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ABSTRACT
Artificial neural networks (ANNs) have demonstrated significant
promise while implementing recognition and classification appli-
cations. The implementation of pre-trained ANNs on embedded
systems requires representation of data and design parameters in
low-precision fixed-point formats; which often requires retraining
of the network. For such implementations, the multiply-accumulate
operation is the main reason for resultant high resource and energy
requirements. To address these challenges, we present Rox-ANN,
a design methodology for implementing ANNs using processing
elements (PEs) designed with low-precision fixed-point numbers
and high performance and reduced-area approximate multipliers
on FPGAs. The trained design parameters of the ANN are analyzed
and clustered to optimize the total number of approximate multi-
pliers required in the design. With our methodology, we achieve
insignificant loss in application accuracy. We evaluated the design
using a LeNet based implementation of the MNIST digit recognition
application. The results show a 65.6%, 55.1% and 18.9% reduction in
area, energy consumption and latency for a PE using 8-bit precision
weights and activations and approximate arithmetic units, when
compared to 16-bit full precision, accurate arithmetic PEs.

CCS CONCEPTS
• Computing methodologies → Neural networks; Classifica-
tion and regression trees; • Computer systems organization →
Embedded hardware; • Hardware → Neural systems.
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1 INTRODUCTION
Inspired by the human brain, artificial neural networks (ANNs)
are computational models built using a system of interconnected
computing nodes called neurons. Each neuron is associated with
two input parameters, a weight vector (w) and an input vector (x).
The output дj of a neuron is defined by

дi = σ
( N−1∑
j=0

wi, jxi − ϕ
)

(1)

where, σ () is the activation function, N is the fan-in of the neuron
j, wi j is the weight of the synapse between the i-th and the j-th
neurons, respectively, and ϕ is the bias added to the weighted sum.
The function first computes the weighted sum of all its inputs, and
then performs a non-linear activation on the computed sum to
generate дi .

Utilizing these neurons, ANN models consist of an input layer,
one or more hidden layers and an output layer. Depending on
the interconnect patterns of the neurons and the activation func-
tions used, neural network models are broadly classified into feed-
forward neural networks (FNN), recurrent neural networks (RNN)
and convolutional neural networks (CNN). Figure. 1 shows the ar-
chitecture of an FNN. During the training and inference phases,
every neuron in the network computes a weighted sum of its cor-
responding inputs and utilizes a non-linear activation function to
produce its output, as shown in Eq. 1.

Recent advances in ANNs have seen their large scale incorpora-
tion in a diverse set of applications such as synthesis, classification
and recognition [4][10]. To achieve higher accuracy, present imple-
mentations of ANNs are made larger and more complex. Due to the
massive number of multiply-accumulate (MAC) operations, used
to compute the weighted sum at each neuron, training of ANNs is

x2 w2, j Σ σ
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Figure 1: Design of an Artificial Neuron.
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performed, preferably, using massive parallel computing platforms,
such as Graphics processing units (GPUs).

For the utilization of ANNs in embedded systems, the ASIC-
based ANN hardware accelerators aim to provide high performance
and energy-efficient inference engines. As ANNs are naturally de-
signed to be error resilient [18], several approximation techniques
have been proposed in literature to optimize the hardware imple-
mentations of ANN to reduce energy consumption and improve the
overall efficiency. These implementations, such as [2, 7, 9, 12, 17],
mainly consider the quantization of data, such as activations and
weights, to reduce the resources and energy demands of the imple-
mentations.

Besides using quantized data, some recent works have also ex-
plored the utilization of approximate arithmetic components for
enhancing the performance of ASIC-based ANN accelerators. Du
et al. [5] propose the use of approximate multipliers to design inex-
act neurons in neural networks. The multipliers proposed in this
design use a logic minimization algorithm to reduce the runtime
latency of the multiply operation. The proposed model exploits the
error-tolerance of ANNs to achieve significant energy, latency and
area gains. Venkataramani et al. [15] proposed a methodology of
identifying error-resilient neurons based on the back-propagation
gradients. For the error-resilient neurons, an approximation us-
ing precision modification and piecewise-linear approximation of
activation function was applied to create an approximate neural
network. Since training is by itself an error-healing process, after
creating the approximate version, the NN is retrained. They also
proposed a neuromorphic processing engine platform to determine
the best trade-off between the precision and energy. In a similar
approach, Zhang et al. [18] propose a method to identify critical
neurons in a proposed architecture. The authors present a theo-
retical approach to detect critical neurons by studying the effect
of small errors, introduced at the input, on the neuron’s computa-
tion. The neurons are then ranked according to their criticality and
three separate approximation techniques are introduced, memory
access reduction, data and weight quantization and approximate
arithmetic circuits.

However, ASIC-based hardware accelerators are constrained by
their inability to support different types of neural networks and the
limited size of the inferred network. To address these limitations,
efforts have been made to implement reconfigurable ANN architec-
tures and accelerators. Eyeriss [3] is a reconfigurable accelerator de-
signed for CNNs that minimizes the energy cost for data movement.
Considering the flexibility, high-parallelism and reconfigurability
of FPGAs, recent works have also considered FPGA-based ANN
accelerators [6, 11, 13, 16, 17]. However, many of the state-of-the-
art FPGA-based implementations, such as [17], utilize High-level
Synthesis Tools (HLS), such as provided by Vivado, to generate
synthesizable RTL. However, the limitation of Vivado HLS to use
only Vivado-provided IPs during the generation of RTL, makes it
difficult to incorporate custom approximate IPs (arithmetic units)
in the generated RTL. Other FPGA-based ANN accelerators, such as
[6, 16] do not consider the approximate arithmetic modules during
their proposed implementations.

In this paper we propose RoxANN, a methodology to design area
and energy efficient ANN hardware using approximate arithmetic
units on FPGAs. The methodology includes:

• the design of ANN processing elements (PEs) that support
the utilization of approximate multipliers, thereby achieving
significant area and energy savings;
• the use of quantized activations and weights to reduces the
memory demand on the FPGA;
• a weight clustering technique, used post training, to incorpo-
rate weight sharing. With a fixed number of shared weights,
we propose the use of constant multipliers in PEs, signifi-
cantly reducing the area and resource demand on the FPGA.

The remainder of this work is organized as follows. We introduce
our Rox-ANN design methodology in Section 2. We present our
evaluation methodology in Section 3. We compare our approach
against a fully precise and accurate ANN hardware implementation
in Section 4. Finally, we conclude the paper in Section 5.

2 DESIGN METHODOLOGY
In this section, we present the FPGA-based Rox-ANN methodology.
First, we propose the design of a generic processing element that
supports the use of accurate/approximate arithmetic units, such
as adders and multipliers, to compute the partial weighted sum of
neurons. Next, we demonstrate the use of quantized activations and
weights on the training and implementations phase of the neural
network. Finally, we present a clustering based approach, used after
the training phase of the neural network, to minimize the number
of distinct weights on the network.

2.1 Processing Element
The proposed design of a generic PE, as shown in Figure 2, is opti-
mized for the state-of-the-art Xilinx FPGAs (with 6-input lookup
tables), however, it can also be implemented on FPGAs from other
vendors, such as those provided by Intel. As described in Fig. 2(a),
the neurons in the hidden layer and output layer of an ANN com-
pute the weighted sum of all its corresponding activations. In a
layered architecture, such as a Multilayer Perceptron (MLP), neu-
rons that belong to the same hidden layer share all the inputs from
the previous layer, stored in a vector x, and contains a weight for
every synaptic connection, stored in a vector w. Each processing
element consists of two dual-port block random access memories
(BRAMs); one to store a subset of the activations x̂ and the other
to store a subset of the weights ŵ, respectively. The size of the
BRAM can be configured based on the architecture of target FPGA
platform, design constraints—such as energy, area and latency—and
the size and type of neural network architecture being implemented
on the FPGA.

Each PE contains two multipliers and two adders as shown in
Fig. 2. Each multiplier and adder pair computes the partial weighted
sum of the inputs x̂ and the corresponding weights ŵ. The design
of the PE is configurable, based on the demands and constraints
of the neural network. Fig. 2(b) and Fig. 2(c) show two possible
configurations of the proposed PE. The PE in Fig. 2(b) can com-
pute the partial weighted sum of two separate neurons, with each
multiplier-adder pair used to represent a single neuron. The two
multiplier-adder pairs in a PE can also be configured to represent a
single neuron as shown in Fig. 2(c). The configuration in Fig. 2(c)
will have double the throughput of the design in Figure 2(b) for
a single neuron. Similarly, depending upon target FPGA platform
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Figure 2: Implementation of a single processing element on
the FPGA to compute the partial sum of single or multiple
neurons.

and design requirements, a layer/neuron can be implemented by
multiple concurrently executing PEs. This flexibility allows the
designer to choose a PE configuration based on design constraints.

The proposed methodology also supports approximate and con-
stant multipliers for the PE implementation. The modular and RTL
based implementation of the proposed PE makes it very easy to in-
stantiate high performance approximate multipliers, such as those
provided in [14], to meet the implementation’s performance con-
straints. The utilization of approximate multipliers, for PE imple-
mentation, also results in overall area savings, which can be used
for instantiating more PEs on a smaller FPGA platform with limited
resources. As discussed in Section 2.3, we perform weight clus-
tering to significantly reduce the total number of distinct weights
for a layer. Utilizing the resultant fixed clustered weights, our pro-
posed methodology can configure the PE to use constant multipli-
ers. With constant multipliers, there is no need to store the weight
vector w and only one single BRAM is used by a PE. Besides signifi-
cantly reducing the overall resource utilization of a PE, the constant
multipliers-based PE offer very high performance as compared to
the accurate/approximate multipliers-based PE implementations.

2.2 Data Quantization
Standard implementations of ANNs use 32-bit, or word-size floating
point operators, activations and weights during the training and
inference phases [1]. In order to reduce the memory required to

Figure 3: ProposedWeight Sharing technique compared to a
Fully Connected layer.

store the weights, intermediate outputs and the memory accesses,
we use 8-bit and 16-bit fixed point arithmetic operators, weights and
activations during the training and inference of the neural network.
Several works in literature [2] [8] have shown that quantization of
operators and data, even below 8-bits, have little to no effect on the
accuracy of the ANN application.

To validate this, we re-train and infer a standard MNIST hand-
written digit recognition benchmark using 8-bit and 16-bit fixed
precision operator. For the 8-bit and 16-bit fixed point operators,
we use 1 bit and 2 bits for the integer part, respectively and 7-bits
and 14-bits for the fractional part, respectively. It is important to
note that the output of the arithmetic operator is truncated down
to 8 and 16-bits respectively.

2.3 Weight Clustering
In a fully connected neural network, the number of weighted
synapses between any two layers is represented as nz x nz+1, where
z is the layer number and n is the number of neurons in the given
layer. In order to reduce the memory required to store the respec-
tive weights on the PE and to minimize the latency due to memory
reads, we propose a layer-wise, clustering based, weight sharing
technique, to reduce the number of unique weights in the network.

We propose the use of Kmeans, an unsupervised learning algo-
rithm, to divide a one-dimensional weight matrixWz,z+1 into k
clusters, where k determines the number of unique weights. The
objective of the k-means algorithm is to minimize the sum of dis-
tances of every weight in a cluster to the cluster centroid Ck . The
distance between the weight and the centroidCk is computed as the
Euclidean distance. Post clustering, weights belonging to a cluster k
are replaced by the centroids Ck the respective cluster. Therefore,
the centroid weight Ck is shared by all the synapses in the cluster
k. Figure 3 shows the weight clustering technique used between
two hidden layers of a fully connected network.

With the weights reduced to k fixed values, we propose the
use of constant multipliers to design the PE. The use of constant
multipliers significantly reduces the area and runtime latency of a
single PE. This can be attributed to the exclusion of the redundant

Special Session 6: Neuromorphic Computing and Deep Neural Network GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

491



Table 1: Dataset and Application Details.

Dataset Application Source Samples Input Dimensions

MNIST Hand Writing Digit Recognition NYU 10,000 28 * 28

Convolution 1

Max-Pool 1

Convolution 2

Max-Pool 2

Convolution 3

Max-Pool 3

64@28x28
64@14x14 64@14x14 64@7x7 64@7x7 64@3x3

1X576

1x10

Dense

Figure 4: LeNet based MNIST digit recognition application.

BRAM used to store weights, the reduced number memory reads
and the size of a constant multiplier.

3 EXPERIMENTAL SETUP
To evaluate the performance and efficiency of the proposed Rox-
ANN design methodology, we have used VHDL, Xilinx Vivado 17.4
and Xilinx Artix-7 AC701 evaluation platform (xc7a200tfbg676-2
device) for the implementation of proposed PE design. We have
used the 2-neurons configuration of the PE, shown in Fig. 2(b),
for describing the effects of utilizing accurate, approximate and
constant multipliers on area utilization, critical path delay and
energy consumption. For EDP calculations, Vivado Simulator and
Power Analyzer tools have been used.

We evaluate the following metrics.

Application Accuracy. The classification accuracy of the benchmark
application when retrained using quantized activations andweights,
and approximate arithmetic units.

Energy Consumption. The static and dynamic energy consumed by
the proposed PE is mainly attributed to the size of the BRAMs and
the arithmetic units used to design the PE.

Area Overhead. The area (number of utilized LUTs) of a PE’s imple-
mentation is also mainly defined by the size of BRAM and choice
of arithmetic units.

Latency. The latency of the designed PE is measured as the critical
path delay for a single multiply-accumulate (MAC) operation.

We perform experiments on the LeNet based implementation
of the MNIST digit recognition application. Figure 4 shows the
architecture of the neural network used to train and infer theMNIST
digit recognition application. Table 1 shows the details of theMNIST
dataset.

4 RESULTS
In this section, we present results that demonstrate the accuracy
obtained and also the energy efficiency, reduced latency and area
reduction achieved using the Rox-ANN design.

4.1 Accuracy
The MNIST handwritten digit recognition application, shown in
Figure 4, is used as a benchmark to observe the effects of quantized
data and approximate arithmetic units on the accuracy. Table 2
shows the accuracy of the benchmark application, re-trained using
fixed bit-width (8-bit and 16-bit) operators, activations and weights
and approximate neurons. The accuracy is compared to a standard
implementation of the benchmark application using 32-bit float
point data and accurate multipliers. From the table, we observe
that the accuracy of the MNIST benchmark application trained
and implemented using 8-bit and 16-bit fixed precision data and
approximate hardware neurons suffer a 1.77% and 0.37% loss in
accuracy when compared to the standard implementation.

Table 3 shows the accuracy of the MNIST benchmark application,
implemented using 8-bit and 16-bit data, and a constant multiplier
based hardware neuron. In order to design the constant multiplier,
we use a weight clustering technique, described in Section 2.3,
to reduce the number of distinct weights between any two fully
connected layers of the ANN. In the benchmark application, we
introduce constant multiplier based PEs to implement the dense
layers of the LeNet architecture. In Table 3, we observe a marginal
drop in application accuracy with a reduction in the number of
constant multipliers used to implement the dense layers.

4.2 Performance Metrics of Processing Element
The proposed PE design, shown in Fig. 2(b), has been implemented
using two different quantization schemes and utilizing accurate,
approximate and constant multipliers. For accurate and approxi-
mate multipliers-based PEs, both neurons (in a single PE) reads 576
different activations (vector x) and corresponding weights (vector
w) from the associated BRAMs. For constant multipliers-based PE
design, the clustered weights define the constant multipliers, and
hence, only the activations (vector x) is read from a single asso-
ciate BRAM. Table 4 shows the area, energy consumption and
latency of the four proposed configurations of the PE. The results
demonstrate that the use of approximate PEs designed using Rox-
ANN have a significant impact on the area, energy and latency of
an ANN implementation, when compared to accurate multipliers-
based PE implementation. For accurate multipliers-based PE, our
methodology utilizes Vivado speed-optimized multiplier IPs. For
implementing approximate signed multipliers, we have used 8×8
and 16×16 precision-reduced multipliers. For these multipliers, the
two LSBs of each input operand have been truncated to use 6×6 and
14×14 multiplier IPs (provided by Vivado) to implement precision-
reduced 8×8 and 16×16 multipliers respectively. An accurate 8×8
multiplier occupies 75 LUTs, whereas 42 LUTs are occupied by a
precision-reduced 8×8 approximate mutiplier. From Fig. 5 we see
that the use of 8-bit approximate arithmetic units achieves a 65.6%,
55.1%, and 18.9% reduction in the area, energy consumption and
latency for a single PE when compared to a fully-accurate PE. The
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Table 2: Experimental Statistics for Approximate Arithmetic Neurons

Dataset
Fixed Bit-Width Implementation Float-Point Implementation
Configuration Accuracy Configuration Accuracy

MNIST
S_8 97.33 %

S_32 99. 10 %
S_16 98.73%

Table 3: Experimental Statistics for Constant Multiplier Approach.

Dataset
Fixed Bit-Width Implementation Float-Point Implementation

Configuration Clusters Accuracy Configuration Clusters Accuracy

MNIST

S_8
4 96.41%

S_32 1 99.10 %

8 96.93%
16 97.19%

S_16
4 97.28%
8 97.94%
16 98.21%

Table 4: Area, Energy and Latency of the proposed PEs.

PE Design Area (LUTs)
Multiplier Area

(LUTs)
Energy (pJ) Latency (ns)

8-bit Accurate 1233 75 3.18 9.65
16-bit Accurate 2488 287 4.83 11.34

8-bit Approximate 856 42 2.17 9.20
16-bit Approximate 2181 220 4.84 10.69

8-bit Constant 150 19 2.30 7.59
16-bit Constant 256 52 3.04 8.70
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Figure 5: Area, Energy and Latency of the proposed PEs, normalized to the 16-bit Accurate PE.

performance of the ANN can be further improved by incorporating
constant multipliers based PEs in the design of the fully-connected
layers of the ANN. PEs designed using 8×8 and 16×16 constant
multipliers demonstrate a 95.08% and 89.98% reduction in area re-
spectively, and a 33.05 % and 23.3% reduction in critical path delay,
respectively, when compared to a 16-bit accurate PE. The LUTs
occupied by 8×8 and 16×16 constant multipliers are 19 and 52
respectively.

5 CONCLUSION
Approximate computing is a design paradigm used to reduce the
resources required to implement artificial neural networks (ANNs)
on hardware. In this paper, we present Rox-ANN, an FPGA-based
methodology to design processing elements (PEs) that supports the
use of approximation techniques, such as approximate arithmetic
units and quantized data, to implement artificial neural networks
(ANNs). With the proposed PEs, we demonstrate a 65.6%, 55.1%
and 18.9% reduction in area, energy consumption and latency for a
8-bit approximate PE when compared to a PE designed using 16-bit
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accurate arithmetic units. Furthermore, we propose a technique
to implement a fully-connected layer of an ANN using constant-
multipliers based PEs.
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