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Abstract: Deep Learning (DL) is moving towards deploying workloads not only in cloud datacenters,
but also to the local devices. Although these are mostly limited to inference tasks, it still widens
the range of possible target architectures significantly. Additionally, these new targets usually come
with drastically reduced computation performance and memory sizes compared to the traditionally
used architectures—and put the key optimization focus on the efficiency as they often depend on
batteries. To help developers quickly estimate the performance of a neural network during its design
phase, performance models could be used. However, these models are expensive to implement as
they require in-depth knowledge about the hardware architecture and the used algorithms. Although
AI-based solutions exist, these either require large datasets that are difficult to collect on the low-
performance targets and/or limited to a small number of target platforms and metrics. Our solution
exploits the block-based structure of neural networks, as well as the high similarity in the typically
used layer configurations across neural networks, enabling the training of accurate models on
significantly smaller datasets. In addition, our solution is not limited to a specific architecture or
metric. We showcase the feasibility of the solution on a set of seven devices from four different
hardware architectures, and with up to three performance metrics per target—including the power
consumption and memory footprint. Our tests have shown that the solution achieved an error of
less than 1 ms (2.6%) in latency, 0.12 J (4%) in energy consumption and 11 MiB (1.5%) in memory
allocation for the whole network inference prediction, while being up to five orders of magnitude
faster than a benchmark.

Keywords: performance modeling; machine learning; regression models

1. Introduction

Due to its high demand for computational power, Deep Learning was mostly re-
stricted to cloud datacenters for the training and inference. In recent years, the industry
moved more and more towards deploying Deep Learning workloads directly to the local
hardware, removing the need for cloud processing. This has multiple reasons, including
the demand for more privacy, lower latency, and stand-alone solutions that do not rely
on a network connection or remote datacenter. This shift was enabled by the increasing
compute performance and efficiency of mobile and embedded hardware, as well as novel
hardware developments, such as new vector-extensions [1] and dedicated AI accelera-
tors [1–3], but also new software developments such as kernel libraries [4,5] and dedicated
frameworks [6–8], as well as optimization techniques, such as quantization [9,10] and
pruning [11].

Although this enabled developers to utilize Deep Learning in novel ways and appli-
cations that did not allow for cloud processing, such as Industry 4.0, control loops and
new ways for users to interact with their devices (Radar-based gesture recognition like
Google Soli: https://atap.google.com/soli/ (accessed on 25 May 2022)), it also makes the
deployment of AI workloads more complicated: As the range of possible targets becomes
increasingly more varied and diverse, not all targets can achieve the best performance
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through the same means. Different targets require different executors and libraries to
achieve optimal performance for the intended workloads. This makes it more time con-
suming to optimize and deploy a workload to a certain target.

Another problem is that this makes it more difficult for developers to estimate the
model performance on the set of intended targets during the model architecture definition.
They could either deploy different iterations to the hardware target—requiring them to have
access to all target devices and to optimize the workload before the deployment—or utilize
a performance model for each target, which needs to be implemented by experts that can
model the interactions of the hardware architecture and Deep Learning algorithms correctly.

As an alternative to handcrafted performance models, which are rarely provided by
device manufacturers, we suggest an AI-based flow that does not require any knowledge
about the hardware architecture, Deep Learning algorithms, or hardware-specific opti-
mization strategies, as it learns from recorded benchmarking data and operates almost
completely automated. Although performance predictions are not a new topic in research,
we are aiming at finding a solution that is able to generate estimates with a reasonable
accuracy without the huge cost in hardware, computation time, or working time of expen-
sive experts that is required for some of the related publications—making our solution
more accessible for developers and groups with more limited resources. In this work, we
aim to showcase our solution that automatically collects benchmarking data and trains
AI-based regression models on these datasets. This system operates in a layerwise fashion,
by predicting the performance impact of each layer of the Deep Learning model based on its
hyperparameters individually and adding these predictions up to estimate the performance
for the inference of the entire model.

To prove its feasibility, we implemented and deployed this flow on a diverse set of
targets and with multiple different performance metrics. The devices range from server-
grade CPUs (Intel Xeon E5-2680v3) and GPUs (Nvidia Tesla K80 and A100) over consumer
hardware (Intel Core i7-4790 and Nvidia GTX 980Ti) to mobile devices (ARM Mali T628
MP6 GPU and ARM Cortex-A72 CPU).

A key benefit of this approach is the portability as models can be created for any
performance metric on any hardware architecture and software framework, as long as the
relevant metrics can be measured precisely.

For the performance models, different regression techniques were evaluated, including
XGBoosted Trees [12], Extremely Random Trees [13], but also linear regression, k-Nearest
Neighbours, and multi-layer perceptrons [14].

The key contributions of our work are:

• Targeting implementations that have been generated by a search-based compiler
instead of a math kernel library;

• Enabling the prediction of various performance metrics;
• Reducing the data collection effort by sampling from a set of representative workload

configurations instead of randomly from the space of possible configurations;
• Showcasing its portability, allowing for its use on any hardware architecture and with

every code generation flow, from high-performance to mobile hardware, CPUs to
GPUs and LLVM [15], CUDA [16], or OpenCL [17] code;

• Using simple AI-based models that can be trained on moderately sized datasets,
making this approach available for developers that do not have the means of some of
the related publications.

The first section after the related work will explain the data collection and model
training flow. The second section will be the evaluation, starting with layerwise evaluations
and finishing with a full network inference case study.

2. Related Work

Many publications have already researched the implementation of performance mod-
els for various use cases. These works either focus on general purpose applications or
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specialize on Deep Learning use cases. Different methods were used to predict the perfor-
mance, from analytic models to AI-based solutions.

2.1. Performance Prediction for General Purpose Applications

The precise calculation of the execution time of a program is a very complicated task
and can be seen as an extension of the halting problem [18] as it does not only need to
predict if a program finishes, but also when it is going to halt. Most of the publications
listed in this section use various methods to estimate the runtime instead. These estimates
are based on different metrics and parameters that have been extracted from the source or
the compiled representation of the program.

Works such as those of Huang et al. [19] extract relevant data from the source of the
program and use it as input for regression models, while Braun et al. [20] and Sun et al. [21]
use the compiled programs to generate their features: Braun et al. [20] gathers information
from the compiled PTX (Nvidia PTX developer documentation: https://docs.nvidia.com/
cuda/parallel-thread-execution/ (accessed on 25 May 2022)) code using the CUDA Flux
profiler [22] that extracts the instruction count, kernel launch parameters, and more data
from it. Sun et al. [21] instrument the source using a modified version of clang [15]. It relies
on extracted information about the number of variable assignments, branches, loops, and
the MPI communication. The disadvantage of relying on the compiled representation of
the program for the feature extraction is that the additional effort must be spent to compile
it in the first place, increasing the required time and compute resources to generate the
estimation. This can be especially problematic for automated solutions that require the
rapid exploration of a large design space during their search (i.e., network architecture
search for Deep Learning models).

Shafiabadi et al. [23,24] uses regression models to estimate the performance of OpenCL [17]
programs on a specific AMD GPU architecture.

Nadeem et al. [25] uses template matching to predict the program execution time.
Instead of implementing or training complicated models, a database with recordings of
previously executed programs is kept. When a program has been executed, its configuration
and measured performance data will be added to the database. The performance estimation
for a new program is made by finding the closest match in the database. This solution is
similar to k-Nearest Neighbors, but does not extrapolate between the closest neighbors.
Instead only the closest match will be returned. No features are extracted from the source
or compiled representation of the programs as the input arguments are used as input for
the search. The benefit of such a solution is that it improves its accuracy throughout its
use, but the limitation to launch parameters does limit its accuracy for the estimation of
entire programs and also requires a large dataset of already seen examples to provide
accurate estimates as no extrapolation between known samples is used. Additionally, the
distance needs to be manually defined for the current search space and might depend on
the targeted hardware environment.

These publications show two major differences from our own contribution: They
try to estimate the performance for general purpose programs—this makes it much more
complicated as no assumptions about the program structure and control flow can be made.
This results in the second major difference: the need for sophisticated feature extraction
steps or alternatives that are less expressive—as no easily available data can be used for
the modeling.

2.2. Performance Prediction for Deep Learning Applications

The focus on the prediction of performance metrics for Deep Learning applications
allows for certain simplifications in the approach: Deep Learning models usually are
strictly sequential in their execution, which means that they do not contain any control flow
operations, such as loops and branching, and are made up of similar building blocks—the
layers. These layers execute only a limited set of operations, such as convolutions, matrix
multiplication, the application of activation functions, or pooling, and their main difference

https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
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is the configuration of their function kernels through hyperparameters. The related work
regarding the performance prediction of Deep Learning workloads is mostly focused on
GPU and HPC environments and targets the Deep Learning training process in addition to
the inference for the performance prediction.

Kaufman et al. [26] use a graph neural network for the performance modeling of
Deep Learning programs on Google’s CloudTPU [27] accelerators. Instead of relying on
extracted or hand-selected features, it operates directly on the neural network graph and
autonomously extracts the important data from it. This approach comes with certain
disadvantages: it requires a large dataset for the training of the models, which is expensive
and not always feasible for researchers and developers to collect, especially, when targeting
multiple devices.

PALEO by Qi et al. [28] use a much simpler analytic approach instead. The strictly
sequential nature of Deep Learning models is exploited by estimating the execution time of
the individual layers and adding them up to calculate the total estimated execution time of
the whole network. This simplification has also been used by multiple other publications
(see the column layerwise estimate in Table 1 for an overview). A simple model is used
to estimate the performance of a single layer. This model assumes that the execution of
the layer consists of three consecutive steps: the loading of the data, the computation,
and the write back of the result. Each step is calculated based on the number of memory
transactions or FLOPs that are required for its execution and the memory bandwidth or
computation performance provided by the target device. The separation of the workload
in three sequential steps assumes that the underlying hardware architecture does not
support any form of concurrency for these operations, which does not always hold up for
all hardware targets.

The analytic predictions are scaled with an additional factor that has been set by
comparing the estimates with real measurements to account for a non-optimal utilization
of the device. This assumes a constant scaling factor across the entire configuration space
for workloads, which is also unlikely to hold up for all target devices.

Justus et al. [29] use the same layerwise approach and combine it with a batchwise
extension by calculating the execution time of a single batch during training and accumu-
lating the estimates for all batches to the total training time. An AI-based regression model
is used instead of an analytic solution and it is able to target different devices with a single
model by adding the hardware configuration to the model inputs. We assume that this
enables the prediction for unseen devices, but is most likely limited to similar hardware
architectures, such as a specific GPU generation, and could make retraining the models
more difficult when a new device is added to the dataset. We have decided to use one
regression model per triplet of device, layer type and performance metric instead, which
also allows us to further simplify each model.

Lattuada et al. [30] suggest a solution to the problems of Justus et al. [29], but do not
use a layerwise approach. Instead, the neural network is described by using the number of
occurrences of the different layer types and the total FLOPs as input features.

Yu et al. [31] combine neural network-based regression with wave scaling. Wave
scaling is a method to convert an already seen performance measurement for a kernel
configuration from one GPU type to another by using their ratios of compute performance
and memory bandwidth. This method is also only applicable to targets of similar hardware
architectures that vary only in terms of the number of processing elements and their
memory bandwidth.

Wang et al. [32] operate similar to Justus et al. [29], but specifically target heterogeneous
systems that contain a CPU and a GPU. This is achieved by accounting for the initial data
transfer and final return of the result to and from the GPU memory in addition to the
solution suggested in previous works. However, this assumes certain characteristics about
the target platform, such as dedicated memories for both devices, which does not always
hold up as mobile SoCs usually share the memory between all devices.
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Table 1. Comparison of related work with our own contribution. The performance data reflects what these publications reported.

Target Application Target Environment Implementation Prediction
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Huang et al. [19] 3 3 3 3 3 Accuracy: 93%

Braun et al. [20] 3 3 3 3 3 3
MAPE: 8.86–52% (Time)

MAPE: 1.84–2.94% (Power)

Nadeem et al. [25] 3 3 3 3 -

Sun et al. [21] 3 3 3 3 3 MAE: 20%

Shafiabadi et al. [23,24] 3 3 2 3 3 -

Kaufman et al. [26] 3 3 3 3 3 3 Accuracy: 96.3%

Qi et al. [28] 3 3 3 3 3 3 MAE: 81.3% 3

Justus et al. [29] 3 3 3 3 3 3 3 - 4

Yu et al. [31] 3 3 3 3 3 3 3 Error: 11.8%

Wang et al. [32] 3 3 3 3 3 3 3 3 MAPE: 20%

Yeung et al. [33] 3 3 3 3 3 3 - 5

Gianniti et al. [34] 3 3 3 3 3 3 3 Error: 10–23%

Lattuada et al. [30] 3 3 3 3 3 Error: < 11%

Cai et al. [35] 3 3 3 3 3 3 3
Accuracy: 88.24% (Runtime)
Accuracy: 88.34% (Power)
Accuracy: 97.21% (Energy)

Bouhali et al. [36] 3 3 6 3 3 3 MAPE: 5%

Velasco-Montero et al. [37] 3 3 3 3 3 3 3 Error: 3–10%

Lu et al. [38] 3 3 7 3 3 3 3 3 3 3
Accuracy: 72.15% (Runtime)
Accuracy: 91.60% (Energy)

Our Work 3 3 3 3 3 3 3 3 3 3 3 3 8
Error: 2.6% (Time)

Error: 4.0% (Energy)
Error: 1.5% (Memory)

1 self-reported by author; 2 targets specific AMD GPU architecture; 3 according to our own test with a reimplementation of PALEO; 4 only provided RMSE data; 5 only provided RMSLE
data; 6 embedded GPU of Nvidia Jetson TX2; 7 embedded GPU of Nvidia Jetson TK1, TX1; 8 not evaluated in this work, but possible as same interface was used to read the power
information on CUDA GPUs.
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Yeung et al. [33] is the only publication listed here, which does not target the estimation
of the execution time. Instead, only the device utilization is predicted. This information is
then used to optimize the scheduling of Deep Learning jobs in an HPC environment by
exploiting co-location, i.e., the placement of multiple concurrent tasks on a single GPU.
This improves the efficiency of the HPC system by better utilizing the available hardware.

Gianniti et al. [34] follow the same approach as Justus et al. [29], but do not use the
layer hyperparameters directly. Instead, a complexity metric was derived from them, which
was then used as an input feature for the regression models. This allows for smaller training
sets and models that generalize better to unseen configurations. However, the complexity
metric probably depends on the targeted hardware architecture and is very closely related
to the number of compute operations (FLOPs) that are required to execute the layer.

Cai et al. [35] also operate in a layerwise fashion and enable the prediction of the
execution time and power consumption of Deep Learning workloads on HPC GPUs.

The following works target the performance modeling for Deep Learning inference
tasks on mobile and embedded devices instead of high performance cluster and worksta-
tion environments. Bouhali et al. [36] exclusively target the Nvidia Jetson TX2 (Nvidia
Jetson TX2 product sheet: https://developer.nvidia.com/embedded/jetson-tx2 (accessed
on 25 May 2022)). Their solution describes networks as a whole and does not operate
layerwise, similar to Lattuada et al. [30]. Similarly to in the majority of works, the mea-
surement configurations that are used to train the models are randomly sampled from the
search space.

Velasco-Montero et al. [37] predict the energy consumption and execution time of
inference workloads by operating in the already known layerwise fashion and using the
number of operations and memory transactions, as well as the number of weights used by
the layer. Simple linear regression models are fitted for each combination of layer type and
predicted metric. The estimated performance values are then used by a neural network
that searches for the optimal network architecture for the current use case.

Lu et al. [38] predict the execution time, energy usage, and memory allocation for
Deep Learning inference tasks on the Nvidia Jetson TK1(Nvidia Jetson TK1 product
sheet: https://developer.nvidia.com/embedded/jetson-tk1-developer-kit (accessed on
25 May 2022)) and TX1 (Nvidia Jetson TX1 product sheet: https://developer.nvidia.com/
embedded/jetson-tx1 (accessed on 25 May 2022)). They also operate with a layerwise
approach and uses regression models (linear for CPUs, more advanced for GPU) to predict
the performance metrics using the layer’s FLOPs, as well as the matrix multiplication
problem size of the layer function as parameters. This assumes that all layers utilize ma-
trix multiplications for the implementation of their functionality, which does not hold up.
For example, pooling layers, activation functions, and other layers do not rely on matrix
multiplications for their implementation.

None of the cited publications target the prediction of performance metrics for Deep
Learning programs that have been optimized by a search-based compiler, such as TVM [39].
These compilers try to find the optimal implementation for the current layer hyperpa-
rameter configurations in combination with the targeted hardware environment. The
referenced publications target Deep Learning frameworks, such as Caffe [40], Theano [41],
TensorFlow [42], and PyTorch [43] instead, which rely on math-kernel libraries such as Intel
MKL [44,45], Nvidia cuDNN [46], ARM CMSIS [4], and others to provide hand-optimized—
but static—kernels for each combination of workload type and specific hardware target.
TVM utilizes an AI-based solution called autoTVM [47]. This solution tries to automatically
find the best function kernel implementation for the current scenario of hyperparameter
configurations and hardware environment. To reduce the number of on-device sampling
runs a performance model is trained that allows for the estimation of the performance of
different kernel implementations without having to benchmark them. It uses XGBoosted
Trees [12] for the regression models and simplifies the task by assigning relative scores to
the different configurations instead of predicting the absolute performance numbers. This

https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tk1-developer-kit
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx1
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solution is not directly comparable to the related work and our own contribution as it is
designed for a very different use case.

A comparison and overview of all related publications can be found in Table 1.

2.3. Datasets and Data Acquisition

Zheng et al. [48] provide a dataset of measured samples of Deep Learning inference
workloads on various (mostly HPC GPU) targets. The current size of the dataset is 51 million
samples, consisting of differently sized subgraphs and their measured runtime. We did
not use this dataset for our own work as it is designed for autotuning solutions that search
for the optimal kernel implementations and does not contain memory allocation or power
consumption data.

Rodrigues et al. [49] describe a solution that allows for the fine-grained measurement
of the energy usage of Deep Convolutional Neural Networks on the Nvidia Jetson TX1 and
was used as a reference for our own work. However, this solution relies on the built-in
sensors of the platform, which are not available or accessible on all embedded devices.

3. Overview

Our work is similar to some of the related approaches by relying on layerwise estimates
that are accumulated for the total network inference cost. However, instead of randomly
sampling measurement configurations from the configuration space, we operate on a set of
representative Deep Learning layer workloads from where the most important layer types
and configurations are extracted. This allows us to reduce the amount of sampling that
needs to be performed.

The data collection itself is built using TVM to be able to target a wide range of
platforms and automatically apply the best target-specific optimizations. For this work, the
execution time, power consumption, and memory allocation have been recorded. However,
due to its modular design, every metric that can be measured during the layer workload
execution can be recorded.

Once the required datasets have been collected, the performance models are trained.
These models are implemented using AI-based regression methods. The current approach
is to train one model per triplet of target-device, workload type and performance met-
ric. Multiple different regression methods are used and the model that shows the best
performance on the validation set is selected. This approach has two major benefits:

• Already trained models can be kept when new workloads or targets are added, as
these are added by training additional models;

• The best regression method can be selected for each target triplet (target, workload,
metric) independently.

The total network inference cost is estimated by accumulating the individual
layer predictions.

No access to the target devices is required once the models have been trained, as
developers can query them to obtain an performance estimate for the current architecture
configuration. Alternatively, the regression models can be improved over time, by gradually
adding occasionally collected new measurements—similar to the template matching by
Nadeem et al. The performance models are quicker to query than a full deployment and
benchmark run on the target device. Another advantage is that the data collection and
model training is a one-time cost: the usage of the models is more efficient than individual
benchmarks as soon as more queries have been processed than samples were collected
for the training datasets as the cost of the regression model fitting and the prediction runs
is diminishingly small compared to the data collection. The entire flow has also been
visualized in Figure 1.



Electronics 2022, 11, 2316 8 of 28

Configuration
Extraction

Performance
Estimates

Model

Model
Fitting

Dataset
Collection

Performed Once

Performed Many Times

Figure 1. A visualization of the entire flow. The configuration extraction, data collection, and model
training steps are only completed once, while the trained model will perform many predictions.

4. Data Collection

TVM [39] was chosen as a base for the data collection due to its wide range of sup-
ported target devices and code generation flows that are able to automatically optimize the
Deep Learning workload for the specified target and its advanced profiling capabilities.
TVM is a Deep Learning compiler that is able to process already trained networks from
most Deep Learning frameworks and toolkits and optimize their inference for a wide range
of platforms during the compilation process. It consists of two major parts:

• The compiler stack, which transforms the Deep Learning model from the framework
(i.e., TensorFlow, PyTorch, etc.) to its own representation, optimizes and compiles it;

• The executor, which performs the model inference on the target device. For this project,
the graph runtime was used, especially its debug version that has additional profiling
capabilities, to execute the workloads.

One key difference between the function kernels of TVM and those that are used
by frameworks such as PyTorch and TensorFlow is that the later are static handwritten
kernels, while TVM optimizes the function kernel itself for the targeted combination of layer
configuration and hardware target. This makes the prediction of the performance for these
kernels more difficult as the underlying function kernels can vary across configurations in
terms of loop unrolling, memory tiling, and more.

A recent pull request (PAPI interface: https://github.com/apache/tvm/pull/7983
(accessed on 21 July 2021)) to TVM added an additional profiling interface. This allowed
for the easy and modular extension of the debug executor with data collectors that act as
interfaces to other platform or vendor specific profiling and benchmarking libraries and
tools. We further modified the profiling infrastructure of TVM to accommodate for the
collection of power consumption information across all evaluated target devices.

However, this approach is not limited to TVM, our collected performance data, or
layer types, and could also be applied to other toolchains and frameworks, as long as they
are capable of instrumenting the individual layer workloads to measure their performance
footprint in all relevant metrics.

Our modified version of TVM with the additional profiling capabilities will be made
available on GitHub (TVM Power Measurement Tools: https://github.com/MaxS1996/tvm
(accessed on 25 May 2022)).

https://github.com/apache/tvm/pull/7983
https://github.com/MaxS1996/tvm
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4.1. Sampling

As the regression models are kept relatively simple by using a low number of input
features, the majority of time and resources are spent on the profiling of the workloads
to create the training datasets for the AI-based performance models. A smart sampling
strategy could therefore allow for a significant decrease in resources required for this step.

To reduce the number of samples that need to be profiled, the sample configurations
should be similar to typical Deep Learning workloads: possible hyperparameter configura-
tions for each layer type create an n-dimensional space with an infinite amount of possible
workloads within this space. However, only a small subset of it is actually used in Deep
Learning models. This allows for the training of regression models that only need to achieve
accurate estimates in the same subspace of the layer configuration space instead of the
entire configuration space. In addition, the most compute operations of the neural network
inference are contributed by a small set of layer types. To exploit these observations, the
Keras model zoo was explored to find the most computation-intense layer types and config-
urations: layers that were found are convolutional, dense, maximum, and average pooling
layers. To further extend the dataset to cover more operation types, the found convolutional
layers were augmented by adding new group and filter configurations, as well as dilation
rates, to also be able to cover depthwise and dilated convolutional workloads. These are
special types of convolutional operations. Depthwise convolutions are often used in the
mobile or embedded scenario to cut down the computational workload without sacrificing
too much prediction performance by applying each filter to only one channel of the input
feature map. Dilated convolutions extend the filter kernel by adding strides between its
kernel elements and are primarily used for image segmentation tasks.

As some layer parameters are target-dependent, such as the input, weight, and output
tensor layout, the most suitable configuration for the target was selected for those parame-
ters. The profiled batch sizes are also target dependent as the maximum viable batch size
of each workload depends on the available system memory.

4.1.1. Dense Workloads

Due to the low number of unique samples and the close similarity of the found samples,
another strategy was required to generate a configuration dataset for dense workloads.
Dense layers have a very small set of relevant hyperparameters that are independent of
the target device: the number of input features and the number of units inside the layer.
As these two hyperparameters do not constrict each others values, sample configurations
for dense workloads were randomly drawn and added to the configurations found in the
model zoo.

4.1.2. Pooling Workloads

The found pooling workloads suffered from the same shortage of unique samples
as the dense layers. To increase the number of samples in the sample set, additional
configurations were created by augmenting existing samples with different pooling sizes,
while keeping the input tensor dimensions.

4.1.3. Convolutional Workloads

The model zoo contains 2916 convolutional layer configurations only 542 of which are
unique. Although this number is small, more samples can be generated by augmenting
the data for different batch sizes as it is the case for all layer types. More samples could be
artificially generated, but it is a non-trivial problem to generate representative workload
configurations as convolutional layers have a larger set of hyperparameters that are not
independent of each other. Therefore, we avoided generating completely new convolutional
workloads and chose to augment existing standard convolutional workloads instead.
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4.2. Benchmarking Flow

As multiple thousands of samples need to be processed for each target, no opti-
mizations with extended runtimes such as Auto-Tuning or Auto-Scheduling have been
performed, which causes additional noise in the dataset.

The time required to collect the necessary datasets mostly depends on the target device
and the amount and type of recorded metrics: if only the inference latency is required,
the data collection can be completed in hours. The required time increases drastically,
if memory allocation and power consumption data need to be collected, as the libraries
and APIs used to gather this information operate on low sampling rate and often produce
very noisy measurements that require multiple runs to obtain an accurate result. This can
increase the time from hours to days or weeks.

However, this data collection only needs to take place once per target device and
can be sped up by using multiple instances of the same device. In addition, only the
initial setup and selection of relevant metrics needs human interaction, while the long data
recording process is fully automated. The reliance on standard tools such as PAPI [50],
powercap [51], RAPL [52], and NVML (NVIDIA Management Library (NVML) is a C-
based API to manage and monitor various information about Nvidia GPUs: https://
developer.nvidia.com/nvidia-management-library-nvml (accessed on 25 May 2022)) to
collect performance data also further simplifies the setup process.

A possible way to collect such datasets for a large number of targets would be a
direct integration of the flow into TVM’s runtime, allowing all users to easily participate
in the process to refine the performance models of their hardware targets by contribution
measurements from their own hardware automatically.

There are two versions of the compilation flow, which are optimized for the different
circumstances under which the data collection could take place.

The benchmarking flow will be published in a separate repository on GitHub(TVM
Profiler: https://github.com/MaxS1996/TVM_Profiler (accessed on 25 May 2022)), as it
can either be used with the TVM main branch or our modified power measurement version.

4.2.1. Online Flow

The first variant performs the compilation on the target itself, which is usually the best
option for the server- and desktop-grade devices that have enough compute performance
and system memory to process the compilation locally. The profiling of a single workload
starts with the extraction of the workload description (i.e., layer type and hyperparameter
settings) from the set of representative configurations that was created during the sampling
step. A single stored sample configuration is profiled with different batch sizes. The batch
sizes to be profiled are configured for each target individually to account for the difference
in available memory and compute performance.

As shown in Figure 2, the following steps are repeated for each batch size on a single
workload configuration:

1. The input and (optional) weight tensors are generated according to the workload
specification and filled with random numbers of the required data type;

2. The workload is compiled by TVM to optimize it for the selected target platform;
3. An initial test execution is performed. If the compilation or execution fail, the flow

starts over with the next workload description from the sampled configuration set,
skipping the remaining batch sizes for this workload description;

4. The execution time is recorded multiple times after performing a burn-in to operate
on warm (already filled) caches;

5. The workload is instrumented for the additional metrics that need to be recorded;
6. The metrics are recorded, using multiple repetitions, each with its own burn-in phase;
7. The collected raw data is cleaned up by performing outlier removal and only the

median of each metric is used as a label.

https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://github.com/MaxS1996/TVM_Profiler
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Figure 2. A visualization of the benchmarking and measurement flow: the boxes on the left are the
datasets that are provided, containing the extracted workload configurations and batch sizes that will
be profiled, dark blue bubbles marks operations that are performed on the offline device in case of the
precompiled flow. Light blue bubbles will be executed on the target device itself in both flow variants.

The skipping of remaining batch sizes for a workload configuration helps to further
speed up the collection of the dataset: if the compilation or execution fails due to an error
that is not related to the batch size, all batch size configurations are going to fail for this
workload and can, therefore, be skipped. If the error is related to the batch size, it is most
likely due to a lack of available memory. As the batch sizes are profiled in an ascending
order, the required memory will only increase with each evaluated batch size.

As many power measurement tools have a minimum sampling period that is much
longer than the execution time of a single neural network layer inference (i.e., NVML: 1/6 s),
the workload is looped to extend the runtime over the sampling time window during the
measurement of metrics other than the inference time. Due to measurement noise, the
measurements need to be repeated multiple times for each sample, depending on the target
device and the used power consumption measurement interface, up to 50 repetitions were
required to achieve an accurate and reproducible result on most targets.

4.2.2. Precompiled Flow

Since low-powered mobile and embedded platforms, which are not capable of execut-
ing the compilation, should also be targeted by this flow, a cross-compiler-based solution
was required. The key difference in this version is that the compilation and tensor genera-
tion is performed on a different device beforehand using the appropriate code generation
flow for the target. The compiled executable and tensors are transferred alongside the
workload configuration data to the target device afterwards. The execution and profiling
flow on the device itself is identical to the online version. This variant has been used for
the Cortex-A CPU and Mali GPU targets.

On mobile and low-powered devices with limited system memory, TVM’s function
metadata system (workspace size metadata: https://github.com/apache/tvm/pull/7938
(accessed on 21 July 2021)) was used to calculate the memory allocation sizes of the function
workspace and IO tensors during compilation.

5. Dataset

To save time and resources, only the compute-intense layer types, such as 2D-convolutions,
dense as well as maximum and average 2D-pooling layers were profiled. The reason is
that these layer types make up the majority of the total neural network inference workload.
However, the compilation and data collection flow can be applied to every workload type
that can be represented with TVM’s Relay graph-level representation.

https://github.com/apache/tvm/pull/7938
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Smaller workloads, like activation functions, are currently not considered during the
performance prediction as their impact is often negligible, especially after performing
compiler optimizations, such as layer fusion, which combine the activation functions with
the previously executed compute workload. This removes the need to read and write
the intermediate feature maps from memory again just for the activation function, which
significantly reduces their performance impact.

Table 2 shows an overview of the devices that have been targeted for this work and
which metrics were recorded, as well as which measurement tool was used for each metric.
At the time of writing this paper, seven different target devices have been profiled. We
included four different architectures using x86 Intel CPUs, CUDA GPUs, an ARM Cortex-A
CPU, and a ARM Mali GPU. Table 3 shows the number of collected samples for each
tuple of target device and workload type. A key benefit of extracting the samples for
the profiling from a model zoo is that most popular layer configurations will already be
part of the training data. This enables very accurate predictions for these workloads, as
they are already seen data for the regression models. The collected data will be available
alongside the trained performance models in a GitHub repository (TVM Profiling Dataset:
https://github.com/MaxS1996/TVM_Profiling_Dataset (accessed on 25 May 2022)).

Table 2. Overview of profiled targets and measured metrics.

Device Target Processor Code Generation Metrics Interfaces

Nvidia
GPU CUDA

Inference Time TVM
Telsa Power Consumption NVML
K80 Memory Allocation NVML

Nvidia
GPU CUDA

Inference Time TVM
Tesla Power Consumption NVML
A100 Memory Allocation NVML

Nvidia
GPU CUDA

Inference Time TVM
GeForce Power Consumption NVML

GTX980 Ti Memory Allocation NVML

Intel Xeon CPU LLVM + AVX2 Inference Time TVM
E5-2680v3 Power Consumption HDEEM

Intel Core-i7 CPU LLVM + AVX2 Inference Time TVM
4790 Power Consumption powercap

Raspberry

CPU LLVM + Neon

Inference Time TVM
Pi 4B Power Consumption VISA

Memory Allocation TVM
IO traffic TVM

ODroid

GPU OpenCL

Inference Time TVM
XU4 Power Consumption VISA

(Mali-T628 Memory Allocation TVM
MP6) IO Traffic TVM

An investigation of the collected training data shows that the convolutional datasets
contain samples with significantly longer execution times compared to similar workload
configurations. In some cases, a change of the input dimensions by just one pixel in height
or width resulted in a reduced performance and increased the execution time of these
workloads by up to one order of magnitude. A closer inspection of the generated source
code of these samples shows a lack of parallelization and optimization for the function
kernels, resulting in completely sequential kernels without any vectorization. This is
caused by the lack of auto-tuning during the sample collection, as previously mentioned:
the autotuning solutions use a function template that is optimized for the combination of
current workload and target device during an AI-feedback driven optimization loop that
tries to find the best optimization parameters for the current case. As several thousands of
convolutional operations need to be compiled and profiled on multiple targets, the time
requirement of the autotuning process (30 min to 60 min per convolutional workload) was
not feasible for this publication. Although this work is supposed to showcase the feasibility

https://github.com/MaxS1996/TVM_Profiling_Dataset
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of this approach, a real use in a production environment would require the datasets to
consist of tuned examples. This could be achieved by utilizing the TVM runtime to collect
the data during the auto-tuning process directly from the users and accumulating it into
one central and publicly accessible data repository.

Table 3. Overview of the collected datasets. The XU4 has been measured with and without the
recording of the power consumption during the execution.

Device Conv2D Dilated Depthwise Dense Average Maximum

Conv2D Conv2D Pool2D Pool2D

Tesla K80 2719 7890 2903 25,059 4588 4534

Tesla A100 3227 7887 2537 18,421 4510 4449

GTX980 Ti 2690 7857 3083 23,629 4692 3705

Intel Xeon 3331 9484 3031 17,095 2917 2821

Intel Core-i7 2694 2039 2054 3222 885 861

Rasp. Pi 4B 3575 2816 - 92 1074 1237

ODroid XU4
(without power) 2098 - 2764 87 - -

(with power) 199 38 543 536 179 154

However, this is mostly a TVM specific limitation that does not affect toolchains that
do not rely on tuning and could be used as an additional tool for tuning-based frameworks.
The performance predictor could be used in combination with tuning-based solutions to
identify workloads within the network that have the biggest optimization potential by
comparing the prediction with the real-world measurement for the same workload. If the
measured execution time is significantly longer than the prediction, it is most likely a badly
configured function kernel that would improve its performance by applying tuning to it. In
addition, AutoTVM is mostly used for trainable layers and this limitation does not apply
for the pooling workloads that are also part of the dataset.

6. Performance Model

Similar to the majority of the related work, we have chosen to model the total network
cost as the sum of its layer costs. The calculation of the total network cost depends on the
targeted performance metric: the total execution time is the sum of the individual layer
execution times, as shown in Equation (1) (n is the index of the individual layers).

Most tools measure the average power consumption in the last time frame, therefore
only the layer power consumption, instead of the energy usage, will be measured in
most cases. To calculate the total neural network inference energy usage estimate, the
individual layer energy estimates need to be calculated from the individually predicted
power consumptions and execution times before accumulating the values for the total
energy, as shown in Equation (2).

The calculation of the total memory allocation is more complicated, as TVM employs
various memory optimization techniques. We suggest two methods to estimate the mem-
ory allocation. The first more pessimistic method uses the sum of the two largest layer
estimates for the total memory allocation. This approach accounts for memory reuse and
the simultaneous liveness of two intermediate feature maps at each point of the inference.
It is pessimistic because it assumes that the two largest intermediate feature maps are live
at the same time. A second more optimistic approach has been described in Equation (3). It
also accounts for the simultaneous liveness of two intermediate feature maps, but does not
assume that the two largest ones will be live at the same time. Both approaches assume a
strictly feed-forward network architecture without parallel branches.

Ttotal = ∑ Tn (1)



Electronics 2022, 11, 2316 14 of 28

Etotal = ∑ (Tn × Pn) (2)

Mtotal = 2 × ∑ Mn

n
(3)

Due to this layerwise approach, the performance models are implemented as re-
gression models that predict the performance metrics for each layer type based on the
hyperparameter configuration. As the research field of Deep Learning is always in a state of
rapid innovation—regularly producing new layer types and approaches—we have decided
to train one model per triplet of target, workload type, and performance metric. This allows
for a modular structure, where performance models for novel layer types and newly col-
lected metrics can be added without the need to retrain the existing models. Other benefits
of this approach are the feasibility of adapting each model’s input vector to the relevant
hyperparameters of the layer type and the possibility to collect independent datasets for
each metric. This is especially important as certain metrics are more time consuming to
collect than others.

Different regression methods have been evaluated: XGBoostes Trees (XGB) were used
as they are already utilized by TVM as part of the autoTVM flow and are usually able to
achieve good results for regression tasks [12]; and Extremely Randomized Trees (ERT) were
included in this testing, as they are known to achieve state-of-the-art regression performance
as well [13]. The key benefit of these tree-based regressors is that they were able to achieve
reasonable prediction performance while not needing any preprocessing—besides one-hot-
encoding of discrete features—being applied to the datasets.

However, as we wanted to evaluate as many different regression algorithms as possi-
ble, we added a scaling step to the preprocessing pipeline and applied more traditional
regression methods as well. These methods included k-Nearest Neighbor regression (kNN),
decision tree regression (dTr), linear regression (linR), multi-layer perceptrons (MLP), and
support vector regression (SVR). With the exception of XGB, scikit-learn [14] was used to
preprocess the data and train the regression models.

7. Evaluation

As the trained performance models are solving a regression task, we are using the coef-
ficient of determination (R2), mean (MAE) as well as median absolute error (MEDAE), the
mean percentage error (MAPE), and the maximum error (MaxE) to evaluate the prediction
performance. Although the absolute and maximum errors cannot be directly compared
between metrics or devices, due to significantly different ranges of the predicted values,
their ratio compared to the maximum, mean, and median of the ground truth data can be a
helpful indicator.

7.1. Performance Prediction without Feature Augmentation

The first test was carried out by applying kFold cross-validation on the initially
collected datasets. The presented evaluation numbers in this section always represent the
mean of all k runs. The use of kFold cross-validation allowed for the evaluation of all
workloads and metrics, even if they are not part of the final full network test case. The
inference time and power consumption was predicted for all targets. On CUDA GPUs, each
workload’s memory allocation was measured and on mobile devices, the workspace and
IO allocation was calculated by the TVM compiler based on the generated function kernels.

For this test, no further preprocessing outside of a scaling step and the one-hot encod-
ing of categorical features was applied to the sample representation. To account for the
lack of tuning of the recorded samples, an outlier removal algorithm was used to eliminate
the most obvious unoptimized samples from the training and validation sets. This was
performed by using isolation forests that identified outliers based on the hyperparameter
configurations and their execution time. As these outliers are a TVM specific limitation and
would not occur with frameworks and toolflows that do not rely on an auto-tuning step,
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this outlier removal is probably not necessary for alternative toolchains such as TensorFlow
and PyTorch.

The input features of the regression models were restricted to hyperparameters and
architectural information available from the neural network definition, including the di-
mensions of the involved input, weight and output tensors to avoid the need for additional
compilation steps. Relying on information that is only available after the compilation would
limit the usability of the trained regression models, by increasing the time and resource
footprint of each performance estimation drastically. This would reduce the benefit of such
performance models—their small resource and time footprint compared to simulators and
benchmarks on the target—for many use cases, as an additional compilation step reduces
the amount of network configurations that can be evaluated in a certain time. As certain
applications, such as network architecture search (NAS) systems, often rely on the trial of
large amounts of configurations in a short period of time, this is not an option for them.

The best performing models across all target devices and workloads consistently
were tree-based methods, especially ERT and XGB, as well as the MLP models. These
methods generally achieved the best R2, MAE, MEDAE, and MaxE scores across all metrics,
workload types, and target devices. Although the MLP regressor was able to achieve
competitive results, it required significantly more time to train the models compared to the
tree-based alternatives (multiple seconds instead of sub-second runtimes). Detailed results
can be found in the dataset repository on Github, which also contains the model training
scripts and protocols of past evaluations.

7.1.1. CUDA Targets

The initial test showed promising results across all layer types and recorded metrics
for the CUDA targets, as shown in Figure 3. Although there are some outliers in the overall
performance (i.e., power consumption of dense workloads on the Tesla K80), these are most
likely caused by the usage of multiple different GPU instances for the Tesla targets, adding
additional noise to the dataset.

The memory allocation was the metric with the smallest error on most workloads,
achieving an MAPE score of less than 3% on all workload types except the pooling opera-
tions (MAPE of up to 13%) across all CUDA targets.

The results for the power consumption prediction seem to indicate that the usage of
multiple target instances to collect samples of the same workload type—as was done for the
Tesla A100 dataset—can introduce additional noise in power data which results in reduced
prediction performance, as the A100 power models only achieved an MAPE of 5% to 13%,
while the K80 and 980 Ti power models achieved score between 1% and 10%.

The inference latency was the metric with the highest variation between workload
types: the models for the prediction of dense layers achieved the best performance with an
MAPE of as low as 4% on the 980 Ti, while pooling workloads could be predicted with an
error of around 30%. The highest MAPE value was measured for the prediction on standard
and depthwise convolutional workloads, with up to 52%. This is most likely caused by the
search-based TVM compilation that results in the usage of different kernel implementations
across the hyperparameter configuration space. Dilated convolutions achieved better
results, however, these were likely caused by the construction of its sample set—creating
many similar samples that only differ at the dilation rate—and the low performance impact
of the dilation rate on CUDA targts.
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Figure 3. The R2 scores of the best regression models out of the tested methods across all metrics
and workload types for the CUDA and x86 targets of the currently collected datasets without the
application of any feature augmentation.

7.1.2. X86 Targets

Only the inference latency and power consumption were measured on the x86 tar-
gets, as the memory allocation of the network inference is less relevant with the large
available system memories of typical cluster nodes and workstations. Additionally, the
power consumption for workloads on the Xeon and Core-i7 CPU was measured using
different tools: for the Xeon CPU HDEEM [53] was used to measure the power con-
sumption directly, while the desktop Core-i7 relied on powercap (Linux Kernel-Powercap:
https://www.kernel.org/doc/html/latest/power/powercap/powercap.html (accessed
on 25 May 2022)) and RAPL [54] to measure its energy use and derive the power consump-
tion from the measured energy and execution time. This makes the results of the power
prediction on these targets less comparable as it introduces different amounts of noise into
the datasets.

The overall prediction performance on the x86 targets seems to be similar to the CUDA
targets, as shown in Figure 3, although the power consumption prediction quality is lower
compared to the CUDA GPUs. This can be caused by two reasons: the background noise of
the OS and other processes on the CPU, while the GPUs are used exclusively for the task
and the difference in the measurement setup between these targets.

Another observation was the lower prediction accuracy for the execution time of dense
workloads on both CPU types and the increased accuracy for the convolutional workloads
on these targets, which are most likely caused by the different memory hierarchy and
code generation that affects these workload types differently on the CPU and GPU targets.
However, this is only a assumption.

The low prediction quality on the i7 for the power consumption of depthwise and dilated
convolutions is most likely caused by an error during the collection of the dataset—which
relied on the chain of PAPI, powercap, and, finally, RAPL to perform the measurement—as
the minimal power consumption of the dataset was also reported to be zero.

7.1.3. Mobile Targets

Due to their lower amount of accessible memory and the high number of iterations
required to measure a reproducible power consumption reading, the datasets for these
targets were much smaller. This resulted in a number of workload types where no predictors
could be trained for the Cortex-A target, as well as overall lower performance on the smaller
datasets, as shown in Figure 4. To showcase a overall feasibility, an additional measurement
run without power consumption data was collected on the Mali GPU to validate the
feasibility of the approach on mobile targets.

https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
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Figure 4. The R2 scores of the best regression models out of the tested methods across all metrics and
workload types for the mobile targets of the currently collected datasets without the application of
any feature augmentation.

On the other workload types, the IO and workspace allocations achieved almost
perfect results, which is not surprising as these calculated values are deterministic and do
not contain any noise.

The power consumption prediction, however, did not achieve a significant prediction
accuracy for most workloads. The most likely reason is that the total board power was mea-
sured for the these targets and the difference in power consumption between different layer
configurations was too small to be detected among the overall noise. Nevertheless, the dif-
ferent workload types showed distinct distributions in their measured power consumption,
allowing for an MAPE score of 7% to 13% for the trained power consumption models.

The low inference latency prediction performance on the Mali GPU dataset that in-
cludes the power consumption data is caused by the small datasets as many of the sample
configurations were too large to fit the limited resources of the mobile platform. The
inclusion of more mobile and embedded focused model zoos into the sample configura-
tion dataset could help to improve the dataset size for this kind of target platform. An
additional data collection run that did not include the power measurements was able to
collect more samples for some layer workloads, which resulted in a drastically improved
model performance.

7.1.4. Summary of the Non-Augmented Prediction

The initial evaluation has shown that a useful prediction quality can be achieved by
our approach. However, the individual performance seems to depend on the hardware
architecture, dataset size, code generation, and measurement utilities, as the performance
impact of different hyperparameters seems to shift between targets and the feasible accuracy
depends on the accuracy of the underlying measurements.

7.2. Prediction Performance with Feature Augmentation

Although the initial results looked promising, we aimed to improve the overall perfor-
mance and generalizability of the models for unseen configurations.

As works such as PALEO [28] and Gianniti et al. [34] were able to perform accurate
predictions based on simple features that have been derived from the layer configuration,
four additional features were added to the model inputs: the sizes of the involved input,
weight, and output tensors, as well as the number of operations required to execute the
workload if a standard function kernel is assumed. These features are used in conjunction
with the layer hyperparameters, do not require any additional compilation steps and can
be acquired at the same graph-level representation of the neural network as before.

The additional features enabled the memory allocation prediction across all targets to
achieve an almost perfect R2 score of over 0.99 and an MAPE of less than 1%. The inference
latency prediction did show a major improvement for pooling layers across all target
devices, often drastically improving the MAPE score by an order of magnitude from 30%
to 5% on CUDA targets and the Xeon CPU, as well as from 120% to 12% on the Core-i7. For
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the power consumption prediction quality no major improvement could be seen on the
tested workloads and targets. Detailed data about the model training and evaluation can
be found in the dataset repository.

As the additional features have improved the performance for most datasets, they
have been added to the feature vector during the following tests.

7.3. Dataset Size

Although the usage of the model zoo for the sampling of measurement data enabled
the training of accurate regression models on small datasets, the collection of this dataset
was still the most time-consuming part of the entire flow. An additional reduction in the
dataset sizes could therefore improve the efficiency of the approach further.

For the test of the required dataset size, only the GTX 980 Ti GPU and the Core-i7
CPU were evaluated, as they were representative for their hardware architectures. The
mobile targets were not considered for this test, as their datasets were too small to be
further reduced.

To evaluate the minimal dataset size the datasets were randomly divided into a
validation and a training set. The training set was split into 15 equally sized, randomly
sampled subsets while the validation set stayed unchanged. The regression models were
trained on the initial subset of the training set and evaluated on the validation set. After
each evaluation, the training set is increased by 1 of the 15 subsets and the models are
re-instantiated, removing all knowledge from previous training iterations, before being
retrained with the extended training set.

7.3.1. Dense Layers

The dense dataset is the largest out of the measured workload types on most target
devices, with up to 20,000 samples, while dense workloads have the lowest number of
hyperparameters out of the evaluated layer types. Accordingly, the largest savings were
expected for this layer type.

As shown in Figure 5, the CUDA target already achieved an R2 score of 0.997 and
an MAPE of 4.7% for the inference latency after the first iteration with just 1260 samples.
The initial iterations show a steep reduction in the MAPE score until the improvement
slowed down after 8820 samples with a MAPE score of 3.6%. The further development was
rather small, with final scores of 0.998 and 3.4% on a training set of 18,900 samples. The
power consumption and memory allocation showed smaller improvements after the first
iterations, starting with MAPE scores of 2.2% and 0.3%, respectively, slightly reducing their
error until the last iteration down to 1.8% and 0.07%.

2,500 5,000 7,500 10,000 12,500 15,000 17,500
Training Set Size

0.00

0.01

0.02

0.03

0.04

0.05

M
AP

E time
power
memory

Figure 5. The development of the MAPE scores for the dense workload performance metrics on the
GTX 980 Ti with an increasing training set size.
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Although the inference time models did not achieve the same quality for dense
workloads on the x86 targets, the reason does not seem to be the significantly smaller
dataset, as the MAPE score in Figure 6 does not show a major decrease in the prediction
error across iterations.
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0.00
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Figure 6. The development of the MAPE scores for the dense workload performance metrics on the
Core-i7 4790 with an increasing training set size.

The power consumption prediction did not show any significant improvement be-
tween the first and the last iteration as well, as the error could only be decreased by 1.1%,
while the training set was drastically increased from 171 to 2565 samples.

The conclusion for dense workloads is that the training set can be shrunken signifi-
cantly from the used 20,000 samples without a larger reduction in the model performance,
and that the lower quality on the x86 targets is not caused by a lack of training samples.

7.3.2. Convolutional Layers

The observation of the inference latency prediction across iterations for convolutional
workloads shows a drastic improvement after the first iterations for the GTX 980 Ti: during
the third iteration, using a training set of 300 samples, the MAPE score of all models
decreased significantly from over 100% to as low as 57%. After the fourth iteration only
gradual improvements could be seen, with a final MAPE score of 40% that was achieved by
the ERT model. On the Core-i7 dataset, the MAPE score of the inference latency prediction
model showed a similar behavior, reducing the error from 175% during the first iteration
to 90% after the fifth iteration with 500 samples. Additional iteration reduced the error
gradually until it reached 72% while learning from the entire training set.

The power consumption model already achieved a low MAPE value on the first
iteration with an error of 5% on the Intel CPU and 2% on the CUDA GPU, which were
decreased to less than 1% on the GPU and 2% on the CPU.

The memory allocation prediction on the GTX 980 Ti showed a similar behavior with
only small improvements in its error from 9% to 8% across all iterations.

Although the power consumption and memory allocation training set can most likely
be reduced, an increase in samples might benefit the inference time prediction performance
for this workload.

7.3.3. Pooling Layers

As both pooling workload types show similar behavior, they have been grouped
together for this evaluation. The behavior for the GTX 980 Ti is similar to the convolutional
workloads: a steep decrease in the observed error of the inference latency prediction in the
initial iterations until a saturation point is reached. For pooling layers, this point seems to
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be around 1800 samples for average pooling workloads and just 800 samples for maximum
pooling layers. The other metrics show an already low MAPE score in the first iterations
and only small improvements for larger training sets.

The same observation was made for these workloads on the Core-i7 target, only the
saturation point seems to be reached much earlier with just 135 maximum and 235 average
pooling samples.

7.3.4. Summary of the Dataset Size Exploration

Although these results seem to indicate that some sample configuration sets could
be reduced in size, significantly speeding up the data collection process, they also show a
difference in the number of required samples for some workloads that seems to depend on
the target device.

An additional observation is that the power consumption prediction rarely shows
significant improvements after the first few iterations. As the reproducible measurement of
the power consumption requires the most time in the data collection loop, this suggests
that considerable time savings are possible by only collecting the power information for a
small subset of the total samples.

Further research might be necessary to find a solution that selects the most important
workload configurations for each individual hardware architecture to achieve large time
savings without reducing the prediction quality. Alternatively techniques to identify the
appropriate training set size automatically based on the target device, initial measurements
and the accuracy that is required by the intended performance model use case could
be explored.

7.4. Full Network Inference

The last test was the prediction of the performance of a full network inference run
instead of a layerwise comparisons. The test network was inspired by DarkNet-19 and
the Tesla A100 was used to benchmark the entire network inference. The model was not
part of the model zoo that was used to prepare the collected workload configurations.

A key difference between the standalone workloads in the training set and their
equivalent in the test networks is that TVM performs layer fusion, which adds the activation
function to the executed function kernel. However, this should only have an minimal impact
on the overall performance as the cost of applying the activation function is diminishingly
small compared to the function kernels that are executed prior.

The network consists of standard and pointwise convolutions, pooling layers, and
different activation functions. The final classification is implemented through a global
pooling layer before applying a softmax function. The total layer count is 22, with
14 convolutional, five max pooling and one global average pooling, and a flatten and a
softmax activation layer. Out of these layers, only the convolutional and max pooling
layers are considered by the performance predictor as the impact of the other layers
is expected to be too small to make a significant difference in the overall inference
footprint. The batch size was set to 16. The full architecture is shown in Table 4. The
layerwise comparisons of measurements and estimates from the different prediction
approaches can be found in Tables 5 and 6.
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Table 4. Overview of the layer configurations of the test network. The layer configuration of the
convolutional layer with the large underestimation of the inference latency is marked in red, the
green row represents a similar layer which achieved a significantly shorter inference latency.

Layer Workload Input Shape Output Shape Hyperparameters

conv2d_28 conv2d 16, 3, 224, 224 16, 32, 222, 222 K:3 S:1 F:32

max_pooling2d_30 max pool2d 16, 32, 222, 222 16, 32, 111, 111 P:2 S:2

onv2d_29 conv2d 16, 32, 111, 111 16, 64, 111, 111 K:3 S:1 F:64

max_pooling2d_31 max pool2d 16, 64, 111, 111 16, 64, 55, 55 P:2 S:2

conv2d_30 conv2d 16, 64, 55, 55 16, 128, 55, 55 K:3 S:1 F:128

conv2d_31 conv2d 16, 128, 55, 55 16, 64, 55, 55 K:1 S:1 F:64

conv2d_32 conv2d 16, 64, 55, 55 16, 128, 55, 55 K:3 S:1 F:128

max_pooling2d_32 max pool2d 16, 128, 55, 55 16, 128, 27, 27 P:2 S:2

conv2d_33 conv2d 16, 128, 27, 27 16, 256, 27, 27 K:3 S:1 F:256

conv2d_34 conv2d 16, 256, 27, 27 16, 128, 27, 27 K:1 S:1 F:128

conv2d_35 conv2d 16, 128, 27, 27 16, 256, 27, 27 K:3 S:1 F:256

max_pooling2d_33 max pool2d 16, 256, 27, 27 16, 256, 13, 13 P:2 S:2
conv2d_36 conv2d 16, 256, 13, 13 16, 512, 11, 11 K:3 S:1 F:512
conv2d_37 conv2d 16, 512, 11, 11 16, 256, 11, 11 K:1 S:1 F:256
conv2d_38 conv2d 16, 256, 11, 11 16, 512, 9, 9 K:3 S:1 F:512
conv2d_39 conv2d 16, 512, 9, 9 16, 512, 9, 9 K:1 S:1 F:256

conv2d_40 conv2d 16, 512, 9, 9 16, 512, 7, 7 K:3 S:1 F:512

max_pooling2d_34 max pool2d 16, 512, 7, 7 16, 512, 3, 3 P:2 S:2

conv2d_41 conv2d 16, 512, 3, 3 16, 1000, 3, 3 K:1 S:1 F:1000

global_avg_pool2d global avg pool2d 16, 1000, 3, 3 16, 1000, 1

flatten flatten 16, 1000, 1 16, 1000

softmax softmax 16, 1000 16, 1000

Table 5. Comparison of the layerwise measurements of the execution time with the predictions of the
different approaches. The layer configuration of the convolutional layer with the large underestima-
tion of the inference latency is marked in red, the green row represents a similar layer which achieved
a significantly shorter inference latency. The inference latency was measured and predicted in ms.
The last line compares the total inference times with and without the inclusion of the erroneous layer.

Layer Measured ERT kNN PALEO Template

conv2d_28 0.257 0.256 0.304 0.103 0.255

max_pooling2d_30 0.113 0.105 0.105 0.079 0.106

conv2d_29 5.383 3.638 2.260 0.233 2.014

max_pooling2d_31 0.069 0.060 0.060 0.039 0.060

conv2d_30 0.716 0.580 2.133 0.206 1.846

conv2d_31 0.222 0.140 0.134 0.043 0.142

conv2d_32 0.716 0.580 2.133 0.206 1.846

max_pooling2d_32 0.034 0.027 0.027 0.058 0.027

conv2d_33 1.615 0.951 1.424 0.188 0.564

conv2d_34 0.196 0.137 0.441 0.031 2.875

conv2d_35 1.615 0.951 1.424 0.188 0.564

max_pooling2d_33 0.018 0.018 0.018 0.045 0.018
conv2d_36 22.449 2.482 1.151 0.124 0.890
conv2d_37 2.566 0.154 0.172 0.017 0.170
conv2d_38 1.246 1.822 0.981 0.084 0.967
conv2d_39 0.177 0.133 0.356 0.011 1.795

conv2d_40 0.369 0.429 0.665 0.052 0.440

max_pooling2d_34 0.014 0.015 0.015 0.009 0.015

conv2d_41 0.671 0.122 0.323 0.006 0.729

global_avg_pool2d 0.020 - - - -

flatten 0.013 - - - -

softmax 0.023 - - - -

SUM 38.5/12.8 12.6/9.84 14.1/12.5 1.72/1.58 15.32/13.53
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Table 6. Comparison of the layerwise measurements of the execution power with the predictions
of the different approaches. The layer configuration of the convolutional layer with the large un-
derestimation of the inference latency is marked in red, the green row represents a similar layer
which achieved a significantly shorter inference latency. The inference power was measured and
predicted in Watt. The last line compares the total inference times with and without the inclusion of
the erroneous layer.

Layer Measured ERT kNN Template

conv2d_28 356.2 321.2 314.0 317.7

max_pooling2d_30 221.7 195.0 193.7 196.2

conv2d_29 213.1 256.6 257.3 259.3

max_pooling2d_31 225.6 196.5 200.7 194.6

conv2d_30 292.8 274.8 255.2 241.3

conv2d_31 248.1 247.5 239.5 246.9

conv2d_32 292.8 274.8 255.2 241.3

max_pooling2d_32 249.0 153.5 155.2 151.0

conv2d_33 232.3 258.5 257.4 247.2

conv2d_34 200.7 207.3 211.6 177.0

conv2d_35 232.3 258.5 257.4 247.2

max_pooling2d_33 212.8 82.7 81.3 78.7
conv2d_36 232.3 203.5 219.1 207.7
conv2d_37 172.1 188.5 200.8 197.4
conv2d_38 220.2 196.4 201.4 199.0
conv2d_39 202.0 170.1 198.9 189.2

conv2d_40 182.5 179.6 193.6 184.7

max_pooling2d_34 110.8 71.3 69.9 69.8

conv2d_41 184.4 146.5 163.3 168.0

global_avg_pool2d 115.3 - - -

flatten 90.6 - - -

softmax 93.9 - - -

SUM 8.93 J|2.94 J 2.93 J|2.39 J 3.4 J|3.06 J 3.31 J|2.97 J

7.4.1. Prediction Performance

The measured and predicted results for the individual layer execution times can
be seen in Table 5 and Figure 7. The layerwise power consumption measurements and
estimates can be found in Table 6 and Figure 8.

Figure 7. The measured and estimated layerwise inference latency of the test network. The mea-
surement outlier has been marked with red and is represented by an interrupted bar to fit into
the figure.
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Figure 8. The measured and estimated layerwise power consumption of the test network. The total
energy consumption of the whole network inference was calculated by multiplying each layers power
consumption estimate with its inference time prediction and accumulating the products of all layers.

The full network inference was measured with a latency of 38.5 ms, an inference
energy consumption of 8.93 J, and a memory footprint of 787.64 MiB. Of the total inference
latency, only 0.056 ms were contributed to by the layers that will be ignored during
the performance prediction and 0.2667 ms (less than 1%) were caused by the maximum
pooling workloads. This hints at the possibility that a performance prediction model for
these workloads is also unnecessary, however, it might just be the case for this specific
network architecture.

The remaining 38.2 ms are spent on the convolutional layer workloads. An interesting
observation is that a single convolutional layer requires 22.45 ms (conv2d_36) of the total
inference time—which hints at another performance outlier as described before, because a
very similar layer (conv2d_38) in the network required significantly less time (1.25 ms) to
complete its operation.

ERT and kNN regression models have been evaluated for this test. Although ERT
showed the best performance in the previous tests, the kNN model was selected with a
configuration of k = 3 and a uniform weighting of the neighbors as an attempt to reduce
the impact of performance outliers in the training set that was observed in the previous
tests. PALEO and the template matching approach were chosen for the comparison as they
are representative for their respective strategy out of the related work.

The ERT model predicted an execution time of 12.6 ms and an energy consumption of
2.94 J. Although the predictions for the pooling workloads were quite accurate (0.225 ms),
the main disparity was caused by the slow convolutional layer (conv2d_36) as it was
predicted with an inference latency of just 2.48 ms instead of over 22 ms. The kNN model
predicted an inference latency of 14.1 ms and an inference energy of 3.4 J. It achieved a
similar accuracy for the maximum pooling layers with 0.225 ms and its main prediction
error was caused by the same convolutional layer, which has been predicted with an
inference latency of 1.15 ms. The template matching approach predicted 15.1 ms and
3.31 J, while PALEO with an assumed computer performance of 19.5TFLOP and a memory
bandwidth of 1555 GB for the Tesla A100 estimated a total inference time of 1.72 ms—
PALEO did not describe a way to estimate other performance metrics, limiting it to the
inference latency for this test.

If the unoptimized layer is removed from the consideration, the total inference time is
reduced to 12.8 ms, while the inference energy is 2.94 J. The ERT model predicts 9.84 ms
with an energy of 2.38 J, while the kNN model is much more accurate with 12.5 ms and
an energy of 3.06 J. This equals an error of 23% for the inference latency and 18.9% for the
inference energy for the ERT model and 2.6%, as well as 4.1% for the kNN model. This
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showcases that the selected kNN model configuration can compensate the outliers in the
training set. The template matching solution achieved a similar result with an estimated
inference time of 13.53 ms and an inference energy of 2.97 J—resulting in an error of 5.6%
for the inference time and less than one percent for the energy. PALEO, which was used
without a scaling factor, predicted a significantly lower inference time of 1.58 ms.

This experiment showcases that an AI-based performance prediction for Deep Learn-
ing inference workloads is possible. However, the special tuning-based approach of TVM
makes it more complicated to achieve accurate results. Nevertheless, the combination of a
performance prediction solution with a tuning-based solution like TVM can be utilized to
identify subgraphs of the Deep Learning model that can benefit the most from additional
attention during the optimization and tuning process by comparing the actual measure-
ments against the estimates of the performance models. The surprisingly high accuracy of
the template matching approach also shows that the selection strategy for the training set
is able to cover the most important parts of the layer hyperparameter configuration spaces.

The estimation of the total memory footprint of the full network inference based on
the individual layer predictions is more complicated than for the other metrics, which only
require an accumulation of the individual values. As TVM performs multiple optimizations
that reduce the overall inference memory footprint, a simple approximation of their impact
is required. A pessimistic and simple approach that can estimate an upper bound for
the required memory space of a strictly sequential neural network is the accumulation
of the two biggest layerwise estimates. This solution takes the liveness analysis based
optimizations and memory reuse into account. For ERT, the two largest memory footprints
are 522 MiB and 537 MiB, resulting in a sum of 1059 MiB, which is much larger than the
measured 787.64 MiB. The kNN model predicted 509 MiB and 524 MiB, resulting in a
similar sum and error from the measurement. The template matching solution achieved a
similar estimate with 514 MiB and 524 MiB.

These estimates are very pessimistic in their assumption. This was a deliberate deci-
sion, as the memory footprint is often the deciding factor, if a Deep Learning workload
can be deployed to a platform. A more optimistic approach is based on the average of the
layerwise memory estimates, which is multiplied by two, to account for the simultaneous
liveness of the input and output feature map of each layer. This approach results in an
estimate of 776 MiB for the ERT model, 879 MiB for the kNN model and the template
matching, which is much closer to the measurement than the other solution, but tends to
underestimate the value. However, a more deterministic approach that does not rely on (AI-
based) estimates might be a more suitable solution for the memory usage calculation, as the
main contributes stem from the (intermediate) feature maps and not the function kernels.

7.4.2. Prediction Time

The total score time for all metric of all considered layers was 46.9 ms for the ERT model
and 93.75 ms for the kNN model on a standard mobile computer, while the benchmark of
the inference took 81.4 ms to transform the model from its Keras representation to TVM’s
graph-level IR, 118.037 s to compile it, 4.3 s to do the initial time measurement and 16.5 min
to perform the power measurement for the entire network on a high-end cluster node. This
underlines the benefit of the AI-driven performance models in terms of the spent time as
each of the steps required to benchmark the workload takes (significantly) more time than
the querying of the trained models.

Therefore, the querying of the ERT performance models is 23,000 times faster than the
deployment and benchmark for this test model, while the kNN model is still 11,865 times
faster. Another benefit in terms of the required time to obtain an estimate is that the query
time of the performance models grows linearly with the layer count, while the complexity
of the compilation and optimization is difficult to quantize and the time spent on the
following measurements mostly depends on the number of FLOPs required, as well as the
accuracy and sampling rate of the measurement tools. This large difference in the required
query time should allow this approach to quickly reach its break-even point when the
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expensive data collection and model training step is considered as well, especially if the
findings of the previous section about the required dataset size are considered.

8. Conclusions and Future Work

We introduced an AI-driven performance model for Deep Learning inference work-
loads that can be applied to all hardware architectures and metrics as long as the desired
characteristics can be measured for individual layer workloads. Although our prototype
was built using TVM and targeted search-based tuning solutions, it can be implemented
with all major Deep Learning frameworks and compilers, as long as accurate performance
measurements can be performed.

We showcased that the system is able to produce competitive predictions (see Table 1
for a comparison of the self-reported accuracy)—even when using a tuning-reliant Deep
Learning compiler such as TVM—and is by multiple orders of magnitude faster than a
real benchmark on the target device. The estimates are solely based on information that
is available at the network architecture level, enabling the use of these models in various
applications. As models could be trained on moderately sized datasets, this solution does
not have the same barrier of entry as some of the related publications, as a single hardware
instance is enough to collect the datasets in a tolerable time window.

Future work can take two different directions. The first direction is the improvement
of the current concept and execution to further advance the efficiency and quality of the
prediction flow. The data collection step is currently a brute force solution that measures
all found workload configurations on all target platforms. Our tests seem to indicate that
this is likely not the best approach, as the prediction quality between targets differed while
using the same set of workload configurations to collect their datasets. Possible reasons are
the different influences of the hyperparameters depending on the hardware architecture
that executes the function kernel. Based on these differences in influence, the relevance
of different samples also changes depending on the target. Future work could focus on a
more sophisticated approach to select the most relevant workloads for the measurement on
the target to build meaningful performance models on a minimal dataset. Alternatively,
the regression models could be refined to increase the quality of their output—for example,
implementing AutoML functionality to automate the model refinement just as the current
data collection and training flow of predefined regression models.

The second direction is the usage of these models in other applications. We identified
the ability to locate performance outliers during the evaluation, where a large discrepancy
between the predicted and measured performance can indicate further optimization po-
tential for a workload. Other use cases are the provision of performance estimates during
the model design phase, which can take place either manually or automated (NAS), and
allows for the consideration of additional performance characteristics such as the power
consumption in addition to the inference time. A use in combination with a NAS system
such as DONNA [55] that is able to estimate a models inference accuracy without having
to train it, could enable fundamental new approaches of designing Deep Learning models
and applications.

The metrics that can be predicted are not limited to those which were used for this
publication—as every characteristic that can be measured during the inference and is
impacted by the change in the layer configuration could be targeted by the performance
predictors. Another use case is the utilization of our solution to support the mapping and
scheduling of Deep Learning inference workloads across heterogeneous and distributed
systems, by estimating the performance of the individual workloads on the available target
devices, allowing for the fastest or most efficient mapping to be found.
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AI Artificial Intelligence
API Application Programming Interface
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
dTr Decision Trees
DL Deep Learning
ERT Extremely Randomized Trees
GPU Graphics Processing Unit
HDEEM High Definition Energy Efficiency Monitoring
IO Input/Output
kNN k-Nearest Neighbors
linR Linear Regression
NAS Network Architecture Search
NN Neural Network
NVML Nvidia Management Library
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MaxE Maximum Error
MEDAE Median Absolute Error
MLP Multi-Layer Perceptron
OS Operating System
PAPI Performance API
R2 Coefficient of Determination
RAPL Running Average Power Limit
SVR Support Vector Regression
TPU Tensor Processing Unit
TVM Tensor Virtual Machine
XGB XGBoosted Trees
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