑠𝑃𝑜𝑤 ← 𝑆𝑦𝑠𝑃𝑜𝑤𝑡𝑚𝑝
30: SortedCores ← Sort (Cores, Asc);
31: 𝑡𝑎𝑠𝑘𝑠𝑐ℎ ← true
32: break
33: end if
34: end for
35: if 𝑡𝑎𝑠𝑘𝑠𝑐ℎ == false then
36: return un-scheduled
37: end if
38: end for
39: end for
40: end procedure

where 𝑃𝑜𝑤𝑖 , and 𝑊𝐶𝐸𝑇𝑖 are the maximum power consump-
tion, and the worst case execution time of task 𝜏𝑖 . The
maximum power of each task can be obtained by running
benchmarks on a real platform. As mentioned in Section III-C,
the processor power consists of three components; when a task
is run on a processor, the dynamic power is increased signifi-
cantly compared to static and independent powers. Hence, in
this paper, we don’t model the power; we measure the proces-
sor power when task are run on the real platform. More infor-
mation about computing these values is given in Section V-A.
The system’s power consumption must never exceed the TDP
constraint to overcome to overheating problem [8], [31]. To
this end, we consider a constant power consumption for each
task at design-time, which is equal to its maximum power
consumption, to guarantee the meeting of TDP constraint in
the worst-case scenario. In addition, energy increment leads to

an increase in chip temperature [5], [12]. Thus, we map a task
with more energy consumption to a core with less temperature.
Then, the algorithm sorts the cores in the ascending order
of their accumulated energy (line 12). A core has a higher
priority for task assignment if it has less accumulated energy
(i.e., tends to have a less temperature degree).

After sorting tasks and cores, the algorithm assigns tasks
to the cores one by one (lines 13-38). So, for each task, the
algorithm selects a core from the sorted list and schedules the
task on the core’s free slots (lines 19-26). The system’s in-
stantaneous power consumption must be less than the TDP
constraint; so, we consider an array called 𝑆𝑦𝑠𝑃𝑜𝑤, which
holds the maximum power consumption of the system in
each time slot. The algorithm checks the 𝑆𝑦𝑠𝑃𝑜𝑤 and TDP
constraint before scheduling a task on a core (line 20). If the
task is completed before its deadline, the algorithm updates the
schedule (𝑆𝑐ℎ), power array (𝑆𝑦𝑠𝑃𝑜𝑤), and scheduling status
of the task (𝑡𝑎𝑠𝑘𝑠𝑐ℎ). It also sorts the cores again since the
energy of one core has changed, and starts to schedule the next
task (lines 27-33). If the task does not meet its deadline on the
core, the algorithm picks the next core and schedule it on that
core. However, if the deadline of one task is violated in all
cores, the algorithm fails to schedule tasks of the application
in this scenario and returns "un-schedulable" (lines 36-37).

The example in Fig. 5 shows an MC application and how
our method maps and schedules the tasks on three cores.
Assume the TDP constraint is 1.6 Watt. Fig. 5b shows that
the scheduling without our policy violates the TDP constraint,
while the maximum power consumption of the task schedul-
ing by considering our policy is below the TDP constraint
(Fig. 5c). When the system completes task 𝑇1, three tasks (𝑇2,
𝑇3 and 𝑇4) become ready to be executed. So, 𝐸𝑛𝑔𝑇 2 > 𝐸𝑛𝑔𝑇 3 =
𝐸𝑛𝑔𝑇 4 that shows 𝑇2 should be mapped to the core with less
accumulated energy (𝐸𝑐). In addition, as can be computed,
𝐸𝐶3=𝐸𝐶2>𝐸𝐶1. Therefore, according to the criticality level,
we first map 𝑇2 and 𝑇3 on 𝐶3 and 𝐶2 and schedule them, and
thereafter, 𝑇4 is mapped on 𝐶4. This procedure will be the
same for mapping and scheduling 𝑇5 and 𝑇6.

It should be noted that the time complexity analysis and
memory space analysis of the proposed method have been
discussed in Appendix B and C, respectively.

V. EXPERIMENT

A. Experimental Setup

1) Application: For the experiments, we used both real-
life and random applications to show our proposed approach’s
efficiency. To generate random task graphs, we used the tool
presented by Medina et al. [22]. We generated applications
with 30, 40, 50, and 100 tasks (n), where 20% to 50% of them
are LC tasks. Another important parameter in a task graph is
edge percentage (d) that shows the probability of having edges
from one task to other tasks. We considered 1% to 20 % edge
percentage in the experiments. Another important parameter
that will be discussed in the experiments is the normalized
system utilization 𝑈/𝑐, where 𝑈 is the utilization of the system
considering the high WCET of each task, and 𝑐 is the number
of cores. We considered different values of normalized system
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(c) Task scheduling with our policy

Fig. 5: Two different task scheduling scenarios

utilization in the range of (0,1] with the steps of 0.05. We
also evaluate the proposed approach and other approaches for
comparison, with a real-life application task graph, vehicle
cruise controller (CC) [38], composed of 32 tasks, where 34%
of them are LC tasks. In addition, the value of edge percentage
for this CC application is 7%.

2) Hardware Platform: To evaluate our approach, we con-
duct the experiments and run the applications on a platform
with 2, 4, 8, and 16 cores, which models ARM Cortex-A7
cores (c). The maximum number of transient faults that may
occur during each application period (k) and the recovery
overhead 𝜇 are considered three and 15ms, respectively [42].
It is important to know that if 𝜆 and 𝑡𝑖𝑚𝑒 is the fault rate
and application execution time, respectively, the minimum
number of fault occurrence would be 𝜆 × 𝑡𝑖𝑚𝑒. Therefore, 𝑘
would not be much smaller or larger than 𝜆 × 𝑡𝑖𝑚𝑒 [45]. If
𝜆 = 10−6 𝑓 𝑎𝑢𝑙𝑡/𝜇𝑠, and 𝑡𝑖𝑚𝑒 = 103𝑚𝑠, then, 𝜆 × 𝑡𝑖𝑚𝑒 = 1.
As a result, since this fault rate is much higher than real
fault rates, mentioned 10−12 𝑓 𝑎𝑢𝑙𝑡/𝜇𝑠 in [43], considering
𝑘 ≤ 3 is reasonable fault occurrence number during each
application period. We use the HOTSPOT tool [21] to obtain
the cores’ temperature trace by exploiting the specific floorplan
according to a real platform, ODROID XU3 board, which has
four ARM Cortex-A7 cores, and the parameters used in [46].
In addition, we use the reported value in [44], to consider
the timing overhead of mode switching for ARM Cortex
processors. We considered the maximum reported overhead,
which is 𝑇𝑠𝑤 = 254𝜇𝑠, in our experiments.

3) Peak Power Consumption: To determine a realistic
power consumption for tasks, we ran several embedded bench-
marks from the MiBench suite, such as automotive, network,
and Telecomm., on ARM Cortex-A7 core of ODROID XU3
platform with maximum frequency at design-time. We monitor
the power sensors continuously, and we set the worst measured
power as the power consumption of tasks. In addition, we
examined different scenarios of activating one core to all
cores by running different benchmarks. Each benchmark is run
1000 times on a core, and we considered each task’s power
consumption between the minimum and maximum power
values obtained from the platform. The measurement reports
show that the power consumption of tasks is between 483mW
to 939mW. In this paper, the TDP value has been considered
85% of the maximum power that a chip can consume, which

is used conventionally in embedded processors [47].
4) Comparison: We analyzed our proposed method and

compared our experimental results to the results obtained by
recent works that use the task graph model [22], [23], [33].
Socci et al. [23] have proposed an online scheduling algorithm
for an MC system where only HC tasks are executed in the HI
mode. Medina et al. [22] has considered a fault-tolerant MC
system that generates two tables at design-time and uses them
at run-time (see Section II for more details). Based on this
work, researchers in [33] have presented an online approach
to reduce the peak power and temperature by using the DVFS
technique. Hence, due to the timing overhead of DVFS and
increasing fault rate by changing the V-f levels [10], we cannot
easily use this technique especially in the HI mode.

B. Experimental Results

1) Tree Construction Time: At first, we evaluate offline
tree construction time by varying the parameters 𝑛 and 𝑘 , in
Fig. 6. The tree’s construction time is computed on a system
with an intel core-i5 processor with 1.3 GHz clock frequency.
Construction time depends on the number of faults and tasks.
Fig. 6a shows the effects of the number of tasks and the portion
of HC tasks in each task set with 𝑘 = 3. Besides, Fig. 6b
shows the effects of the number of fault occurrence with
𝑛 = 20. These figures depict that by increasing the number
of faults or number of tasks, the tree generation’s time is
increased exponentially. Also, task sets with higher HC tasks
have higher tree construction time. Although the offline tree
construction time is relatively high for large applications, the
online overhead is small and constant for all applications. It
is noticeable that our method can generate each node of a tree
in parallel to reduce the construction time. For example, if we
have a system with four cores, the construction time is about
four times faster than a single-core system.

2) Run-Time Timing Overheads: In case of fault occur-
rence or mode switching, the system finds the proper schedule
by moving to the child of the current node, which is respon-
sible for the upcoming scenario. Each node of the tree stores

two arrays with the size of 𝑛× (𝑙𝑜𝑔𝑐2 + 𝑙𝑜𝑔
𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡

2 ) bits, where
𝑐 and 𝑛 are the number cores and tasks, respectively. Thus,
the switching time between the schedules consists of moving
one level in the tree and retrieving the correct scheduling from
memory, which is constant and negligible. We measured the
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Fig. 6: Tree construction time for different application sizes and number of
fault occurrence

0.4
0.8
1.2
1.6

2
2.4
2.8
3.2

Po
w

er
 (W

)

Time

Proposed Method Method of [23] Method of [22][33]

0     100    200 300     400     500     600     700    800     900     1000

TDP

Fig. 7: Power trace of real-life application graph (CC) in different methods
under worst-case scenario

schedule changing time at run-time on the ODROID XU3
platform, considering 𝑐 = 8, and 𝑛 = 50, it is almost 0.47𝜇s.

3) Peak Power Management and Thermal Distribution for
a Real-Life Application: Fig. 7 shows the system’s power
traces of a real-life application, vehicle Cruise Controller
(CC) [38] by our proposed approach, the approaches proposed
by Socci et al. [23], Medina et al. [22], and Ranjbar et al. [33].
Since [33] is the online approach to minimize the peak power,
while exploiting the same task mapping and scheduling of [22]
at design-time, their power traces and thermal distributions
are the same in the worst-case scenario of tasks’ execution
time and power consumption. In this part, to focus on the
behavior of systems in the HI mode, we assumed no fault
occurred during the application’s execution. Socci’s approach
does not violate TDP constraint because it drops all LC-tasks
when the system switches to the HI mode, which means it
has zero-percent QoS of LC tasks in the HI mode. On the
other hand, methods of [22] and [33] guarantee 90.91% of
LC tasks execution in the HI mode, but it frequently violates
the TDP constraint (Fig. 7). For the CC application, our
method endeavored to execute 81.82% of the LC tasks without
violating TDP constraint. Appendix D shows the thermal
distribution of CC application and also, the corresponding
results for a random task set with high utilization.

As a result, our method reduces the peak power and maxi-
mum temperature by up to 20.06% and 3.71% respectively,
compared to the approach of [22], [33], while the QoS is
degraded 9.09%. On the other hand, although our method
increases the maximum temperature by 9.61%, compared
to [23], we reduce the peak power consumption by 6.31%
and improve the QoS by 81.82%.

4) Analyzing the QoS of LC Tasks: Now, we analyze the
QoS for the proposed method in comparison with methods
of [22], [23], [33] in Fig. 8. In our proposed method, there are
many possible scenarios (each node of the tree is responsible
for keeping the scheduling of system in one scenario), and for
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Fig. 8: Task sets’ QoS under different scenarios

each scenario, the LC tasks’ QoS is different. Thus, we run
100 schedulable task sets on eight cores, and for each task set,
10 different random situations of occurring faults and mode
switching are considered. For the case when 𝑈/𝑐=[0.5,0.75) or
𝑈/𝑐=[0,0.5), there is more free slack before task set deadline;
therefore, in the case of fault occurrence and mode switching,
fewer LC tasks are dropped. In this experiment, we consider
the worst-case scenario of processor demands, 𝑈/𝑐= [0.75,1],
𝑛= 50 and 𝑑=10% and in the generated task sets, 20% to
50% of tasks are LC tasks. In addition, the number of fault
occurrences in each scenario is randomly selected in the range
of [0,4]. Fig. 8 shows the LC tasks’ QoS for all these 1000
scenarios. In Section III-A, we have defined the QoS as the
successfully executed LC tasks to all LC tasks. However, we
use three different definitions of QoS to evaluate the methods
of [22], [23], [33] more accurately, as follows.
• Scenario 1: The QoS refers to How many LC tasks are

successfully executed before their deadlines with no TDP
violation. If TDP is going to be violated, running LC tasks
are only stopped to reduce the peak power consumption.

• Scenario 2: This scenario has the same definition as Sce-
nario 1, with the difference that since the HC tasks are the
most important, therefore without them, QoS of LC tasks is
penalized by completely being zero. Thus, if TDP is violated
and some HC tasks are running on cores, then the QoS=0.

• Scenario 3: Since those methods have not been specifically
designed for peak power management while meeting the
real-time constraints of all HC tasks, we give the HC tasks
higher weighted and then consider the joint QoS, including
both LC and HC tasks. Therefore, the HC tasks have a
double weight in this scenario compared to LC tasks, in
the case of dropping tasks due to the TDP violation.
As shown in Fig. 8, the QoS for methods of [22], [33] in

Scenario 1 is higher than the QoS for our proposed method
in total (according to the Cumulative Distribution Function
(CDF) line). However, in this scenario, the TDP constraint
is violated several times due to the execution of HC tasks
in parallel on cores, and there is no policy to manage the
peak power. Moreover, for the second scenario in the methods
of [22], [33], the figure shows that in 22.5% of task sets, the
TDP constraint is violated while executing some HC tasks
on cores. Besides, the QoS in the second scenario for [23] is
zero, due to dropping all LC tasks in the HI mode. Now, if we
investigate the methods of [22], [23], [33] in the third scenario,
the QoS of [22], [33] is more than the QoS of [23] due to
the executing LC tasks in the HI mode. However, they have
less QoS in this scenario compared to our proposed method.
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Fig. 9: Peak power consumption and maximum temperature in different methods

According to this figure, we can conclude that our proposed
method is more efficient in improving QoS than other methods
in different scenarios. In addition, the minimum and maximum
QoS in our proposed method are 68.33% and 100%, while the
power constraint is always met.

5) Peak Power Consumption and Maximum Temperature
Analysis: In this section, we evaluate the system’s peak
power consumption and the chip’s maximum temperature in
our approach and methods of [22], [33] by varying different
parameters, such as utilization bound (𝑈/𝑐), number of tasks
(𝑛), edge percentage (𝑑), and the number of cores (𝑐). Fig. 9
shows the average normalized peak power consumption to the
TDP constraint and maximum temperature in the worst case
that the system switches to the HI mode after executing the
first HC task and all tasks execute up to their higher WCET.
Hence, in the worst-case scenario, [33] has the same power
profile and thermal distribution as [22].

First, we analyze the peak power consumption by varying
different parameters. The figure shows that our proposed
approach can manage the peak power consumption to be
less than the TDP constraint in all scenarios, while Medina’s
method violates the TDP constraint almost all scenarios.
In general, the impact of our approach is increased as the
probability of using parallelism in the execution of tasks on
cores is increaseed (a large number of cores (larger c) or
less dependency between tasks (lower d)). Since the number
of tasks and utilization are not changed by increasing c, the
maximum power consumption by [22] is also reduced. How-
ever, since our proposed method endeavors to distribute the
tasks on all cores to minimize hotspots and also minimize the
instantaneous power consumption, our proposed approach in
decreasing the peak power consumption is more efficient, com-
pared to [22], while the c is increased. Besides, by reducing
the dependency between tasks (d), although the system peak
power consumption is increased and TDP is violated in [22],
our approach always guarantees that the TDP constraint is not
violated. In addition, although increasing the number of tasks
or utilization increases the system’s peak power consumption
because the system does more computation, our approach
guarantees that the TDP constraint will never be violated.

From the perspective of maximum temperature analysis,
increasing the system utilization, illustrated in Fig. 9a, while
the number of tasks is fixed (𝑛= 50) means that the task’s exe-
cution time tends to be longer. Thus, the computation time of
cores is increased, the managing of peak power constraint and
busy/idle times of cores would be difficult, and consequently,
the maximum temperature of the chip is increased in both
methods. However, we can decrease the maximum temperature

by up to 22.4◦C in comparison with [22], [33]. Besides, if we
vary the number of tasks in Fig. 9b, since the computation time
of cores does not change, the chip’s maximum temperature is
relatively constant by increasing the number of tasks in both
our proposed method and methods of [22], [33]. Additionally,
by varying d, the maximum temperature reduces by increasing
the dependency between tasks because the cores’ computation
time is constant, while the idle time of cores is increased.
As shown in Fig. 9c, our proposed method can reduce the
maximum temperature by 14.3◦C on average by varying edge
percentage, compared to [22], [33].

Now, we investigate the system’s maximum temperature in
Fig. 9d by increasing the number of cores (c) while other
parameters are constant. Hence, the normalized utilization (U/c
is constant in this experiment, it means the utilization (U) is
increased by increasing c. We have more parallelism to execute
tasks by increasing c and add more free slack to let the cores
be idle (having better thermal distribution). However, since
each core’s temperature is a function of its neighbor cores’
temperature, it increases the chip’s maximum temperature
while the system utilization is increased. Therefore, the results
of our proposed method show that the maximum temperature
is relatively constant by increasing c and can decrease it,
10.7◦C on average, compared to [22], [33]. Since the methods
of [22], [33] do not consider the thermal distribution, the
maximum temperature is generally increased by increasing c.

6) Effect of Varying Different Parameters on Acceptance
Ratio: In this section, we illustrate the impact of different
parameters, such as utilization bound (𝑈/𝑐), number of tasks
(𝑛), edge percentage (𝑑), and the number of cores (𝑐) on the
task schedulability (acceptance ratio). Fig. 10 represents the
effect of each parameter, while the others are fixed, to analyze
how the proposed method and the methods of [22], [33] react
to each parameter. We run 1000 benchmarks for each scenario,
and report the average result. A task set is schedulable if the
real-time and power constraints are met. In general, having
more dependency between tasks, large system utilization, or
more cores, causes the system to have less acceptance ratio in
our proposed method. We discuss the observation in detail.

From the perspective of utilization bound, we fix other pa-
rameters to see the effective of varying utilization in Fig. 10a.
Increasing the utilization while the number of tasks is fixed
(𝑛= 50), means that the tasks execution time tends to be longer.
when the utilization is getting higher, the computation time of
cores is increased. Therefore, fewer task sets can be scheduled
before their deadlines even in the case of fault occurrence, and
also, the managing of power constraint and busy/idle times
of cores would be difficult. We can conclude that fewer task
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Fig. 10: Normalized acceptance ratio under different scenarios in different methods

sets can be scheduled before their deadline, while the power
constraint is not violated. This trend is also the same with [22],
[33] with the difference that the TDP constraint is violated
several times, which causes the task sets not to be schedulable.

Besides, Fig. 10b shows that the task schedulability is
increased by increasing the number of tasks, with 𝑑= 10%,
𝑈/𝑐= [0.5,0.75), and 𝑐= 8. Since the system utilization is
constant for all number of tasks, the execution time of tasks is
reduced by increasing the number of tasks. Therefore, the tasks
tend to finish their execution early and allow their successors
to be released. Furthermore, the overhead of re-executing a
task due to fault occurrence is much lower for small tasks.
According to Fig. 10b, we conclude that our method can
schedule 70% of task sets, on average, when only the number
of tasks is varied. Besides, by increasing the number of tasks
in the methods of [22], [33], the parallel task execution is
increased, which causes more peak power consumption, and
therefore, less task schedulability due to the TDP violation.

For the case of varying the edge percentage, when the
dependency between the tasks is increased, while 𝑛, 𝑈/𝑐 and
𝑐 are constant (𝑛= 50, 𝑈/𝑐= [0.5,0.75), 𝑐= 8), the release
time of tasks is increased, because tasks must wait for more
predecessor tasks to finish their executions. Therefore, the
idle time on cores increases, which causes more delays in
the execution of tasks, and reduce the schedulability. Fig. 10c
shows that the highest schedulability (73%) is achieved in our
method when 𝑑=1%. Fig. 10d shows the effect of varying the
number of cores in the system on task schedulability when
other parameters are not changed (𝑛= 50, 𝑈/𝑐= [0.5,0.75),
𝑑= 10%). By considering the fixed 𝑈/𝑐, the utilization is
increased by increasing the number of cores. Consequently,
the execution time of tasks is increased because the number of
tasks is fixed. As mentioned earlier, the task schedulability is
decreased by increasing the tasks’ execution time. Therefore,
as can be seen in Fig. 10d, the schedulability of applications
with our proposed method decreases by increasing the number
of cores, while the other parameters are fixed. Besides, in
methods of [22], [33], the acceptance ratio increases by
increasing the dependency between tasks and having more
cores in the system. The reason is that based on their mapping
and scheduling algorithm, by increasing the edge percentage
and number of cores while fixing other parameters, tasks
have less parallelism, and also fewer cores are selected to
be active to execute the tasks, which causes the system to
have less peak power consumption and therefore, a higher
acceptance ratio. As a result, by increasing the edge percentage
for more than 20%, our proposed method and method of [22],
[33] have almost the same acceptance ratio. However, the

mapping and scheduling algorithm of [22], [33] increases the
overheating problem, which is not acceptable by most safety-
critical systems. In addition, since methods of [22], [33] are
not peak-power aware, when the number of cores is less, the
TDP is violated in most of the task sets and therefore, these
task sets are not schedulable.

In the end, the acceptance ratio of our proposed method is
74.14% on average for all scenarios, while it is 31.1% in the
methods of [22], [33].

7) Investigating Different Approaches at Run-Time: Now,
we evaluate the system behavior at run-time in terms of
peak power consumption for our proposed approach and the
method proposed in [22], [23], [33]. Researchers in [33] have
presented a run-time method to reclaim the available slacks
and reduce the V-f levels of cores to decrease the system peak
power. Here, analogous to [33], the actual execution time of
tasks follows the normal distribution with the mean and stan-
dard deviation of 3×𝑊𝐶𝐸𝑇

4 and 𝑊𝐶𝐸𝑇
12 , respectively. Fig. 11

depicts the run-time power trace of methods for a random task
graph with 𝑑 = 10%, 𝑛 = 50, 𝑐 = 8 and 𝑈/𝑐 = 0.9. The system
switches to the HI mode by forcing a randomly selected HC
task to execute beyond its lowest WCET for both methods. As
shown in this figure, the system peak power in the proposed
approach is less than the TDP constraint at run-time, while
the method of [22] has violated the TDP for a period of time.
Although the system peak power of [33] may be less than the
TDP constraint for some applications like the used task graph
and their method consumes less energy in the system, there
is no guarantee for the peak power to be less than the power
constraint. Due to the using of DVFS technique in [33] and
decreasing the V-f levels at run-time, the system consumes
less energy in comparison with our proposed method. For
the example of Fig. 11, the method of [33] saves 0.74102𝐽
in system compared to our proposed approach. However, the
DVFS technique degrades the reliability and increases the fault
rate. The fault rate depends on the system’s voltage level,
and also, the application’s reliability depends on the voltage
level and tasks’ WCET, which is increased by reducing the
frequency level [43]. As an example, for this task graph, by
considering the fault rate 𝑓 = 10−4 [37], the reliability of tasks
has been decreased 0.17% and 2.08%, on average and worst-
case in comparison with our proposed approach. In addition,
the number of nines for the system’s reliability (−𝐿𝑜𝑔1−𝑅𝑒𝑙

10 )
has been degraded from 8 to 6, which may not be desirable
for most safety-critical applications [2].

From the perspective of system’s reliability and fault-
tolerance in our proposed method, we run the 1000 task graph
applications for different normalized utilization bound (𝑈/𝑐=
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Fig. 11: System power trace of different methods at run-time

[0.5,0.75), and [0.75,1]) and compare to the system’s reliability
in [33]. In our proposed method, −𝐿𝑜𝑔1−𝑅𝑒𝑙

10 for the normalized
utilization equal to [0.5,0.75), and [0.75,1], is 8.56 and 7.67
on average, respectively, while for [33], is 4.99, and 4.60,
respectively. As a result, based on the required reliability for
safety-critical systems, the method of [33], which decreases
the V-f levels, has severely damaged the system’s safety, which
is not desirable. The reliability of the proposed approach is
high for different utilization. Therefore, our method can be
applied to any application with varying bounds of utilization
while satisfying the peak power management, fault-tolerance,
and high reliability in different system operational modes.

Besides, we have evaluated the proposed method and com-
pared with the other methods at run-time by using the real
task graph in Appendix E.

VI. CONCLUSION

This paper has proposed an approach to schedule MC tasks
in fault-tolerant systems in different operational modes to
manage peak power by considering a thermal management
policy. At run-time, depending on the fault occurrence possi-
bilities and criticality mode changes, the system faces different
scenarios. We proposed an approach that develops a tree of
schedules at design-time. Each node of the tree represents a
scenario and contains scheduling where the system is able
to execute all HC tasks and as many as possible LC tasks
without violating the TDP. At run-time, a low overhead online
scheduler selects the proper node to map and schedule tasks.
The results show that the proposed technique can schedule
74.14% of task sets on average and significantly reduce peak
power consumption (by guaranteeing the TDP constraint) in
the worst-case scenario compared to the existing methods.

As a future work, we would design the MC systems to gen-
erate the scheduling tree based on tasks’ average execution
times instead of WCETs to improve the QoS in the HI mode.
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APPENDIX A
A BRIEF OVERVIEW OF FAULT DETECTION AND

CORRECTION MECHANISMS

Researchers in [10], [30], [41], [48] give a comprehensive
study in the field of fault detection and correction mechanisms.
A comparison of recent mechanisms has been studied recently
in [49]. In general, the key to these mechanisms is using
redundancy, which could be information, hardware, time, or
analytical. In the following, we present these mechanisms
briefly, which have been used in recent works in the field
of embedded real-time systems.

• Hardware Redundancy: Hardware redundancy is one of
the most useful mechanisms to detect and correct a fault
in embedded real-time systems, that can be classified as
active, passive, and hybrid [10], [48]. Duplication is the
most straightforward fault detection active redundancy,
where two copies of a task are executed, and in the
case of fault occurrence, the results of the two copies
are not identical. However, this technique cannot tolerate
faults. Therefore, N-modular redundancy with a voter and
replication are passive redundancy and can be used to
detect and correct the faults in applications, used recently
in [31], [37]. Watchdog timer and standby sparing are
the other hardware redundancy techniques that standby
sparing has been used in [50] recently.

• Timing Redundancy: Check-pointing and rollback-
recovery is one of the most common techniques to
detect transient faults in embedded systems due to its
cost-effectiveness [43]. When faults are detected, the re-
executed technique can be used to tolerate it. Finding the
optimum number of check-points during the execution of
tasks is one of the challenges when this technique is used.

• Information Redundancy: This redundancy is a software-
based technique in which error detection codes or parity
bits can detect and recover the faulty data. Some recent
works like [51], [52] have focused on mitigating the soft
errors by using the information redundancy.

• Analytical Redundancy: A few recent research
works [53]–[55] have focused on detecting fault
based on deep learning. The reason for using Machine
Learning (ML) techniques is that some faults may not
be detected by existing methods, which are applied at
design-time and employed at run-time, and then a failure
in identifying the error may have serious consequences.
The ML mechanisms are classified into two categories
of data driven-based, such as unsupervised learning, and
knowledge driven-based such as reinforcement learning.
Since the embedded MC systems are safety-critical,
detecting faults must have low latency to not impact the
tasks’ deadlines. In addition, since these systems are
embedded, the chosen ML technique must be low-power.
In general, any learning technique has some advantages
and disadvantages. Therefore, the designer can select the
proper technique based on the feature of the systems.
Additionally, researchers in [56] have studied ML-based
fault detection, prediction, and prevention and presented
a survey of ML solutions.

APPENDIX B
TIME COMPLEXITY ANALYSIS

In this section, we consider an m-core processor running
an application with n tasks, and k possible fault occurrences
during the application’s execution. At first, we describe the
complexity of generating a tree as the main computation part
of the proposed method.

When an HC task overruns, the system switches to the
HI mode, and the scheduler considers the high WCET of
remaining tasks until complete execution of the application.
So, in each execution, only one task may overrun, and the
possible scenarios for overrun situations are equal to the
number of HC tasks (𝑛𝐻 ). Furthermore, we assume that up
to k faults may occur during the execution of the application.
For clarity, we first compute the number of different fault
occurrence scenarios for k = 0, 1 and 2. Then, we present
a general formula to obtain the maximum number of possible
scenarios (nodes of the tree).

• k = 0: In this case, there is one scenario for a situation
where none of the tasks overruns (the root of the tree)
and 𝑛𝐻 (number of HC tasks in the graph) scenarios for
situations where one of the HC tasks overruns (leaf nodes
of the tree). Thus, the number of all schedules is:

𝑇 (𝑘 = 0) = 1 + 𝑛𝐻 (10)

• k ≤ 1: In this case, the tree has 𝑇 (𝑘 = 0) nodes to handle
𝑘 = 0 scenarios, in addition to the nodes which contain
scheduling for 𝑘 = 1 scenarios. There are three possible
situations for the scenarios where one fault occurs to a task
(HC or LC task). There are 𝑛 scenarios for situations when
no HC task overruns, 𝑛 × 𝑛𝐻 scenarios for situations where
the faulty task executes before an HC task overruns, and
𝑛 × 𝑛𝐻 scenarios situations where the faulty task executes
after an HC task overruns. Therefore:

𝑇 (𝑘 ≤ 1) = 𝑇 (𝑘 = 0) + 𝑛 + 2 × 𝑛 × 𝑛𝐻
= 1 + 𝑛𝐻 + 𝑛𝐻 × 𝑛 + 𝑛 × (1 + 𝑛𝐻 )
= 1 + 𝑛𝐻 + 𝑛𝐻 × 𝑛 + 𝑛 × 𝑇 (𝑘 = 0) (11)

• k ≤ 2: In this case, the tree has 𝑇 (𝑘 ≤ 1) nodes to handle
𝑘 ≤ 1 scenarios, in addition to the nodes which contain
scheduling for 𝑘 = 2 scenarios. There are four possible
situations for the scenarios where two faults occur to one
or two task(s). There are 𝑛2 scenarios for situations when
no HC task overruns, 𝑛 × 𝑛 × 𝑛𝐻 scenarios for situations
where the two faulty tasks are executed before an HC task
overruns, 𝑛𝐻 × 𝑛 × 𝑛 scenarios for situations where the two
faulty tasks are executed after an HC task overruns, and
𝑛×𝑛𝐻 ×𝑛 scenarios situations where an HC task overruns in
the middle of two faulty tasks. It is noteworthy to mention
that there are scenarios in which both faults and overrun
happens on a one HC task (similar to S7, S10, S12 and S14
in Table II). Therefore:

𝑇 (𝑘 ≤ 2) = 𝑇 (𝑘 ≤ 1) + 𝑛2 + 3 × 𝑛𝐻 × 𝑛2

= 1 + 𝑛𝐻 + 𝑛𝐻 × 𝑛 + 𝑛𝐻 × 𝑛2 + 𝑛 × 𝑇 (𝑘 ≤ 1) (12)
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Therefore, we can conclude that the maximum number
of possible schedules by considering maximum k fault
occurrence is:

𝑇 (𝑘) = 1 + 𝑛𝐻 (
𝑘∑︁
𝑖=0
(𝑛𝑖)) + 𝑛𝑇 (𝑘 − 1), 𝑇 (0) = 1 + 𝑛𝐻 (13)

By solving the Eq. 13, we can conclude that generating the
tree is in order of 𝑂 (𝑛𝑘+2).

𝑇 (𝑘) = 𝑛𝐻 × (
𝑘∑︁
𝑖=0
((𝑖 + 1) × 𝑛𝑖)) + 1 − 𝑛𝑘+1

1 − 𝑛 (14)

Please note that this value is a general upper bound for
the generating tree algorithm, and for an actual task graph,
the total number of scenarios is less than Eq. 13. The reason
is that, the total number of scenarios are presented with no
awareness of the exact dependency between tasks to count the
precise number of scenarios when a fault occurs and then a
task overruns, or vice versa. For example, there are 14 different
scenarios for two HC tasks, one LC task, and k=1 for the task
graph presented in Fig. 2, while 𝑇 (𝑘) is equal to 18 in Eq. 13.

APPENDIX C
MEMORY SPACE ANALYSIS

In this section, we discuss the memory space needed for
storing the scheduling tree. For each scenario, we store two
arrays with the size of the number of tasks. The first array
determines the core assigned to each task, and the second
array determines the start time of the tasks. In the first array,
we denote that each task is mapped to which of 𝑐 cores. So,
each task requires log𝑐2 bits. Since we have n tasks in the
application, the total memory space required for each scenario
is 𝑛 × log𝑐2 bits. Considering the period of the application and
the size of each time slot, the second array size is equal to
𝑛 × log𝑝𝑒𝑟𝑖𝑜𝑑/𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡2 . Therefore, the total amount of needed
memory (bits) is:

𝑀𝑒𝑚(𝑛, 𝑐, 𝑘) = 𝑇 (𝑘) × (𝑛 × (log𝑐2 + log
𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡

2 ) (15)

Assuming c and period/timeslot values are less than 232,
the memory space needed for saving the scheduling tree for
an application with 32 tasks and up to two possible fault
occurrences in the worst-case scenario is less than 13 MB. It
is noteworthy to mention that the scheduling tree can be stored
in the FLASH or read-only memory of the system, and there
is no need to load the whole tree to the RAM at run-time. In
the case of fault occurrence or mode switching at run-time, the
system discards the current schedule and loads the proper child
node’s schedule into the RAM. In this example, our approach
occupies less than 2 KB of the RAM.

APPENDIX D
POWER TRACE AND THERMAL DISTRIBUTIONS OF THE

REAL APPLICATION AND A RANDOM TASK GRAPH
EXAMPLE UNDER WORST-CASE SCENARIO

This paper focuses on peak power management and maxi-
mum temperature reduction in fault-tolerance MC systems in
multi-core platforms. We have evaluated different methods for

(a) Proposed Method (b) [22], [33] (c) [23]
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Fig. 12: Thermal profiles of real-life application graph (CC) in different
methods under worst-case scenario

a real-life task graph running on three cores in Section V-B3.
In this appendix, we first show the thermal distribution of
the real-life application, and then, we show the corresponding
results for a random application with high utilization.

Fig. 12 shows the steady-state temperature distribution of
Sooci [23], Medina [22], Ranjbar [33], and our proposed
method using the HOTSPOT simulator for the CC application,
corresponding to power profile of Fig. 7. Although the maxi-
mum temperature of [23] is lower than ours, it has zero-percent
LC tasks’ QoS because it does not execute any LC task in the
HI mode. In addition, we map the tasks on the cores more
uniform than the Medina’s method, which prevents hotspots
in our approach. The proposed approach could reduce 5◦C in
maximum temperature compared to [22], [33]. If the system
becomes larger in terms of number of cores and tasks, the
efficiency of our proposed approach in reducing the hotspots
would be higher.

Now, we evaluate the power trace and thermal distribution of
different methods of [22], [23], [33] and our proposed method
for a random task set example in the worst-case scenario, in
terms of execution times and power consumption. It should be
noted that the scale of temperature for each method is different
in Fig. 14. Since we have generated many task graphs with
different values of parameters (n, d, c and U/c), we choose
one of the random task graphs with 𝑑 = 10%, 𝑛 = 50,
𝑐 = 8 and 𝑈/𝑐 = 0.9, which needs a high computational
demand to show the results. Fig. 13 shows the power traces,
and Fig. 14 shows the thermal distribution of the methods.
As can be seen in Fig. 13, the peak power consumption is
violated some times in the method of [22], [33], and since the
method, of [23] drops all LC tasks in the HI mode, which is
not desirable, the task set finishes its execution earlier and also
has less peak power consumption. Besides, Fig. 14 depicts
that the thermal distribution has not been managed in [22],
[33], while our approach reduces the hotspots and lowers the
maximum temperature by 22.3◦C in this example. Although
the maximum temperature of [23] is lower than ours, the LC
tasks’ QoS is zero since no LC tasks are executed in the HI
mode.

APPENDIX E
POWER TRACE OF REAL-LIFE APPLICATION GRAPH (CC)

WITH DIFFERENT METHODS AT RUN-TIME

Section V-B7 discussed the system behavior when the tasks
finish their execution earlier than their worst-case execution
time (WCET). The method of [33] uses the same task mapping
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Fig. 13: Power trace of a random task graph in different methods under worst-
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Fig. 14: Thermal profiles of a random task graph example in different methods
under worst-case scenario

and scheduling algorithm of [22] at design-time and reduces
the peak power by reclaiming the dynamic slack times at run-
time (the difference between the WCET and actual execution
time) and decreases the operating voltage and frequency
level of cores while executing the tasks. We have analyzed
our proposed method compared to different methods for an
example in Section V-B7. Since we have used a real-life
task graph (Cruise Controller (CC)) to evaluate our proposed
method, here we show the run-time system behavior for the
real task graph in Fig. 15. As shown in this figure, the approach
of [22] still violates the power constraint (TDP), and since
the approach of [33] has applied the DVFS technique, the
peak power consumption has been reduced. However, the
approach of [33] has degraded reliability due to the use of
DVFS technique, which is not desirable for safety-critical
applications. In addition, our proposed method could manage
the peak power consumption in this real task graph, and also,
since the method of [23] has dropped all LC tasks in the HI
mode, the peak power consumption is also less than the TDP
constraint.
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