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Abstract—Radar sensors offer power-efficient solutions for always-on
smart devices, but processing the data streams on resource-constrained
embedded platforms remains challenging. This paper presents novel
techniques that leverage the temporal correlation present in streaming
radar data to enhance the efficiency of Early Exit Neural Networks
for Deep Learning inference on embedded devices. These networks add
additional classifier branches between the architecture’s hidden layers
that allow for an early termination of the inference if their result is
deemed sufficient enough by an at-runtime decision mechanism. Our
methods enable more informed decisions on when to terminate the
inference, reducing computational costs while maintaining a minimal
loss of accuracy. Our results demonstrate that our techniques save up to
26 % of operations per inference over a Single Exit Network and 12 %
over a confidence-based Early Exit version. Our proposed techniques
work on commodity hardware and can be combined with traditional
optimizations, making them accessible for resource-constrained embed-
ded platforms commonly used in smart devices. Such efficiency gains
enable real-time radar data processing on resource-constrained platforms,
allowing for new applications in the context of smart homes, Internet-
of-Things, and human–computer interaction.

Index Terms—Embedded Deep Learning, Radar Processing, Embedded
Radar

I. INTRODUCTION

Integrating radar technology into Internet of Things (IoT) ap-
plications and personal computing devices offers advantages over
traditional camera-based solutions, including weather and lighting
independence and low power consumption while maintaining high-
resolution data generation [1]–[7].

To achieve state-of-the-art prediction performance for radar data
processing, Deep Learning (DL) techniques are required [1], [2], [4].
However, deploying DL workloads on low-powered Microcontrollers
(MCUs) commonly used in IoT products presents challenges. Early
Exit Neural Networks (EENNs) [8]–[11] provide a potential solution
by incorporating additional classifiers between hidden layers, known
as Early Exits (EEs). EENNs terminate the inference when an EE
provides sufficient results, thus saving computational resources. The

The project on which this report is based was funded by the German
Ministry of Education and Research (BMBF) under the project number
16ME0542K. The responsibility for the content of this publication lies with
the author.

selection of the appropriate classifier is typically based on available
compute resources or the input sample.

Existing approaches have limitations that can lead to reduced
accuracy or excessive compute resource usage and do not lever-
age the properties of streaming data resulting in non-optimal de-
cisions [12]–[14]. This paper introduces two novel techniques for
runtime decision-making: Difference Detection (DD) EENNs and
Temporal Patience (TP) EENNs. These techniques improve termi-
nation decisions by leveraging EE output similarity over time to
select the best exit for the current sample, thus focusing the similarity
metric on the relevant information of the input data, which is based
on features extracted by the already executed Neural Network (NN)
layers. This creates a simple similarity metric that focuses on relevant
features for the NN’s task. Additionally, it improves the efficiency
by sharing computations between the network inference and the
similarity computation and reduces the memory footprint compared
to input filtering approaches which need to store the reference input
data that is often significantly larger than the classification output
vector.

To the best of our knowledge, this is the first paper that leverages
the temporal correlation of the sensor data to guide the termination
decision process.

II. RELATED WORK

The Related Work section examines prior research in two crucial
areas: radar data processing with DL and EENNs.

A. Radar-Processing Applications

NN-based radar data processing has been explored for various
applications, including people-counting [1], [2], [4], activity [15] and
gesture recognition [5]. Specialized algorithms, such as RNNs [15],
[16] (see Fig. 1a) and Temporal Convolutions [17], [18] (see Fig. 1b)
are used to leverage temporal information for enhanced prediction
quality. However, these methods lack support in Embedded Deep
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(a) Many solutions leverage
the temporal correlation of
the input to improve the pre-
diction accuracy by using
Recurrent Neural Networks
(RNNs).
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(b) An alternative to RNN-
based architectures is tempo-
ral convolutional layers that
operate on frames from multi-
ple points in time (using win-
dowing).
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(c) Our method rearranges the
windowed data by combining
the antenna and time dimen-
sions into a single axis to
enable the usage of cheaper
layer types.

Fig. 1: Different approaches to include temporal information into the neural processing network. T are the timesteps, H and W are the
dimensions of the feature maps, and C is the number of channels, which equals the number of receiving antennas if Range-Doppler Maps
are processed.

Learning toolchains1 or impose a large resource footprint unsuitable
for constrained platforms like embedded MCUs.

B. Early Exit Neural Networks

Early Exit Neural Networks (EENNs) improve inference efficiency
and speed by incorporating multiple output branches, called Early
Exits (EEs), at different depths. EENNs allow for early predictions
based on stopping criteria. The most commonly used criteria are
budget-based and confidence-based. Budget-based solutions perform
the decision before or during the inference based on the avail-
ability of compute resources [10], [11]. Confidence-based solutions
rely on output vector metrics, such as confidence, score margin,
or entropy [8], [19]. Such rule-based solutions have limitations,
including overspending on simple inputs, incorrect decisions [12],
[20], and vulnerabilities to Denial-of-Service (DoS) attacks [13],
[14]. Advanced termination solutions like policy networks require
additional resources and training that result in larger resource foot-
prints than a single-exit model would cause and are therefore a
poor fit for constrained devices [21], [22]. Explainable AI offers an
alternative by identifying relevant filters and reducing computational
footprint [23]. Another approach employs patience, terminating the
inference execution when enough subsequent classifiers agree on
their output. However, this requires deeper architectures with a large
amount of early exit branches [24]. Template-matching is similar to
our approach but lacks temporal components and its input similarity
calculation would create too much overhead for the MCUs due to
the large radar data samples [25].

III. USE CASE

Our solutions were implemented for a people-counting application
using a 60 GHz radar sensor. The input consists of groups of Range-
Doppler Maps (RDMs) from the sensor, covering the last eight time-
steps. The output is a classification vector representing the number
of people present in the surveyed area.

1TensorFlow Lite for Microcontroller, microTVM, and Glow enable data
scientists to compile and optimize their NNs to be executed on embedded
MCUs without the need for deeper knowledge on these embedded platforms.

Training and evaluation datasets were acquired using an Infineon
XENSIV 60-GHz radar sensor2 with an average scene length in
the range of thirty seconds. The application targets a Cortex-M4F-
based MCU for radar data preprocessing and NN inference, utilizing
TensorFlow Lite for microcontrollers as deployment toolchain [26].

IV. ARCHITECTURE AND TRAINING

The model architecture and training align with the state-of-the-art
in NN and EENN. We made optimizations to reduce computational
requirements, including data reordering and the use of depthwise-
separable 2D convolutions.

We employed a data reordering technique to address the challenge
of incorporating temporal information while considering resource
limitations, as shown in Fig. 1c. Combining the temporal and
antenna axes reduced dimensionality and replaced computationally
expensive 3D convolutions with efficient depthwise-separable 2D
convolutions [27]. This preserved the ability to process sequence data
while reducing computational and memory requirements.

Although the data reordering resulted in a loss of semantic informa-
tion, the model achieved a training accuracy of 72.5 % (compared to
75.33 % with 3D convolutions), indicating that the network inferred
the lost information during training. Depthwise-separable convolu-
tions further reduced the resource footprint, achieving a 65.72 %
reduction in Multiply-Accumulate (MAC) operations per inference.

The model consists of a backbone and two additional EEs (see
Fig. 2). The backbone comprises three convolutional blocks followed
by the final classifier, while the EEs incorporate additional pooling
layers to reduce their computational footprint.

Training followed established practices by simultaneously fitting
all classifiers and the backbone using backpropagation.

V. DIFFERENCE DETECTION EARLY EXIT NEURAL NETWORKS

In existing EENNs, termination of the inference process is typically
based on confidence-based metrics, which can lead to errors and
vulnerabilities.

2Infineon XENSIV 60GHz-BGT60TR13:
https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-
for-iot/60ghz-radar/bgt60tr13c/

https://www.tensorflow.org/lite/microcontrollers
https://tvm.apache.org/docs/topic/microtvm/index.html
https://ai.facebook.com/tools/glow/
https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/
https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/
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Fig. 2: The neural network architecture of the base network together
with the two added Early Exits.

To address this issue, we propose a Difference Detection (DD)-
based EENN. It leverages the temporal correlation within the sensor
data and the propagation of changes through the network architecture
to enable more efficient termination decisions.

The DD-EENN calculates the change in the classifier’s output
vector as the Euclidean distance between the current classification
output vector (o⃗) and the vector of a previous sample (o⃗tinitial ). This
change is defined as the distance (d) between the output vectors of
the first EE classifier (o⃗t,exit0 ) between samples from two time-steps
(t1 and tinitial) (see Eq. 1).

change(t1, tinitial) = d(o⃗t1,exit0 , o⃗tinitial,exit0 ) , o⃗ ∈ RC (1)

We defined scenes as blocks of consecutive samples that are
detected as similar by the decision mechanism. The initial sample
of a scene is labeled based on the majority vote of all classifiers,
eliminating reliance on unreliable confidence-based metrics (see
Eq. 2, where ot,exit = argmax(o⃗t,exit) and n is the total number
of classifiers in the EENN).

vote(ot,exit0 , ot,exit1 , ..., ot,exitn ) = argmax
c∈C

(
n∑

i=1

[ot,exiti = c]

)
(2)

The prediction at each time step is determined by comparing the
currently processed sample to the initial sample. If the change is
smaller than the threshold, the prediction of the initial sample is
reused, and no deeper layers and classifiers are executed. If the change
exceeds the threshold, the prediction is based on the majority vote
of all classifiers, indicating the start of a new scene and setting the
current sample as new reference (see Eq. 3).

output(t) =

{
votetinitial ,if change(t, tinitial) < threshold

votet ,if change(t, tinitial) ≥ threshold
(3)

A similar threshold can be defined for regression tasks to compare
the scalar output values of the compared time steps.

By comparing to the initial input of the scene rather than the direct
predecessor, mislabeling due to slow drift in subsequent samples is
prevented. The use of the early classifier to calculate the change
metric improves efficiency by reusing operations between the DD and
the inference task. Our approach provides a simple similarity measure
for complex radar data without requiring domain knowledge, as in the
case of template-matching solutions. This similarity metric approach
holds potential for other data modalities, which can be explored in
future work.

VI. TEMPORAL PATIENCE EARLY EXIT NEURAL NETWORKS

The DD-EENN relies on the similarity between samples to reuse
previous predictions, making its efficiency and accuracy dependent

on the defined threshold for an acceptable change. However, always
using the first EE classifier in the network and not considering
higher-level features extracted by deeper layers can lead to decreased
accuracy. To address this, we propose an improved solution with two
modifications to enhance accuracy while leveraging the DD approach.

The first adjustment involves the location of the DD EE-classifier
in the network architecture. Instead of always using the first classifier,
this variant uses the first classifier that agrees with the majority vote
of the initial sample of the current sequence for the following inputs
of that sequence (see Eq. 4). This allows the mechanism to utilize a
classifier more likely to detect a new scene accurately.

select(t) := argmin
i

(ot,exiti = vote(ot,exit0 , ot,exit1 , ..., ot,exitn )) (4)

The change metric is updated to consider the selected classifier to
accommodate this modification. The modified change metric is shown
in Eq. 5, where o⃗ represents the output vectors, C is the number of
classes, and n is the selected classifier.

change(t, tinitial) = d(o⃗t,exiti , o⃗tinitial,exiti ) ,
o⃗ ∈ RC

i = select(tinitial)
(5)

The second modification involves using the selected classifier to
produce a label for subsequent samples. This reduces reliance on the
similarity threshold and adds minimal overhead as the DD’s output
vector is already calculated.

These modifications are intended to improve the prediction accu-
racy but introduce additional computations. Scene change detection
now considers the distance between the selected classifier’s output
vectors and the label change. This approach incorporates a temporal
component inspired by patience-based decision mechanisms. The
updated output function at each time step is described by Eq. 6,
where the condition determines if the change is within the threshold,
and the output is based on the selected classifier or the majority vote.

condition(t) = change(t, tinitial) < threshold and
argmax

c∈C
(o⃗t,exiti ) = argmax

c∈C
(o⃗tinitial,exiti )

output(t) =

{
o⃗t,exiti , if condition(t)

vote(ot,exit0 , ot,exit1 , ..., ot,exitn ) , otherwise
(6)

VII. BENCHMARK

To assess the performance of our method, we conducted a bench-
mark using a private radar dataset. The used test set consists of
237,000 samples that belong to one of five classes as described in
section III.

We compared our method to a confidence-based EENN and a
Single Exit version of the network architecture as these are the most
commonly used methods. The benchmark evaluated test set accuracy
and inference efficiency for the people-counting task. During the eval-
uation, multiple global threshold configurations were explored for our
mechanisms, while the confidence-based EENN utilized individual
thresholds for each classifier. To measure inference efficiency, we
employed the mean of total Multiply-Accumulate (MAC) operations
per inference as a hardware-independent metric.

Additionally, we evaluated the majority voting mechanism against
the state-of-the-art confidence-based labeling by applying both meth-
ods to the entire test set.
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Fig. 3: Benchmark results of a traditional Single Exit Neural Network, an optimized confidence-based EENN, and our novel DD- and
TP-EENNs across multiple detection thresholds.

A. Accuracy

In our benchmark, we compared the EENN decision methods
and the Single Exit NN. The Single Exit network achieved the
highest accuracy of 72.5 %. The confidence-based EENN achieved
the second-highest accuracy of 71.5 %. The DD and TP solutions
achieved accuracies ranging from 69.71 % to 70.96 % and 71.12 %
to 71.29 %, respectively. Refer to Table I for the performance of the
individual classifiers and the final classifier.

While there was a slight decrease in accuracy, the drops were
insignificant in practical applications. The maximum accuracy drop
observed was 2.79 percentage point (p.p.) for the DD approach and
1.38 p.p. for the TP approach. Compared to the confidence-based
decision mechanism, the maximum accuracy drop was 1.79 p.p. for
DD and 0.38 p.p. for TP.

The accuracy of the EENN depends on the accuracy of individual
classifiers and the at-runtime decision system. Future work could
explore the calibration of exit-wise similarity thresholds to further
improve accuracy.

TABLE I: The accuracy and computational cost of the classifiers of
the EENN model and the benchmark models.

Model Single Conf. EE1 EE2 Final Maj.
Exit EENN Class. Vote

Acc. 72.5 % 71.5 % 69.8 % 71.3 % 72.5 % 71.5 %
MACs 256.3k 216.2k 188.5k 222.2k 256.8k 308.8k

This benchmark highlights the performance of the DD and TP
mechanisms, and the detailed accuracies can be found in Fig. 3a.

B. Efficiency

The benchmark evaluated the mean cost in computations as MAC
operations per inference on the test set. The Single Exit solution
had the highest inference cost of 256 kMAC per sample, while the
confidence-based EENN reduced it to 216.26 kMAC (see Fig. 3b).

The DD and TP mechanisms significantly reduced the mean
inference cost, with both solution achieving a minimum cost of
188.6 kMAC and a maximum cost of 209.7 kMAC. The average cost
across all threshold configurations for the DD was 192.8 kMAC and
193.5 kMAC for the TP solution. Compared to the confidence-based
solution, these approaches offered inference cost reductions of up to
26 %. The efficiency improvement of the DD and TP solutions came
from their execution strategy, where only the earliest or previously
selected exit classifier was executed as long as the change between
the current and initial samples remained below the threshold. In
contrast, confidence-based methods executed all exit calculations until
a sufficiently confident result was obtained.

While the TP solution incurred additional costs for a small number
of subsequent samples, it showed improved classification capabilities
(see Fig. 3c and 3d). The DD and TP mechanisms demonstrated
superior efficiency compared to the confidence-based approach.

C. New Scene Labeling

The DD- and TP-EENNs employ a majority voting mechanism
for labeling the initial frame of newly detected scenes. This was
intended to prevent overthinking - a process in EENNs where
EEs produce a correct prediction but are overwritten by deeper
classifiers [20]. Comparing the accuracy of the majority voting
approach to the confidence-based solution, we found that the majority
vote achieved an accuracy of 71.54 %, while the confidence-based
approach achieved an accuracy of 71.42 %. The difference between
the two approaches was only 0.16 p.p., indicating their similarity in
accuracy for this application and that overthinking is not an issue for
this application.

Interestingly, we observed that an optimally tuned confidence-
based EENN with exit-wise thresholds can compete with the majority
vote mechanism in terms of accuracy. This suggests that both ap-
proaches have their strengths and weaknesses, and the choice between
them may depend on the specific requirements of the task and dataset.

VIII. CONCLUSION

We have introduced a novel approach for processing radar data
using EENNs with temporal information. Our evaluation demon-
strated significant efficiency gains of up to 26 % compared to the
Single Exit network. Both the DD-EENN and TP-EENN solutions
are easy to implement and provide cost-effective similarity measure-
ments through computation reuse. While the DD-EENN achieved
slightly higher efficiency gains, the TP-EENN maintained higher
accuracy across the test set and is less dependent on the threshold
hyperparameter configuration. The majority vote and the optimally
tuned confidence-based EENN yielded similar accuracies for this use
case, indicating the potential for even greater efficiency gains when
combining confidence-based labeling for new scenes with the DD
approach. Our solution does not require specialized hardware and can
be combined with additional optimizations such as quantization and
pruning. Future work can focus on utilizing the similarity measure-
ment for additional use cases like monitoring or could evaluate the
approach on other data modalities like audio or image data exploring
various EENN architectures.

We have shown the possibility of leveraging the temporal cor-
relation of sensor data for more efficient termination decisions on
EENNs. This research provides a strong foundation for future work
and has the potential to impact various applications.
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