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ABSTRACT
Among the SAT-resilient logic locking techniques, the Stripped-
Functionality-Logic-Locking (SFLL) is the most promising solution
which can guard the intellectual property against approximate, sen-
sitization, SAT, and structural attacks which target Point-function
techniques. However, even the SFLL technique has been shown to
be vulnerable to a recent class of structural attacks that identify
the perturbation logic. In this paper, we first categorize all possible
classes of attacks on SFLL. Then we propose ENTANGLE , a novel
logic locking technique built upon SFLL that can resist all of these
attacks, including the emerging ML-Based attacks. We test our tech-
nique against publicly available SFLL attacks. The implementation
results show that ENTANGLE can secure large-sized industrial cir-
cuits with an average overhead of 11.6 percent and 9.1 percent for
area and power, respectively.
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1 INTRODUCTION
Logic locking is a holistic design-for-trust technique that can shield
the IP through different stages of the IC supply chain. This tech-
nique locks the design by adding new logic elements to the circuit,
hiding the true functionality of the design. The locked design only
functions correctly upon receiving a true set of key bits stored in
a tamper-proof on-chip memory. The preliminary logic locking
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techniques [3] [4] [14] utilized XOR/XNOR gates to bring the most
corruption to the output of the circuit if the wrong key is in place.
However, these early approaches were broken by Boolean satisfia-
bility (SAT)-based attack [12]. To overcome this powerful attack,
two new classes of logic locking techniques emerged. The first
class is SAT-hard techniques that insert structures in a netlist that
are hard to resolve for a SAT solver [5]. The second class is Point-
function based techniques [15] [2] that maximizes the number of
clauses of the SAT attack.

Figure 1 is an overview of the Point-function techniques that
contain an original design unit and a protection unit defined with
blue color. The primary inputs (PIs) of the design unit are divided
into two protected (𝑋𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ) and unprotected (𝑋𝑢𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ) sets.
Here the protected set is fed to the Point-function along with the
key set (K) containing key inputs (KIs) to flip the design output
upon arriving particular combinations of the key and protected
input. If the protected inputs are equal to the key inputs, the Point-
function outputs one that flips the output of the design. In these
circuits, the attack would need 2𝑘 + 1 different input patterns to
break the circuit. In these techniques, the correct key is hard-coded
in the Point-function.

These techniques are vulnerable to approximate and structural
attacks [8] [10]. As the name suggests, the aim of approximate at-
tacks is to find a key pattern that can unlock the biggest functional
subset of the circuit (an approximate circuit). Moreover, these tech-
niques leave the original design (design unit in Figure 1) without
any changes that expose the circuit to the structural [17] attacks.

To overcome the approximate attack, one can intertwine these
techniques with one of the early logic locking techniques like SLL
(Strong logic locking) [14]. However, variants of SAT-attack like
AppSAT [8], and DIP [10] can break these methods. In structural
attacks, the attacker can follow the transitive fan-out cone of KIs
to identify the protection blocks and, ultimately, the output of the
Point-function unit that corrupts the output of the circuit. Note that
the fundamental flaw of the Point-function techniques is rooted in
the complete separation of the protection circuit and the original
design.

Stripped-functionality-logic-locking (SFLL) [16] is a powerful
tunable technique that can address both the approximate and struc-
tural attacks which target Point-function techniques. By stripping
the functionality of the original design for some input patterns
and restoring the original functionality using the restore unit, the
SFLL compensates for the main weakness of the Point-function
techniques. However, the perturb unit leaves particular structural
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and logical traces. Consequently, emerging netlist analysis-based at-
tacks [13] [11] [1] identify the add-on logic, and enable the attacker
to circumvent the protection logic.

Contributions: Considering the above discussion, a secure lock-
ing technique that can guard the circuit against all SAT, approximate
and structural attacks is demanding. The contributions are:

(1) We introduce ENTANGLE that minimizes the structural and
logical traces of the perturb unit without relying on the
security-agnostic EDA tools.

(2) To further fortify ENTANGLE, we present two tunable cloak-
ing methods that can hide the perturb unit by differentiating
the transitive fan-in cone of the restoration and perturb units.

(3) We compare ENTANGLE with the original SFLL regarding
the security properties against SAT, approximate, and struc-
tural attack using state-of-the-art attacks [13] [11] [1].

2 PRELIMINARIES
The goal of an SFLL technique is to modify the original design
for some input patterns that are hamming distance h from the
protected pattern using an add-on protection unit called perturb.
The protected pattern contains a subset of PIs. Only upon placing
the right key in the restore unit, the original functionality of the
circuit will be restored. This way, SFLL becomes resilient against
removal attacks. Figure 2 shows an overview of the SFLL technique.
This protected circuit contains design (gray), perturb (orange), and
restore (blue) units. Like the Point-function technique, the PIs of
the design unit are divided into two protected (𝑋𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ) and
unprotected (𝑋𝑢𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ) sets. The protected set is fed to both
perturb and restore units. The key set (K) containing KIs is only
fed to the restore unit, which outputs one if the KIs are hamming
distance h from the PIs coming from the protected set.

The perturb unit outputs one (PP=1) for all the PIs that are
hamming distance h from the protected pattern that is hard-coded
in this unit. When 𝑃𝑃 = 1, the output of the original design (Yfs)

is flipped by the perturb unit. The restore unit can correct these
perturbations if the KIs are equal to the protected pattern. So, in
the SFLL, the correct key is equal to the protected pattern. The final
output of the circuit is incorrect for

(𝑘
ℎ

)
combinations of KIs for

each PIs combination where k is the number of key bits[16]. Here
inferring the key from the restore unit would be impossible as the
protected pattern is hard-coded in the perturb unit. A designer can
leverage hamming distance value to bring a trade-off between SAT
and approximate attacks based on the security needs that give an
edge to the SFLL over other post-SAT logic locking techniques.

2.1 Threat Model
Before discussing the SFLL weaknesses, we first have to clarify our
assumptions about the attacker. We assume the attacker has access
to the gate-level locked netlist, an unlocked chip (oracle), technol-
ogy library, hamming distance in SFLL-HD, and can distinguish
between primary inputs (PIs) and key inputs (KIs).

2.2 SFLL Fundamental Structural Weaknesses
Considering the threat model, the attacker can utilize the following
weaknesses to initiate and carry out an attack:

1) The main structural weakness of the SFLL roots in using the
same set of PIs in both restoration and perturb units. By tracing
the KIs and finding the transitive fan-in cone of the restoration
unit, all the PIs participating in a protected pattern can be found.
Moreover, the tip of the restoration unit cone is connected to the
protected output. The attacker can utilize this knowledge to prune
the cone of the protected output and find the signals fed only by
the previously found PIs. Some of these signals will be the signals
related to the perturb unit.

2) Perturb unit uses a hamming distance checker to strip the
output. Knowing the value of the hamming distance and the PIs
relevant to the protected pattern, the attacker can search for a
structure that looks like a hamming distance checker. This unit
usually has a symmetrical and tree-like structure.

3) Each key is XORed/XNORed with a particular PI from the
protected set. so if the attacker can find the protected pattern, each
bit of the correct key is equal to its relevant PI in the restore unit.

4) PP has some logical properties like low activity that can be
harnessed for pruning suspicious signals.

2.3 Attacks on SFLL
The structural flaws of the naive implementation of the SFLL have
guided researchers to propose netlist-analysis based attacks[13]
[11] [1]. We categorize the existing and anticipated attacks into
two classes.

Class A: The first class is algorithmic attacks. The main goal
of these attacks is to find the perturb signal (PP) and utilize it to
extract the correct key. All these attacks start with finding PIs in
the protected pattern set and the protected output of the circuit
by analyzing the transitive logic cone of the restore unit. Then,
the algorithms search for signals in the logic cone of the protected
output. If it finds a signal that its transitive fan-in contains all the
PIs in the protected set and no other PIs, it marks it as a suspicious
signal. One of these suspicious signals is the perturb (PP) signal. The
algorithms continue with pruning these suspicious signals knowing
the properties of the perturb signal. Finally, the algorithms use SAT
solvers to find the input patterns that set the perturb signal to logic
one and infer the key from these input patterns.
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Class B: The second class is ML-based attacks that harness the
power of graph neural networks (GNNs) to classify the circuit
gates. GNNUnlock [1] utilizes GNN to learn the structural features
of the add-on protection units. Then it classifies the gates into
three classes, perturb, restoration, and design. After sorting out the
misclassifications using a post-processing algorithm, the original
design gates would be separated from the protection-related gates.
Finally, the attacker searches for the output of the perturb and
restore units separately. Putting these signals to constant value
zero, the attacker can circumvent the SFLL.

3 ENTANGLE
Motivation: The naive implementation of the SFLL that relies
only on the security-agnostic EDA tools to hide the perturb unit
is vulnerable to all classes of attacks. To overcome the structural
weakness of the SFLL, [6] was proposed. This technique utilizes
fault injection techniques to break the structural traces of the per-
turb unit; however, it brings an infeasible LUT footprint that is
impractical to implement. Moreover, it cannot protect a large num-
ber of patterns as SFLL-HD. The authors in [7] tried to compensate
the LUT footprint; nevertheless, their technique is only as powerful
as TTLock that is vulnerable to simple approximate attacks.

We present ENTANGLE that retains the security properties of
the SFLL and eradicates the reliance on security-agnostic tools to
blend the perturb unit from the attackers.

3.1 Design and analysis
ENTANGLE breaks the perturb signal into two signals coming
from separate cones and then entangles them with the output of
the original circuit. Figure 3 shows the ENTANGLE-TTLock and
-HD. In both these designs, the protected pattern is set to logic
<1,1,1,1>. In ENTANGLE-TTLock, the last stage of the AND-tree is
removed, leaving two separate AND-tree (red-colored ANDs) with
different PIs in their logic cones. For ENTANGLE-HD the value of
the hamming distance is separated into h1, and h2 bits and each
set of bits is compared with the corresponding bits of the intended
hamming distance. If both the PP1 and PP2 signals are equal to logic
1, the perturb unit should flip the Yfs, which is the output of the
original circuit. In other cases, the output of the perturb unit should
be the Yfs itself.

ENTANGLE preserves all the security properties of the SFLL
against SAT and approximate attacks as the functionality remains
the same. In the following, we analyze the security promises of the
ENTANGLE against two classes of attacks introduced in Section 2.3.

Class A: The algorithmic attacks search for special signals that
contain all and only the protected PIs (PIs in the protected set). In
ENTANGLE-TTLock, each PP1 and PP2 contains just a portion of
the protected PIs, so the algorithms do not mark these signals.

If the hamming distance is greater than zero (𝐻𝐷>0) the attacks
can mark both PP1 and PP2 as suspicious signals. Nevertheless,
each of these signals can be set to logic 1 with combinations of the
protected set that will set the original PP signal to zero. As a result,
the algorithms prune these signals from the suspicious list. For ex-
ample, the SlidingWindow [11] algorithm in the FALL attack finds
distinct satisfying assignments for the suspicious signal. Then it in-
fers that if the two satisfying assignments are of hamming distance
2h then the equal bits in both patterns are equal to corresponding
key bits. It then adds the new clause to the SAT query. Because in
ENTANGLE each of the PP1 and PP2 contains part of the protected
pattern, they will be pruned like other suspicious signals as the
SAT query will contain inconsistent clauses [11]. The same goes for
all other algorithmic attacks, including SFLL-HD-Unlocked. They
ultimately come up with some inconsistent clauses that force the
algorithm to prune the PP1 and PP2.

Class B: An ML-based attack aims to classify the design nodes
(logic gates) to remove the nodes relevant only to the protection
unit(s). GNNUnlock classifies the circuit nodes into the design, per-
turb and restore nodes utilizing graph neural networks. To rectify
the misclassifications, it utilizes a post-processing algorithm.

In the case of ENTANGLE-TTLock the final stage is broken into
two AND-trees. Each of these trees contains an arbitrary number of
the PIs from the protected set. Moreover, the points of connection
between these two AND-trees are the majority unit and the NAND
gate containing Yfs as one of their inputs. So, there will be no node
in the design with a transitive fan-in cone containing only all the
perturb nodes and protected PIs. Moreover, the structural traces of
the AND-trees can be broken using techniques like DTL [9] that
further obfuscate the perturb unit.

Like ENTANGLE-TTLock, finding the tip of the perturb unit in
ENTANGLE -𝐻𝐷>0 is not possible as the PP1 and PP2 signals are
entangled with the Yfs. However, unlike the ENTANGLE-TTLock



where the structural traces of the perturb unit could be cloaked en-
tirely, ENTANGLE-𝐻𝐷>0 leaves traces in PP1 and PP2 signals. The
hamming distance checker is composed of a set of XOR gates, an
adder unit, and a comparator. Also, the ENTANGLE-𝐻𝐷>0 breaks
the comparator structure; the adder structure containing all pro-
tected PIs still exists in the design. So a well-trained GNN may still
recognize almost all the perturb nodes. To further obfuscate the
ENTANGLE-𝐻𝐷>0, we propose two cloaking techniques.

3.2 Cloaking techniques
Dummy logic: This technique brings some PIs to the perturb unit
that are not incorporate in the protected set that can weaken both
classes of attacks. Figure 4 shows this cloaking unit. It adds one
hamming distance checker and two Multiplexers to the HD checker
unit of the ENTANGLE. Signal DS is formed by arbitrary nodes
from the design unit. The only limitation is that these arbitrary
nodes must contain at least one PI from the unprotected set in
their transitive fan-in cones (like e in Figure 3). This signal blends
with the protected PIs at the adder unit of the hamming distance
checker. If the output of the adder is h+1, then the output of the
HD checker should be equal to a set of two elements {DS,DS}.
Otherwise, the output of this logic is equal to the default HD checker
of the ENTANGLE.

This technique can misguide the post-processing of the class B
attacks. The post-processing algorithm in [1] checks all the classi-
fied nodes and if one of the nodes marked as perturb contains any
PI other than the protected set members in their transitive fan-in
cone, it reclassifies it as a design node. So this technique misleads
the post-processing algorithm to misclassify some of the perturb
nodes connected to the HD checker unit in Figure 3.

Dummy key bit:Dummy key bit conceals the perturb unit by
connecting PIs from the unprotected set to the restore unit using
a dummy KI. Figure 5 shows an example of this technique. Here
the inner logic contains some arbitrary logic elements containing
exactly one PI from the unprotected set. Feeding the cloaking unit
with the correct dummy key bit must set the output of the cloaking
unit to zero. This way, it does not affect the hamming distance
checker. Since the add-on unprotected PIs are connected to new
KIs, the attacker cannot distinguish them from PIs coming from
the protected set.

The above two techniques can be used in conjunction to mis-
guide the post-processing algorithm. Consider set S is a set of the
arbitrary nodes that form the DS signal in the dummy logic tech-
nique. All these nodes will be misclassified as perturb nodes by
the GNN. Now, consider these arbitrary nodes have a set of U PIs
from the unprotected set. If all the members of U are connected to
the restore unit using dummy keys, the post-processing algorithm
cannot correct this misclassification. Moreover, the other design
nodes that are only connected to the members of the S will be
misclassified as perturb nodes by the post-processing algorithm.

The dummy key bit only affects the restore unit. To analyze the
effects of this technique on the approximate attack, the OER (output
error rate) of the ENTANGLE for each incorrect key should be
considered. This OER can be calculated based on hamming distance,
number of key bits, and number of dummy key bits.

For examining the SAT resiliency of the ENTANGLE after adding
dummy key bits, we have to compare it with the case that we add
the same number of real key units (a KI XORed with a PI). If we
add 𝛼 number of real key units to the restore unit, each pattern
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incorrect keys in each SAT iteration. In our design,

when adding dummy keys, the worst case happens when all the
inner logic elements of the cloaking units output ones. In this case,
we can calculate the number of incorrect keys that SAT attack finds
in each iteration (1). This number can be equal, worse, or better
than the case of adding real key units based on the values of k, h,
and 𝛼 . (
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4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
For the evaluation of the ENTANGLE we implement our technique
on ISCAS’85 and ITC’99 benchmarks. We used two small (C531,
C7552), two medium (b14, b15) and two big (b21, b22) circuits. All
the attack codes have been compiled and run on a single node with
Intel processor running at 4GHz and 12 GB of RAM with UBUNTU
20.04.3. For reporting area, power, and delay (APD) overheads, we
use Cadence Genus along with 45nm NanGate Open Cell Library.

4.2 Security Analysis
Class A: To investigate the effectiveness of the ENTANGLE against
the FALL [11] and SFLL-HD-Unlocked [13] attacks we secured the
benchmarks using 𝐸𝑁𝑇𝐴𝑁𝐺𝐿𝐸 −𝐻𝐷𝑘=64. Both attacks were able
to find all the members of the protected input set successfully;
however, both algorithms terminate in less than 20 seconds because
they could not identify any potential candidates as (PP) signal. The
reason lies in the fact that ENTANGLE breaks the single signal (PP)
that contains all the relevant combinations of the protected pattern.
As a result, these algorithms fail in finding a single signal with
intended properties rendering the ENTANGLE resilient against
class A attacks.
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Figure 6: Area and power overhead for dummy key bit technique for ENTANGLE with k=64

Class B: For ML-based attacks, we added a dummy logic unit
to the C7552 benchmark using the same training set as [1]. We
observed that by increasing the number of arbitrary nodes incorpo-
rated in forming theDS signal, theMacro F1-Score starts to decrease
for 𝐸𝑁𝑇𝐴𝑁𝐺𝐿𝐸 − 𝐻𝐷𝑘=64. We then added dummy key units to
the restore unit with the same PIs that are in the transitive fan-in
cone of the DS signal. By following the DS signal, we infer that the
post-processing algorithm misclassifies at least 36% of the perturb
nodes as design nodes, among them PP1 and PP2.

4.3 Overhead Analysis
ENTANGLE : Table 1 shows the area, power, and delay overhead of
𝐸𝑁𝑇𝐴𝑁𝐺𝐿𝐸 −𝐻𝐷𝑘=64 compared with the original design for k=64.
As can be seen, the overhead of ENTANGLE is high for smaller
circuits because of adding k-bit comparator and adder. These over-
heads become less in larger benchmarks showing that the ENTAN-
GLE fits well in large-sized industrial circuits. Note these overheads
are negligible comparing SFLL-HD [7]. The delay overhead shown
in Table 1 is the overhead in the critical path delay. As the circuit
becomes larger, the synthesis tools implement the design differ-
ently, considering the area optimization. So, the critical path may
change, or the delay of this path may decrease. That is the reason
for the negative numbers in the delay report.

Dummy key: For calculating the area, delay, and power over-
heads of the Dummy key technique, we locked c7552, b14, and b22
circuits using ENTANGLE and added 1, 4, 8 ,and 16 dummy key
bits. In our implementation, we AND each dummy key bit with a
PI from the unprotected set. Figure 6 shows the area and power
overheads for different numbers of dummy keys in the ENTANGLE
. Again, the overhead is acceptable for the larger benchmarks. We
have not reported the delay overhead because the critical path of
the circuit remained unchanged for all the implementations.

Dummy logic: The area and power overheads of the dummy
logic are mainly related to the h+1 comparator and new 1-bit full
adders, which is negligible, especially for larger circuits. However,
the delay overhead of this technique on the protected output is
directly related to the DS signal. We implemented the dummy logic
on b22_C benchmark. The area and power overheads are 1% and
0.04%, respectively. Adding dummy logic did not change the delay
of the circuit in our implementation.

5 CONCLUSION
In this paper, we proposed ENTANGLE , a new stripped-functionality
logic locking schema that can protect the circuit against the SAT,
approximate, and the state-of-the-art structural attacks designated
for SFLL. We show that breaking the tip of the perturb unit and
blending it with the design output fails the algorithmic attacks in

Table 1: Area, power, and delay overheads for ENTANGLE with k=64. Negative
values indicate improvement in specific values

Benchmark Area (%) Power (%) Delay (%)
C5315 48.36 56.71 5.6
C7552 47.26 55.23 6.3
b14_C 29.39 27.86 -2.9
b15_C 18.43 17.35 -1.8
b21_C 14.51 11.07 0.6
b22_C 8.82 7.14 -4.3

finding this signal and inferring the correct key from it. For further
fortifying the ENTANGLE against the ML-based attacks, we intro-
duced two cloaking techniques to misguide the neural network in
the classification stage. we showed that ENTANGLE can secure
the large-sized industrial circuits with an average overhead of 11.6
percent and 9.1 percent for area and power, respectively.
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