
Author-prepared-version.

SMApproxLib: Library of FPGA-based Approximate Multipliers
Salim Ullah, Sanjeev Sripadraj Murthy, Akash Kumar

Technische Universität Dresden, Germany
Corresponding Author’s Email: salim.ullah@tu-dresden.de

ABSTRACT
The main focus of the existing approximate arithmetic circuits has
been on ASIC-based designs. However, due to the architectural
differences between ASICs and FPGAs, comparable performance
gains cannot be achieved for FPGA-based systems by using the
approximations defined, particularly for ASIC-based systems. This
paper exploits the structure of the 6-input lookup tables and associ-
ated carry chains of modern FPGAs to define a methodology for
designing approximate multipliers optimized for FPGA-based sys-
tems. Using our presented methodology, we present SMApproxLib,
an open source library of approximate multipliers with different
bit-widths, output accuracies and performance gains. Being the first
open source library of FPGA-based approximate multipliers, SMAp-
proxLib can serve as a benchmark for designing and comparing
future FPGA-based approximate arithmetic circuits.

KEYWORDS
Approximate Computing, Multipliers, Adders, FPGAs, Optimiza-
tion, Area, Latency, Design Space Exploration

1 INTRODUCTION
The reconfigurable nature of FPGAs has made them an attractive
choice for a wide range of applications by reducing both the time-to-
market, as well as the associated costs of developing new systems.
In order to provide high performance for different applications,
modern FPGAs also host hard DSP blocks. These DSP blocks are
optimized to perform various fixed point and floating point op-
erations such as multiplication and division. Synthesis tools tend
to deploy these hard DSP blocks to reduce the overall execution
time and power consumptions of different applications. However,
as noted by Kuon et al. [6], the usage of DSP blocks might result in
performance degradation of some applications. This performance
degradation is mainly due to the fixed locations of the DSP blocks.
Similarly, for some applications, the usage of DSP blocks might
result in exhaustion of the DSP blocks in concurrently running
applications. Figure 1 shows the implementation results of four
applications using Xilinx Vivado 17.1 for Virtex-7 series FPGA1. As
shown in Figure 1(a), the fixed location of DSP blocks has resulted
in an increase in the critical path delays of Viterbi Decoder, Reed-
Solomon Encoder and Image WARP applications. Similarly, the
implementation of the Viterbi Decoder, in Figure 1(b), has resulted
in the utilization of a very large number of available DSP blocks.
Therefore, it is always desirable to have logic-based soft multipliers
along with DSP blocks.

1The default Balanced Synthesis option was used.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
This work was supported by the German Research Foundation(DFG) funded
Project ReAp under Grant 380524764.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196115

The works of [5, 10, 13] also concentrate on efficient utilization of
FPGA resources for multiplier implementations. However, there
are a range of applications that are resilient to inexactness of input-
data or intermediate computations, and for such applications the
accurate intermediate computations or exact final outputs may
not be required to produce acceptable output quality. Examples of
such applications can be found in the domain of media process-
ing, data mining and recognition applications [2, 3]. Exploiting the
error-resilience of these applications, logic-based approximate mul-
tipliers can be designed with better area, performance and energy
efficiencies. However, most of the recent works on approximate
arithmetic circuits, concentrate on either ASIC-based designs or
do not consider the underlying structures of FPGAs, i.e. lookup
tables (LUTs) and carry chains. The authors of [1, 7, 8] have used
approximate partial product reduction trees to achieve performance
and energy gains. [4, 11] have presented approximate 2×2 multi-
pliers to generate higher order multipliers. By combining different
approximate adders and multipliers present in literature, [9] pre-
sented "EvoApprox8b", an open source library of 8-bit approximate
adders and multipliers. However, the EvoApprox8b concentrates
on designing 8-bit approximate adders and multipliers. Moreover,
due to the ignorance towards the architectural specifications of
FPGAs, deployment of these approximate designs on FPGAs do
not produce comparable performance, energy and area gains. Fig-
ure 2 presents the ASIC-based implementation results of four 8×8
multipliers, chosen randomly from EvoApprox8b [9], along with
their FPGA-based implementations. These results show the perfor-
mance gains of approximate multipliers - A1, A2, A3 and A4, with
respect to an accurate multiplier, also obtained from EvoApprox8b.
The results for ASIC-based implementations have been reported
from [9]. For FPGA-based results, we have implemented A1—A4
on Virtex 7 FPGA using Xilinx Vivado 17.1. As shown in Figure 2,
the performance gains of ASIC-based approximate designs are not
comparably transported to the FPGA domain.
In order to provide a road map for obtaining area, energy and per-
formance gains by using approximate computing for FPGA-based
systems, this paper emphasizes on developing designs by consider-
ing the structure of modern FPGAs. To address the aforementioned
problems, this paper presents SMApproxLib an open source Library
of Approximate Soft Multipliers, optimized for modern FPGAs such
as those provided by Xilinx and Intel.

Utilizing an FPGA-based accurate n×n multiplier design, opti-
mized for area and energy efficiency, the novel contributions of
this paper include a design space exploration methodology for gen-
erating approximatemultipliers of arbitrary data sizes. For eachn×n
accurate multiplier, we provide three approximate n×n multiplier
designs by efficient utilization of LUTs and carry chains. In order to
reduce the execution time of an n×n multiplier, our methodology
recommends implementing it using four instances of n2 multipliers.
Each individual instance of n

2 multiplier can be generated either
directly or recursively from four instances of n4 multipliers. Besides
supporting accurate summation of partial products, we also provide
a novel n-bit approximate adder to reduce the overall execution

https://doi.org/10.1145/3195970.3196115

Author-prepared-version.

time of the multiplier. All implementations have been characterized
by their area and latency requirements and average relative errors.
SMApproxLib incorporates the non-dominating design points of-
fered by EvoApprox8b [9] to provide a rich library of multipliers
optimized for FPGA-based systems. Being the first library to pro-
vide approximate multipliers optimized particularly for FPGAs, we
will make our automated tool flow for generating the VHDL and
behavioral codes, for implementing multipliers of arbitrary sizes,
open-source at https:// cfaed.tu-dresden.de/pd-downloads.
The rest of the paper is organized as follows: in Section 2, we
briefly present the preliminaries required to understand the pro-
posed methodology. Section 3 introduces an FPGA-based accurate
multiplier architecture optimized for area and energy efficiency.
The proposed approximate multiplier architectures are discussed
in Section 4, followed by a discussion about our design space explo-
ration and integration of design points from other sources in Sec-
tion 5. Section 6 discusses the experimental setup, implementation
of proposed designs and their results, followed by the Conclusion
in Section 7.

12

14

16

To
ta

l D
e

la
y

[n
s]

NOVA Viterbi Dec. Reed-Solomon Enc. WARP

(a) Critical Path Delay Comparison

DSPs Disabled DSPs Enabled

8
6

10

2

0

4

0
2
4
6
8

10
12
14
16
18

NOVA Viterbi Dec. Reed-Solomon Enc. WARP

R
e

so
u

rc
e

 U
ti

liz
at

io
n

 (
%

)

(b) DSP Blocks and LUTs Utilization

DSP-Blocks LUTs (DSPs Enabled) LUTs (DSPs Disabled)

Figure 1: Effects of DSP utilization on the implementation
results for four applications

�� �� �� ��

���	
��
����

���	
��
����

��	�
���� ������

��	�
����

���	�
����

���	�
����

�
	
��
	

��
�
	
��
�
�

��
��

�

!

�

"!

"�

"�!

Figure 2: Implementation results of ASIC-optimized multi-
pliers on FPGAs

2 PRELIMINARIES
The configurable logic blocks (CLBs) are the main resources in-
volved in implementing any kind of sequential or combinatorial
circuit on Xilinx FPGAs. Unlike previous versions of Xilinx FPGAs,
a CLB in the state-of-the-art FPGAs has eight 6-input lookup ta-
bles (LUTs) and an 8-bit long carry chain. As shown in Figure 3,
the 6-input LUTs can be used to implement either a single 6-input
combinational function or two 5-input combinational functions by
defining a 64-bit INIT value. The INIT value of an LUT describes all
the possible combinations for which a "1" is received at the output
of the LUT. The LUTs are also used to control the associated carry
chain. In this paper, Xilinx Virtex 7-series FPGA has been used for
the implementation of the proposed approximate multiplier library.
In the 7-series FPGAs, a CLB has two slices to group eight LUTs
and the associated carry chain, as shown in Figure 4.

�����

������

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

Figure 3: 6-input LUT of Xilinx FPGAs [15]

�

�

�

�

�

�

�

� ���

��
�
�	
���

�
��

�
�	
���

�
��

�
�	����

�
��

�
�	����

�

����

�
�

�
�

�
�

�
�

��
�

��
�

��
�

��
�

�
�

��
�

�
�

��
�

�
�

��
�

�
�

��
�

��
�

��
�

��
�

��
�

��
�
�	�
���	�����
��	����
�	����	���

�
��	�����

��
�
�	�
���	����
�
��	����
�	����	���

�
��	�����

Figure 4: Carry chain of Xilinx FPGAs [15]

Unlike ASIC-based designs which provide a finer design control
of the circuits at gate level granularity, FPGAs provide design con-
trol at LUT level of granularity. Therefore, any design optimized for
FPGAs, must consider the structure of individual slices of FPGAs.
Ignorance towards the structure and direct porting of ASIC-based
designs result in loss in performance gains, as observed in our mo-
tivational case study in Section 1. Therefore, instead of completely
relying on FPGA synthesis and implementation tools for optimiz-
ing the designs, our methodology provides a base architecture for
accurate multiplication and then utilizes this structure to introduce
different types of approximations.

2

https://cfaed.tu-dresden.de/pd-downloads

Author-prepared-version.

CC

A0B0A1B1

CC

A1B0A2B1

T-1

CC

AN-2B1AN-1B2

CC

A0B2

CC

AN-3B3

CC

AN-1B2

CC

A0
BN-1

CC

A0B0

CC

AN-1
BN-1

P2N-2 PN+1 PN P2 P1 P0P2N-1

BX

T-1 T-1

T-2 T-2 T-2

T-2T-2 T-3

Ax

By

Ax1

Bw

O5

O6

T-1 Ax

ByO5

O6

T-2

PSum

A0

B0O5

O6

T-3

PSum

(a) Different LUTs configurations

(b) n×n Multiplier

Figure 5: Area and energy efficient implementation of n×n
multiplier

3 FPGA OPTIMIZED ACCURATEMULTIPLIER
Utilizing the general structure of an n×n multiplier and exploiting
the 6-input LUTs and fast carry chains of modern FPGAs, an accu-
rate n×n array multiplier has been shown in Figure 5. This accurate
multiplier combines the processes of partial products generation
and their accumulation into a single step, to efficiently utilize FPGA
resources. For this purpose, it classifies the LUTs into three con-
figurations: T-1, T-2 and T-3 as shown in Figure 5(a). As shown
in Figure 5(b), the first row of this accurate multiplier has LUTs
with T-1 configuration and it generates the first two rows of partial
products of an n×n multiplier and accumulates them using the
associated carry chain. The remaining n − 2 rows have LUTs with
configuration T-2 for generation of the remaining partial products
and their accumulation through the carry chains. The last row has
an LUT of Type T-3 for generation of product bits PN +1 and P0.
Using this accurate multiplier, we propose different approximation
techniques to enable gains in area, latency and energy.

4 PROPOSED APPROXIMATE MODULES
To improve the performance of the implementation of the accurate
multiplier shown in Figure 5, we propose three novel approxima-
tions. These approximations aim to reduce the critical path delay
and power consumption, by reducing the number of logic levels
present in Figure 5. For all approximate designs, the partial products
are divided into multiple layers. To fully utilize the six inputs of an
LUT, each layer contains four consecutive rows of partial products,
as shown by the black line in Figure 6 for an 8×8 multiplier. The
mapping of four consecutive partial products rows to 6-input LUTs
is further explained in the following sections.

4.1 Approximate Design 1: Approx1
Approx1 uses approximate addition for the reduction of the partial
products to a final answer. Utilizing LUTs of Type1 and associated

carry chains from Figure 5, every two consecutive partial products
rows are generated and mutually added accurately. This process
is performed in parallel for all partial products. For example, the
generation and summation of Row1 & Row2 and Row3 & Row4 in
Figure 6 results in sum vectors (S09 – S00) and (S19 — S10) respec-
tively. These sum vectors can be reduced to a final answer (PP11 –
PP0) by using either accurate addition through carry chains, or by
utilizing the 6-input LUT based approximate addition, as shown in
Figure 7. The INIT values (hex) in Figure 7 show the approximate
addition performed by each LUT. To improve the accuracy of the ad-
dition, every LUT considers bit values of the preceding column, for
calculating the current output bit. The same approximate addition
can be used to obtain the final product by adding the final outputs
of each layer. It can be seen that for an n×n multiplier, Approx1 is
capable of generating and reducing partial products to compute the
final product in ⌈loд2(n)⌉ steps.

4.2 Approximate Design 2: Approx2
Approx2 and Approx3 are optimized to improve latency and energy
gains, by removing the associated carry chains for partial products
accumulation. As discussed previously, the first step in all approxi-
mate designs is to group the partial products into multiple layers,
with each layer containing four rows of consecutive partial prod-
ucts. For Approx2 and Approx3, we have further grouped partial
products in each layer, as shown by the different color boxes in
Figure 8. The grouping is based on the location of a partial product
bit with respect to other partial product bits in a layer. Approx2
and Approx3 differ only in the computation of partial product bits
enclosed by the green boxes. As shown by the red box in Figure 8(a),
which is a representation of Rows 1 — 4 of Figure 6, the first two
columns in each layer can be accurately produced by a single LUT.
The corresponding red box in Figure 8(b) shows the implemen-
tation of the function performed by the LUT. Similarly, the blue
box in Figure 8(b), utilizes a single LUT to accurately generate
and add the partial products in the third column. The yellow box
in third last column of each layer, is utilized for approximately
computing the sum of partial products. The approximation in the
function performed by the yellow box is the result of predicting the
carry-out from the preceding column. The purple boxes are utilized
to compute the final two product bits in each layer. As shown in
Figure 8(b), the purple boxes utilize two LUTs for improving the
accuracy of the most significant bit. As all the partial product bits
grouped by green boxes contain four partial product terms, the
proposed approximation utilizes two 6-input LUTs per group for
generating and computing the sum of these bits. As shown by Fig-
ure 9(a), Approx2 utilizes a 6-input LUT for generating the first two
partial product terms and then adds them by using an XOR gate.
This generates the approximate sum of the first two partial product
terms. As can be seen in Figure 9(a), a second LUT is utilized for
generating the next two partial product terms and adds them with
the previously computed sum. The same technique is used for all
partial product bits that are enclosed by green boxes, in each layer.
Since the generation and summation of all partial products bits in
every group is executed in parallel, Approx2 offers reduced latency
as compared to Approx1 and the accurate multiplier presented in
Section 3. The elimination of the carry chain also results in the
reduction of energy consumption in the circuit.

4.3 Approximate Design 3: Approx3
Approx3 is different from Approx2 in the computation of partial
product terms enclosed by green boxes. In order to improve the

3

Author-prepared-version.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����

�����

�����

�����

����	

����

�����

�����

Figure 6: 8×8 array multiplier

���� ��������

����������������

�
��

�
��

�
��

�
��

��
�

��
�

��
� ��

�

�
��

�
��

���� ��������

����������������

�
��

�
��

�
��

�
��

��
�

���������� ��

����������������

�
��

�
��

�
��

�
�	

��
�

���� ��������

����������������

�
��

�
�	

�
��

�
��

��
��

��
��

Figure 7: Approximate addition of partial products

accuracy of Approx2, Approx3 considers predicting the carry out
from preceding bit locations. As shown by Figure 9(b), a 6-input
LUT is used for computing the first three partial product terms in
each group. This LUT also implements three AND gates, identified
by shading, to predict the carry from preceding bit locations. The
computed three partial product terms and the predicted carry are
added together to generate an approximate sum. As shown in Fig-
ure. 9(b), by using a second LUT, this sum is again added with the
fourth partial product term to compute the final approximate sum
of the group.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
���
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
���
�
�

�
���
�
�

�
�
�
�

�
�
�
�

�
���
�
�

�
���
�
�

�
���
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
���

�
�
�
�

�
���

�
�
�
�

�
���

�
���

����

�

�����

��	�
��
��������������������
�����������������

��	����
��
�����������������������
���
�

�
�

�
�

�
�

�
�

�
���

�
���

�
���

�
�
���

���

Figure 8: Partial products generation for Approx2 and Ap-
prox3

5 DESIGN SPACE EXPLORATION
Using the accurate multiplier, approximate adder and the three
approximate multiplier designs, we propose a design space explo-
ration methodology and provide an open source automated tool
flow for implementing approximate multipliers of arbitrary sizes,
with different performance gains. Our methodology performs map-
ping of logic to LUTs at design time and allows for quick estimation
of area and latency requirements of the design. The advantage of

�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�
���

���

�
�
�
��

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
���

���

�
�
�
��

�
�
�
��

�����		
��
���
������
���� �����		
��
���
������
����

Figure 9: Structural difference between Approx2 and Ap-
prox3

������

������

������

������

�
����

�
����

�
�

�
�

�
���

�
�

�
�

�
�

�
�

�
�

Figure 10: Recursive approach for higher order multipliers

design time mapping of logic to LUTs is that similar performance
gains can be obtained for different versions of FPGAs and synthe-
sis tools. Besides providing array-based accurate and approximate
multipliers, our methodology supports a recursive approach of de-
signing N×N multipliers from N

2 multipliers as shown in Figure 10.
By using the recursive approach, area/latency requirements and
the worst case error of an N×N multiplier can be estimated from
Eq.1–Eq.3.

(1)
LUTs f or (N × N)multiplier

=
4∑
i=1

(LUTs f or (
N

2
×
N

2
)multiplier i) + LUTs f or Adder

(2)
Latency o f (N × N)multiplier ≈max(Latency f or (

N

2

×
N

2
)multiplier)

+ Latency f orAdder

Worst case erroro f (N × N)multiplier

≈Worst case error o f M1 +Worst case error o f M2 × 2N

+Worst case error o f M3×2N +Worst case error o f M4×22N

(3)

Since the proposed methodology utilizes both approximate par-
tial product generation and approximate summation of partial prod-
ucts, it is also capable of integrating other approximate designs to
provide a wide range of design choices for different applications.

4

Author-prepared-version.

Table 1: Area, latency, power and error values of proposed
multipliers

Performance

Metric

4x4 8x8

Accurate
Approx

1

Approx

2

Approx

3

Xilinx

Multiplier

IP

Accurate
Approx

1

Approx

2

Approx

3

Xilinx

Multiplier

IP

Area (LUTs) 12 12 7 7 16 56 64 54 54 64

Latency (ns) 6.796 6.094 5.254 5.531 6.027 10.592 9.222 9.038 9.081 8.417

Power (W) 0.198 0.18 0.192 0.192 0.245 0.22 0.22 0.217 0.216 0.344

Average

Relative Error
0.0 0.072 0.126 0.123 0.0 0.0 0.016 0.030 0.027 0.0

6 RESULTS AND DISCUSSION
We have implemented an automated tool flow for generating the
VHDL and behavioral (MATLAB) codes of all proposed multipli-
ers. Our automated tool flow utilizes Vivado 17.1 for the synthesis
and implementation of the proposed multipliers for the 7VX330T
device of Virtex-7 family. Vivado simulator and Power Analyzer
have been utilized for calculation of the power values. For power
reports, a uniform distribution based on all combinations of input
values has been used. Using the proposed methodology, 545 dif-
ferent implementations of an 8×8 multiplier have been produced,
which are compared with EvoApprox8b [9] and IpACLib [12] for
performance gains and resource utilization. The MATLAB codes
have been utilized to analyze the effects of approximate multipliers
on the final output quality of a Gaussian noise removal filter.

Table 1 presents the area, latency, power consumption and aver-
age relative error of four multipliers using the proposed method-
ology, along with those of the default multiplier IP provided by
Xilinx [14]. These results demonstrate the proposed basic accurate
and approximate architectures. The complete design space using
these basic architectures is presented in Figure 12 – Figure 15. As
shown in Table 1, all approximate designs trade accuracy for gains
in latency and power consumption. Due to a separate partial prod-
uct reduction tree using carry chains, the 8×8 Approx1 multiplier
has higher area than the accurate 8×8 multiplier. However, the 8×8
Approx1 multiplier computes the final product in loд2(8) steps and
offers gains in latency and power requirements. Since Approx3 pre-
dicts previous carries for computing new product bits, its average
relative error is lesser than that of Approx2. Eq.4 has been used for
computing the average relative error. In order to check the effects
of these approximate multipliers on the final output qualities of
real world applications, we have implemented the Gaussian noise
removal filter using our accurate and approximate multipliers. As
shown by Figure 11 and Table 2, the proposed approximate multi-
pliers have resulted in insignificant loss in output quality.

(4)

Averaдe relative error

=
1
N

N∑
i=1

|
Accurate resulti − Approximate resulti

Accurate resulti
|

Further, we present a design space by integrating the design
points from EvoApprox8b [9] and IpACLib [12]. As stated in the
motivational analysis in Section 1, ignorance towards the under-
lying architecture of FPGAs has resulted in significant decrease
in Pareto points for EvoApprox8b. By integrating the resultant

Table 2: PSNR values of the images in Figure 11

8x8 Multiplier PSNR (dB)

Accurate 28.4335

Approx 1 28.2455

Approx 2 27.5388

Approx 3 27.2070

Pareto points of EvoApprox8b with design points offered by our
proposed approximate multipliers, we present a wide-range design
space for FPGA-based systems. By comparing the critical path delay
and average relative errors of all design points, Figure 12 shows
that EvoApprox8b offers 12 non-dominated design points, whereas
24 non-dominated points are presented by the proposed approxi-
mate multipliers. Similarly, Figure 13 presents the integrated design
space for comparison of area and latency requirements of all design
points, in which both, EvoApprox8b and the proposed approximate
multipliers, offer 3 Pareto points. For power and area requirements
of the design space, Figure 14 shows that the proposed methodol-
ogy offers 3 non-dominated design points while 1 non-dominated
point is provided by EvoApprox8b. Finally, Figure 15 presents the
average relative error and area requirements of all the design points.
The proposed methodology offers 15 non-dominated design points,
whereas 23 non-dominated design points are provided by EvoAp-
prox8b. In all of these comparisons, IpACLib [12] was filtered out
due to it high area, latency and power consumption requirements.

7 CONCLUSION
In this paper, we presented a novel design methodology for design-
ing approximate multipliers, optimized specifically for FPGA-based
systems. By utilizing the 6-input LUTs and carry chains, we have
proposed three approximate multiplier designs. By integrating the
design points from EvoApprox8b, our methodology provides a rich
library of approximate multipliers with various performance at-
tributes. Since the proposed methodology is based on effective
utilization of LUTs, our library is scalable to FPGAs from other
vendors such as Intel. Besides these, we provide an automated
tool flow for implementing accurate/approximate multipliers of
arbitrary sizes with different performance gains. SMApproxLib,
along with our automated tool flow will be made open-source at
https:// cfaed.tu-dresden.de/pd-downloads to encourage and help fur-
ther research in this direction.

REFERENCES
[1] Kartikeya Bhardwaj, Pravin S Mane, and Jorg Henkel. 2014. Power-and area-

efficient Approximate Wallace Tree Multiplier for error-resilient systems. In

(a) Accurate (b) Approx1 (c) Approx2 (d) Approx3

Figure 11: Gaussian noise removal filter output images: (a)
with accurate multiplier, (b) with Approx1 multiplier, (c)
with Approx2 multiplier and (d) with Approx3 multiplier

5

https://cfaed.tu-dresden.de/pd-downloads

Author-prepared-version.

6 7 8 9 10 11 12 13 14

0.0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

SMApproxLib Dominated points

SMApproxLib Pareto Points

EvoApprox8b Dominated Points [5]

EvoApprox8b Pareto Points [5]

IpACLib 8x8 Multiplier [6]

Latency [ns]

Figure 12: Latency and average relative error value compar-
ison of proposed methodology with EvoApprox8b and IpA-
CLib

6 7 8 9 10 11 12 13 14

40

60

80

100

120

Ar
ea

 (
LU

Ts
)

SMApproxLib Dominated points
SMApproxLib Pareto Points
EvoApprox8b Dominated Points [9]
EvoApprox8b Pareto Points [9]

IpACLib 8x8 Multiplier [12]

Latency [ns]

Figure 13: Latency and area value comparison of proposed
methodology with EvoApprox8b and IpACLib

Quality Electronic Design (ISQED), 2014 15th International Symposium on. IEEE,
263–269.

[2] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan.
2013. Analysis and characterization of inherent application resilience for approxi-
mate computing. In Proceedings of the 50th Annual Design Automation Conference.
ACM, 113.

[3] Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging
paradigm for energy-efficient design. In Test Symposium (ETS), 2013 18th IEEE
European. IEEE, 1–6.

[4] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading accuracy
for power with an underdesigned multiplier architecture. In VLSI Design (VLSI
Design), 2011 24th International Conference on. IEEE, 346–351.

[5] Martin Kumm, Shahid Abbas, and Peter Zipf. 2015. An efficient softcore multiplier
architecture for Xilinx FPGAs. In Computer Arithmetic (ARITH), 2015 IEEE 22nd
Symposium on. IEEE, 18–25.

[6] Ian Kuon and Jonathan Rose. 2007. Measuring the gap between FPGAs and ASICs.
IEEE Transactions on computer-aided design of integrated circuits and systems 26,
2 (2007), 203–215.

[7] Chia-Hao Lin and Chao Lin. 2013. High accuracy approximate multiplier with er-
ror correction. In Computer Design (ICCD), 2013 IEEE 31st International Conference
on. IEEE, 33–38.

[8] Cong Liu, Jie Han, and Fabrizio Lombardi. 2014. A low-power, high-performance
approximate multiplier with configurable partial error recovery. In Proceedings
of the conference on Design, Automation & Test in Europe. European Design and
Automation Association, 95.

40 60 80 100 120

0.18

0.20

0.22

0.24

0.26

0.28

Po
w

er
 (

W
)

SMApproxLib Dominated points
SMApproxLib Pareto Points
EvoApprox8b Dominated Points [9]
EvoApprox8b Pareto Points [9]

IpACLib 8x8 Multiplier [12]

Area [LUTs]

Figure 14: Power and area requirement comparison of pro-
posed methodology with EvoApprox8b and IpACLib

0.0 0.1 0.2 0.3 0.4 0.5
Average Relative Error

40

60

80

100

120

Ar
ea

 (
LU

Ts
)

SMApproxLib Dominated points
SMApproxLib Pareto Points
EvoApprox8b Dominated Points [9]
EvoApprox8b Pareto Points [9]

IpACLib 8x8 Multiplier [12]

Figure 15: Area and average relative error value comparison
of proposed methodology with EvoApprox8b and IpACLib

[9] Vojtech Mrazek, Radek Hrbacek, Zdenek Vasicek, and Lukas Sekanina. 2017.
EvoApproxSb: Library of approximate adders and multipliers for circuit design
and benchmarking of approximation methods. In 2017 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 258–261.

[10] Hadi Parandeh-Afshar and Paolo Ienne. 2011. Measuring and reducing the
performance gap between embedded and soft multipliers on FPGAs. In Field
Programmable Logic and Applications (FPL), 2011 International Conference on.
IEEE, 225–231.

[11] Semeen Rehman, Walaa El-Harouni, Muhammad Shafique, Akash Kumar, and
Jörg Henkel. 2016. Architectural-space Exploration of Approximate Multipliers.
In Proceedings of the 35th International Conference on Computer-Aided Design
(ICCAD ’16). ACM, New York, NY, USA, Article 80, 8 pages. https://doi.org/10.
1145/2966986.2967005

[12] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. 2015. A low latency generic
accuracy configurable adder. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1145/2744769.2744778

[13] Zarrin Tasnim Sworna, Mubin Ul Haque, Hafiz Md Hasan Babu, Lafifa Jamal, and
Ashis Kumer Biswas. 2017. An Efficient Design of an FPGA-Based Multiplier
Using LUTMerging Theorem. InVLSI (ISVLSI), 2017 IEEE Computer Society Annual
Symposium on. IEEE, 116–121.

[14] Xilinx. 2011. Logicore IP multiplier v11.2. https://www.xilinx.com/support/
documentation/ip_documentation/mult_gen_ds255.pdf

[15] Xilinx. 2017. Xilinx 7 Series Configurable Logic Block. https://www.xilinx.com/
support/documentation/ip_documentation/mult_gen_ds255.pdf

6

https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2744769.2744778
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen_ds255.pdf

