High-Throughput BitPacking Compression

Nusrat Jahan Lisa*, Tuan D. A. Nguyen', Dirk Habich*, Akash Kumar' and Wolfgang Lehner*
*Database Systems Group, TU Dresden, Dresden, Germany
nusrat.jahan_lisa@tu-dresden.de, dirk.habich@tu-dresden.de, wolfgang.lehner @tu-dresden.de
TProcessor Design Group, TU Dresden, Dresden, Germany
tuan_duy_anh.nguyenl @tu-dresden.de, akash.kumar@tu-dresden.de

Abstract—To efficiently support analytical applications from a
data management perspective, in-memory column store database
systems are state-of-the art. In this kind of database system,
lossless lightweight integer compression schemes are crucial to
keep the memory storage as low as possible and to speedup query
processing. In this specific compression domain, BitPacking is one
of the most frequently applied compression schemes. However,
(de)compression should not come with any additional cost during
run time, but should be provided transparently without com-
promising the overall system performance. To achieve that, we
focus on acceleration of BitPacking using Field Programmable
Gate Arrays (FPGAs). Therefore, we outline several FPGA
designs for BitPacking in this paper. As we are going to show
in our evaluation, our specific designs provide the BitPacking
compression scheme with high-throughput.

Index Terms—in-memory database systems; lightweight com-
pression; BitPacking; hybrid hardware systems; FPGA

I. INTRODUCTION

Nowadays, in-memory column store database systems are
state-of-the-art for analytical workloads [1], [5], [8], [12].
These systems pursue a main memory-centric architecture
approach and assume that all relevant data (base data as
well as intermediate query results) can be fully kept in the
memory of a computer or of a computer network [1], [5],
[8], [12]. To achieve that, these systems organize relational
tables by columns rather than by rows [5]. Moreover, the
values of each column are encoded as a sequence of integers
using some kind of dictionary coding [4], [12]. Then, each
sequence of integer is compressed using lossless lightweight
integer compression algorithms [2], [15]. As we have shown
in [6], [7], there is no single-best lossless lightweight integer
compression available and the decision always depends on data
as well as on hardware properties.

Nevertheless, BitPacking (BP) is one of the most frequently
applied compression schemes is this domain, showing a very
good—not always optimal—behavior for different data prop-
erties [6], [7], [15]. The basic idea of BP is to partition a
sequence of integer values into blocks and to compress the
values within each block separately by omitting leading zeros
(null suppression). The number of bits used to represent every
value in a block is determined by the effective bit width of
the largest value in that block. Thus, BP compression consists
of the following steps: (i) partition sequence of integer values
into blocks, (ii) read values in each block to determine the bit
width of the largest value in the block, (iii) read the values
again for bit packing based on the largest bit width found in the

previous step, and (iv) write packed words to output. To reduce
the computational effort for compression and decompression,
these algorithms are usually vectorized [6], [7], [15]. Thus,
the block length depends on the used vector length [7], [15].
For example, for a vector length of 128-bit, the number of
integers per block has to be 128 to get an aligned output of
compressed values [15].

However, (de)compression is always an additional process-
ing step which should not come with additional cost during run
time. Thus, (de)compression should be provided transparently
without compromising the overall system performance. To
achieve that, advances in hardware are always offering an
interesting alternative, but represent also a major challenge. At
the moment, hardware systems are more and more changing
from homogeneous CPU systems towards hybrid systems with
different computing units. In particular, hybrid hardware sys-
tems incorporating a Field Programmable Gate Array (FPGA)
and a CPU are emerging, being very interesting from a
performance perspective to specialize to functionality on the
FPGA. Additionally, FPGAs have usually direct access to the
main memory of the CPU in such hybrid systems. In contrast
to other hybrid systems like CPU/GPUs, this direct main
memory access is unique regarding the possibility to avoid the
bottleneck of copying data between the different computing
units [10], [14].

Our Contribution and Outline:

Based on that, we focus on BitPacking compression acceler-
ation by offloading such functionality to Field Programmable
Gate Arrays (FPGAs) in a hybrid hardware system setting. In
detail, we make the following contributions in this paper:

1) In Section II, we briefly outline our FPGA-based im-
plementation approach for BitPacking compression. We
mainly focus on the compression part as a first specific
step.

2) Following that, we describe our target hardware platform
and present selective results of our exhaustive evaluation
in Section IIIl. As we are going to show, our specific
FPGA designs achieve a very high memory throughput.
Since lightweight integer compression algorithms are
memory bound, we basically have focused our evaluation
on examining the specified memory throughput.

Finally, we close the paper with related work in Section IV
and a summary in Section V.

Buffer VaIues/BIoc_k__‘_:“.?

Read Values/Word :

128-bit
32-bit 32-bit 32-bit 32-bit

Or Operation

[]

Cooffll — e W

",

Packing Values/Word

Fig. 1: Custom BitPacking (CBP) Overview—Flows for Offloading Values per Pipeline Stage.

II. FPGA-AWARE BITPACKING IMPLEMENTATION

In this section, we briefly describe our developed FPGA-
aware BitPacking (BP) compression implementation and dif-
ferent hardware design approaches incorporating multiple ac-
celerators for the best possible compression throughput.

Generally, BP belongs to the Null Suppression (NS) algo-
rithm class for integer compression that means it addresses
the physical level of bits and bytes to reduce the number of
bits per integer value by omitting leading zeros [7], [15]. For
that, BP partitions a sequence of integer values into blocks
and compresses each value within the block with the same
bit width. This bit width is determined by the bit width of
the largest value per block. Thus, two similar read operations
are required—(i) for determining the bit width of the largest
value in a block and (ii) during packing the values per block.
Accessing main memory twice just to read the same set of
values is inefficient. As a consequence, an effective FPGA
option is to use internal buffers with a depth which equals the
block size to temporarily store the integer values. Additionally,
these buffers help filling up the pipeline stages in an FPGA-
aware BP implementation.

Fig. 1 illustrates our pipline-based FPGA accelerator for BP
called CBP (Custom BitPacking, whereas one DMA (Direct
Memory Access) is able to access the main memory with a
width of 128-bit. That means also, that our block size is 128.
Our CBP works as follows:

(D Read a 128-bit input word per clock cycle, each input
word contains four 32-bit integer values.

(@ Store the input word into the buffer. In parallel, to detect
the bit width of largest value, perform bit-wise OR-
operations between input words per block to create a
combined word. Afterwards, determine the width of the
combined word by finding the left-most bit of which value
is 1. This operation is done by using predefined mask
registers to achieve a constant one clock cycle latency.

(3 Packing buffer values into the output words, while each
buffer value is compressed with largest value bit width
per block by performing bit-wise Right-Shift operation.
During packing, the most significant 8-bits of each 128-

bit output word contains the bit width of the largest value
per block and the remaining 120-bit are used for packed
values.

(4 Write 128-bit output word, while one output word is fully
packed with compressed values.

In our CBP, the number of values packed per output word
in a block depends on the largest value bit width per block.
During value packing, a misalignment problem may occur
when the number of values packed per output word is not
divisible by 4 as each buffer word contains 4 values. Thus, in
order to avoid this misalignment, we categorized the number
of values packed per output word in two parts: (i) Div4—the
number of values packing per output word is divisible by 4,
(i) Div2—the number of values packing per output word is
divisible by 2. As a result, we rearranged the number of values
packed per output word for those cases which are not divisible
by 4. It is done by assigning the nearest number which is
either divisible by 4 nor by 2. For example, the number of
values packed per output word for the largest value bit width
of 7is |122| = 17, which is neither divisible by 4 or 2, and
the nearest number which is divisible by 4 or 2 is 16. Thus,
the new number of values packed per output word for this
example is 16. During packing values, the left over values per
buffer word are packed in the following output word (see 3)
in Fig. 1).

Based on this principle, we started with the development of
a simple straightforward single-data-channel based hardware
approach, where only one CBP is instantiated. We call this
Approach_1 as illustrated in Fig. 2. In this approach,
we use one DMA module (Direct Memory Access) between
main memory and our CBP, in order to reduce the load of
the processor and to reduce the latency of accessing main
memory. Afterwards, we developed multiple DMAs-based
hardware approaches called Approach_2, Approach_3,
Approach_4, where each DMA is accessing main memory
via an independent data channel (see Fig. 2). As a conse-
quence, we replicated our CBP and DMA up to 4 times as the
number of available main memory data channels on our target
system is 4.

l
4

r.

128- bltI 128-bit 128-bit 128-bit

(o Lol Lo Lov)

Main Memory Controller

128-bit 128-bit 128 blt 128 blt
Cosrd Tose] [oee] [Towrd
CBP CBP L_CBP
Approach_1
Approach_2
Approach_3

Approach_4

Fig. 2: Different Types of Hardware Approaches.

TABLE I: Different Categories of Data Sets.

Data Set Data Properties

DO uniform distribution with same value bit-width based
data

D1 uniform distribution with 20% (2 to 15) bits and 80%
(16 to 30) bits value-width based data

D2 uniform distribution with 50% (2 to 15) bits and 50%
(16 to 30) bits value-width based data

D3 uniform distribution with 80% (2 to 15) bits and 20%

(16 to 30) bits value-width based data

III. EVALUATIONS

In this section, we experimentally analyze the behav-
ior regarding memory throughput between Approach_1, Ap-
proach_2, Approach_3 and Approach_4 for different cate-
gories of data sets as BitPacking compression is data distribu-
tion dependent [6], [7]. Therefore, we generated 4 categories
of data sets as described in Table I.

Our target system—Xilinx® Zynq UltraScale+™ —is a
hybrid system containing (i) a traditional FPGA within the
Programmable Logic (PL) region and (ii) an MPSoC within
the Processing System (PS) region. For this paper, in PS region
we only considered the 64-bit quad ARM® Cortex-AS3 cores
of 1.5GHz frequency and DDR4-2666 main-memory with
the capacity of 4GB [19]. In addition, this system has four
dedicated high performance AXI interfaces to access the main
memory directly from the PL region, whereas we consider
these interfaces as data-channels in our respective hardware
approaches.

We start our evaluation with a DO category data set for
2 to 30 value bit width based data on Approach_1, Ap-
proach_2, Approach_3 and Approach_4 as illustrated in Fig.3.
Approach_1 gives a symmetric throughput of 3.8GB/s (for
the value bit width of 2 to 15) and 1.9GB/s (for the value
bit width of 16 to 30), whereas these are the read or read-
write throughput without compression for CBP, respectively.
It defines two points:

1) our proposed implementation of CBP is as fast as possi-
ble, that means the latency only depends on read/write-
operations not on compressing the values

2) as the value bit width increases, the compression ratio
decreases and after value-width 15-bit the compression

—— Approach_1
10— L Approach_2 1
—— Approach_3
z *—% —h— Approach_4
9
g/ = e - Compression Ratio
2 .‘\’*‘:\
= ||
3 [|
E 5 g N
=]
0 Y A

A | |
234567 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Value Width (#Bits Per Value)

Fig. 3: Throughput Analysis on Different Hardware Ap-

proaches for a DO Data Set.

ratio is approx. 1 (see the green curve in Fig.3)

This defines, after value bit width of 15, there is a marginal
compression happening as both input and output words may
contain the same number of values. Our other hardware
approaches achieve improved throughput compared to Ap-
proach_1 as the values are evenly distributed among the
multiple CBPs for parallel compression which increase the
throughput, except Approach_3 which provides mostly the
same throughput as Approach_2. The reason for that is,
BitPacking compresses values per block basis and the block
size is always even and divisible by the power of 2, i.e., 128,
256, 512, etc. Thus, in Approach_3 data for compression is not
evenly distributed due to block size resulting in unfavorable
parallelism which affects the memory throughput. However,
the throughput behavior in these other approaches per value
bit-width wise is not symmetrical as Approach_1. The reason
is—multiple DMAs interact with main memory in round robin
manner—while one DMA is ready to interact, main memory
may be busy with others, which affects the throughput [16].

Afterward, we evaluate all our hardware approaches for the
DI, D2 and D3 data set. As illustrated in Fig.4, throughput
in all approaches gives the maximum for D3, minimum for
DI and D2 gives in between as expected. The reason is the
value bit width based data distribution as described in Table I.
In all cases, Approach_4 is the winner among the others as
it gives maximum throughput. However, Approach_4 utilized
maximum resources (17.52% LUTs and 7.10% Flip-Flops) of
FPGAs compared to other approaches. But still, the resource
utilization on Approach_4 is below 25%, which is affordable.

Ho:
@2

10%°¢

109.4

Throughput(GB/s)

rereceeer|

Approach_1 Approach_2 Approach_3 Approach_4

Fig. 4: Throughput Analysis for DI, D2, D3 on Different
Hardware Approaches.

Finally, from all our experimental evaluations, it proves that
proper pipeline-based custom BitPacking implementation on
FPGAs is advantageous in many ways—throughput-wise and
resource-wise as well. Thus, FPGA implementation should be
well-investigated for other database compression techniques in
the near future.

IV. RELATED WORKS

The main memory-based lightweight compression algo-
rithms in column-store database systems are aa active re-
search field [2], [13], [20]. However, mostly the research
regarding lightweight compression algorithms only considers
an efficient implementation for CPU [18], [20]. In particular,
CPU-intensive SIMD instruction based BitPacking lightweight
compression algorithm implementation provides increased per-
formance of especially analytical database queries [2], [6],
[11]. Most research in the direction of FPGAs-based com-
pression implementation focused on heavyweight compression
algorithms [3], [9], [17]. For example, Rigler et al. presented
concepts and hardware implementations using VHDL for
Lempel-Ziv encoders and dynamic Huffman encoders which
is suitable for the implementation of GZIP [17]. Additionally,
their implementation is capable of generating compressed files
that may be decompressed using a standard implementation
of GZIP [17]. Moreover, Abdelfattah et al. explored OpenCL-
based Gzip implementation on FPGAs [3]. They showed that
a high-level compiler can provide competitive performance for
GZIP compression and significant productivity gains compared
to traditional hardware design [3]. However, Bartk et al. and
Fower et al. both implemented VHDL-based Lempel-Ziv com-
pression on FPGAs, whereby they investigate the limitations
and bottlenecks of hashing table, software pipelining overhead
of the Lempel-Ziv lossless compression algorithm [9].

Generall, increasing amount of data leads database re-
searchers to concentrate on implementation for compressed
database systems, whereas main memory-based lightweight
compression is more effective latency-wise than heavyweight
compression. In addition, lightweight compression techniques
are capable to evaluate almost all types of analytical queries
directly on the compressed form of data, i.e, BitPacking
mechanism. In [16], we already presented an FPGA-approach
to efficiently conduct a filter operation directly on bit-packed
compressed data. To the best of our knowledge, none of
the existing works investigates the domain of FPGA-based
implementation of lightweight compression algorithm or the
different categories of hardware approaches on FPGAs to
achieve high-throughput regarding compression.

V. CONCLUSION

In this paper, we have presented a brief overview of
our pipeline-oriented hardware implementation for high-
throughput BitPacking compression on FPGAs. To enable
seamless pipelining, we resolve algorithmic dependencies re-
garding read overhead and nonalignment write by introducing
internal buffering and categorized value-bit packing mech-
anism. Although these changes sacrifice some amount of

compression ratio, they enable our implementation to scale
up to approx. 7.8GB/s and 4.6GB/s throughput for same
and mixed value bit-width based data sets, respectively. We
prepared pipeline implementation for BitPacking compres-
sion in a scalable and resource-efficient way. In addition,
we explored different possible hardware approaches using
parallelism criteria and embrace resource-throughput trade-
off relations. Finally, our custom BitPacking implementation
achieves very high throughput and resource-efficiency on
hybrid CPU-FPGAs systems.

REFERENCES

[1] D. Abadi et al. The design and implementation of modern column-
oriented database systems. Foundations and Trends in Databases,
5(3):197-280, 2013.

[2] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and
execution in column-oriented database systems. In SIGMOD, pages
671-682, 2006.

[3] M. S. Abdelfattah, A. Hagiescu, and D. Singh. Gzip on a chip:
High performance lossless data compression on fpgas using opencl. In
IWOCL, pages 4:1-4:9, 2014.

[4] C. Binnig, S. Hildenbrand, and F. Férber. Dictionary-based order-
preserving string compression for main memory column stores. In
SIGMOD, pages 283-296, 2009.

[5] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory
wall in monetdb. Commun. ACM, 51(12):77-85, 2008.

[6] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner. Lightweight
data compression algorithms: An experimental survey (experiments and
analyses). In EDBT, pages 72-83, 2017.

[71 P. Damme, A. Ungethiim, J. Hildebrandt, D. Habich, and W. Lehner.

From a comprehensive experimental survey to a cost-based selection

strategy for lightweight integer compression algorithms. ACM Trans.

Database Syst., 44(3):9:1-9:46, June 2019.

F. Faerber et al. Main memory database systems.

Trends in Databases, 8(1-2):1-130, 2017.

J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck. A scalable high-

bandwidth architecture for lossless compression on fpgas. In FCCM,

pages 52-59, 2015.

Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro. Data transfer

matters for GPU computing. In ICPADS, pages 275-282, 2013.

D. Habich, P. Damme, A. Ungethiim, and W. Lehner. Make larger

vector register sizes new challenges?: Lessons learned from the area of

vectorized lightweight compression algorithms. In DBTest@SIGMOD,

pages 8:1-8:6, 2018.

D. Habich, P. Damme, A. Ungethiim, J. Pietrzyk, A. Krause, J. Hilde-

brandt, and W. Lehner. Morphstore - in-memory query processing based

on morphing compressed intermediates LIVE. In SIGMOD, pages 1917-

1920, 2019.

J. Hildebrandt, D. Habich, P. Damme, and W. Lehner. Compression-

aware in-memory query processing: Vision, system design and beyond.

In ADMS/IMDM @ VLDB, pages 40-56, 2016.

T. Karnagel, D. Habich, and W. Lehner. Adaptive work placement

for query processing on heterogeneous computing resources. PVLDB,

10(7):733-744, 2017.

D. Lemire and L. Boytsov. Decoding billions of integers per second

through vectorization. Softw., Pract. Exper., 45(1):1-29, 2015.

N. J. Lisa, A. Ungethiim, D. Habich, W. Lehner, T. D. A. Nguyen, and

A. Kumar. Column scan acceleration in hybrid CPU-FPGA systems. In

ADMS@VLDB, pages 22-33, 2018.

S. Rigler, W. Bishop, and A. Kennings. Fpga-based lossless data

compression using huffman and 1z77 algorithms. In 2007 Canadian

Conference on Electrical and Computer Engineering, pages 1235-1238,

April 2007.

A. Ungethiim, J. Pietrzyk, P. Damme, D. Habich, and W. Lehner.

Conflict detection-based run-length encoding - AVX-512 CD instruction

set in action. In ICDE Workshops, pages 96-101, 2018.

Xilinx, Inc. Zynq UltraScale+ MPSoC Data Sheet: Overview, 2017.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-cpu

cache compression. In ICDE, pages 59-59, 2006.

[8 Foundations and

=

[9

—

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

