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Abstract— This paper presents a uniform comparison between
various algorithms and architectures used for Reed Solomon (RS)
decoder. For each design option, a detailed hardware analysis is
provided, in terms of gate count, latency and critical path delay. A
new low-power syndrome computation is proposed in the paper.
Dual-line architecture of modified Berlekamp Massey algorithm
was chosen for Ultra Wide-band (UWB) as an application
example. The results obtained are very encouraging both in
terms of silicon area and power. A detailed analysis of results
is presented and they are also compared with other published
industrial and academic designs.

I. INTRODUCTION

Reed Solomon (RS) codes have been widely used in a
variety of communication systems. Continual demand for ever
higher data rates and storage capacity makes it necessary to
devise very high-speed implementations of RS decoders. A
number of algorithms are available and this often makes it
difficult to determine the best choice due to the number of
variables and trade-offs available.

For IEEE 802.15-03 standard proposal (commonly known
as UWB) in particular, very high data rates for transmission
are needed. Since the standard is also meant for portable
devices, power consumption is of prime concern. There is no
clear algorithm or architecture that can meet the low-power
and high-throughput requirements of UWB. In this paper,
a uniform comparison of various designs and architecture
is presented. Dual-line architecture of BerleKamp Massey
algorithm was implemented, with a lot of other optimisations
to the conventional design.

In the next section we present an introduction to RS codes
and the decoder structure, followed by syndrome computation
architecture. The design space is explored in the following
section. We then present the results obtained for the archi-
tecture chosen for UWB followed by some optimisations
to the design. The results are then compared with existing
architectures in the section on benchmarking followed by
conclusions.

II. REED SOLOMON CODES

RS codes are one of the most commonly used in all forms
of transmission and data storage for forward error correction
(FEC). They are a subset of Bose-Chaudhuri-Hocquenghem
(BCH) codes and are linear block codes. [1] is one of the best
references for RS Codes.

An
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code implies that the encoder takes in
	

symbols and adds
��
�	

parity symbols to make it an
��


symbol code word. Each symbol is at least of � bits, where����� �
. Conversely, the longest length of code word for a

given bit-size � , is
��� 
��

. For example,
����� ����� � ����� �

code
takes in 239 symbols and adds 16 parity symbols to make 255
symbols overall of 8 bits each. Figure 1 shows an example of a
systematic RS code word. It is called systematic code word as
the input symbols are left unchanged and the parity symbols
are appended to it.
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Fig. 1. A typical RS code word

Reed Solomon codes are best for burst errors. If the code
is not meant for erasures, the code can correct errors in up to�

symbols where
����� � 
!	

. A symbol has an error if at least
one bit is wrong. Thus,

�"�#� ����� � ����� �
can correct errors in up

to 8 symbols or atleast upto 50 successive bit errors. It is also
interesting to see, that the hardware required is proportional to
the error correction capability of the system and not the actual
code word length as such.

When a code word is received at the receiver, it is often not
the same as the one transmitted, since noise in the channel
introduces errors in the system. Let us say if $ ��%&� is the
received code word, we have

$ ��%&� �(' ��%)�+*-,.��%&� (1)

where
' ��%)�

is the original codeword and
,.��%&�

is the error
introduced in the system. The aim of the decoder is to find

,.�/%)�
and then subtract it from $ �/%)� to recover original code word
transmitted. It should be added that there are two aspects of
decoding - error detection and error correction. As mentioned
before, the error can only be corrected if there are fewer than
or equal to

�
errors. However, the Reed Solomon algorithm

still allows one to detect if there are more than
�

errors. In
such cases, the code word is declared as uncorrectable.

A. Decoder Structure
A detailed explanation on Reed Solomon decoders can be

found in [1] and [2]. The decoder essentially consists of four



modules. The first module computes the syndrome polynomial
from the received sequence. Typically

���
syndromes need to

be computed for a code with error correction capability of�
. This is used to solve a key equation in the second block,

which generates two polynomials for determining the location
and value of these errors in the received code word. The next
block of Chien search computes the error location, while the
fourth block employs Forney algorithm to determine the value
of error occurred.
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Fig. 2. Decoder flow

III. LOW POWER SYNDROME COMPUTATION

If there is no error in the code word, all
���

syndromes are
equal to zero. Interestingly, not all

���
syndrome coefficients

are actually needed to check if indeed an error has occurred.
If any

�
continuous coefficients are zero, this indicates that

there is no error or that the code word is uncorrectable. We
can therefore save power that is required in the computation
of other

�
syndromes. Mathematically, for a correctable code

word, if

�)0��1�2043+5��7686764�)043:9<;:5 �>=@? ��A�BCA � �
(2)

or
�20��1�)043+5D�867676
�:E491�
�F5D�8676861�20G;)9<;:5 �(=@?�� *���A�BCA ��� �

(3)

then
�20 �(=H? �IA�BCA ��� 6

A similar idea has been proposed
in [3]. However, that is only based on the inference that first�

syndromes being zero imply all syndromes are zero, which
is only a subset of the theory presented here.

The modified decoder flow has been presented in Figure 3.
As can be seen only half the syndromes are computed in the
normal flow. The other half are only computed if any of them
is found to be non-zero.
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Fig. 3. New decoder flow when only half the syndromes are computed.

IV. DESIGN SPACE

An extensive survey of design options was carried
out and the architectures available are shown in Figure 4.
The hardware utilized for each of the options was studied
comprehensively and summarized as well.

In order to choose a good architecture for the application,
various things have to be taken into account.

W Gate count: Determines the silicon area to be used for
development. A one time production cost but can be
critical if it is too high. Power is also determined by it
to some extent.W Latency: Latency is defined as the delay between the
received code word and the corresponding decoded code
word. The lower the latency, the smaller is the FIFO
buffer size required.W Critical path delay: It determines the minimum clock
period, i.e. maximum frequency that the system can be
operated at.

The above parameters were carefully studied and docu-
mented for each of the design options presented in Figure
4 in [6]. Table I shows a summary of all the above mentioned
parameters. For our intended UWB application, speed is of
prime concern as it has to be able to support data rates as
high as 1.0 Gbps. At the same time, power has to be kept low,
as it is to be used in portable devices as well. This implies
that the active hardware at any time should be kept low. Also,
the overall latency and gate count of computational elements
should be low since that would determine the total silicon area
of the design.

Reformulated inversion-less and dual line implementation
of the modified Berlekamp Massey have the smallest critical
path delay among all the alternatives of the Key Equation
Solver. Inversion-less and dual-line architectures are explained
in [10] and [4] respectively. When comparing inversion-less
and dual-line implementations, dual line is a good compromise
in latency and computational elements needed. The latency is
one of the lowest and it has the least critical path delay of all
the architectures summarized. Thus, dual-line implementation
of the BM algorithm is chosen for the key-equation solver.
Another benefit of this architecture is that the design is very
regular and hence easy to implement. As for the other modules
of decoder, the basic design itself was chosen.

Table II shows the various parameters for choosing this
architecture with

� � ����� �1	 � �����
and

�X� Y
. The

overall critical path delay is Mul + Add. The chosen option
is indicated in Figure 4 in bold boxes.

TABLE II
SUMMARY OF HARDWARE UTILIZATION FOR DUAL-LINE ARCHITECTURE

Architecture Add. Mult. Muxes Latches Latency
Syndrome 2t 2t 2t 4t n
Key Equation 2t 4t + 1 2t 4t + 1 3t + 1
Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4
Total 6t 8t + 3 6t + 2 10t + 11 3t + n + 5
For RS(255, 239) 48 67 50 91 284

V. RESULTS

This section covers the results of various synthesis experi-
ments conducted. Resource utilization, timing analysis and the
power consumption were used as benchmarking parameters.

A. Area Analysis

Ambit - an ASIC synthesis tool, was run for
= 6Z� ��[ � and= 6Z� Y�[ � CMOS technology. The silicon area required was
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Fig. 4. Design Space Exploration

TABLE I
SUMMARY OF HARDWARE UTILIZATION OF VARIOUS ARCHITECTURES

Architecture Blocks Adders Multipliers Muxes Latches Latency Critical Path Delay
Syndrome Computation [5] 2t 1 1 1 2
Total 2t 2t 2t 4t n Mul + Add
Look ahead architecture (x units) 2t x x 1 2
Total 2xt 2xt 2t 4t n/x Mul + Add
Original Euclidean [7]
Divider Block 2t 1 1 3 2
Multiply Block t 2 1 3 3
Total (Estimates) 4t 3t 9t 7t
Actual [8] 4t + 1 3t + 1 11t + 4 14t + 6 4t - 3 ROM+2 \ Mul+Add+2 \ Mux
Modified Euclidean [7]
Degree Computation Block 2t 2 0 7 7
Polynomial Arithmetic Block 2t 2 4 8 19
Total (Estimates) 8t 8t 30t 52t
Actual [8] 8t 8t 40t + 2 78t + 4 10t + 8 Mul + Add + Mux
Decomposed inversion-less [9] 1 3 1 3t + 1 2t \ (t+1) Mul + Add + Mux
Modified BerleKamp Massey
Serial 1 3 4 3t + 2 2t \ (2t+2) Mul + Add + Mux
Decomposed inversion-less [10] 2 3 2 5 2t \ (t+1) Mul + Add + Mux
Parallel t 3t + 2 t 3t + 1 2t 2 \ Mul + 2 \ Add + Mux
Dual-line [4] 2t 4t + 1 2t 4t + 1 3t + 1 Mul + Add
Reformulated inversion-less [11] 3t + 1 6t + 2 3t + 1 6t + 2 2t Mul + Add
Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4 max(Mul + Add, ROM)



analysed for various timing constraints. A comparison for area
of the decoder is shown in Table III. This table shows the area
requirement when the constraint was set to 5 ns, which can
support 200 MHz frequency, i.e. 1.6 Gbps. The total number
of design cells used, including the memory, were 12,768 and
12,613 for

= 6Z� ��[ � and
= 6Z� Y�[ � respectively.

TABLE III
RESOURCE UTILIZATION FOR THE DECODER

Module Area( ]�^"_ )
Module CMOS18 CMOS12 CMOS12 Optimised
Syndromes 34,754 17,828 17,719
Key Equation 186,404 89,602 89,587
Chien 15,675 7,663 7,655
Forney 52,936 21,608 13,408
FIFO 148,684 83,183 108,906
Top View `GaMbdce`7f
g gdhjidceidhja gMaGf8ce`DhO`

B. Power Analysis

Diesel - an internal tool developed within Philips which
estimates the power for the simulated design, was used for
power analysis. The power estimates provided in this section
are for design operation at 125 MHz, which translates to data
rate of 1Gbps.

1) Variation With Number of Errors: Figure 5 shows the
variation of power with the number of errors found in the code-
word for

= 6Z� ��[ � technology. As can be seen from the graph
obtained, the power dissipated for the FIFO and syndrome
computation block is independent of the number of errors as
expected. For the key-equation solver, it is clearly seen that the
power dissipated increases linearly with the number of errors.
The Chien search block also shows a linear increase in the
power dissipated.
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Fig. 5. Graph showing variation of power dissipated with number of errors
for different modules.

The behaviour of Forney evaluator is a bit different from
the other modules. We see that the power dissipated for the
codeword with an even number of errors is not significantly
larger than the one with the previous number of errors. The
reason lies in the fact that the degree of Error Evaluator

Polynomial for codeword with one error is often the same as
the one with two errors, and so on and so forth. However, as a
general rule, there is still an increase in the power dissipation,
because of some computation that is done for each error found.

2) Distribution of Power in Different Modules: Figure 6
shows a distribution of power when there are maximum
number of errors correctable in the received code word, while
Figure 7 shows the distribution when the code word is received
intact. As can be seen, in the case of no errors, bulk of
the power is consumed in computing syndromes, apart from
the memory. In the event of maximum errors detected, the
Forney block consumes the maximum power. The total power
consumption varies from 14mW to 17mW with the former
corresponding to no-error case, and the latter to maximum
errors.
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Fig. 6. Power consumed by various
blocks when 8 errors are found
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Fig. 7. Power consumed by various
blocks when no errors are found

VI. OPTIMIZATIONS TO DESIGN

From the results, it was observed that the FIFO and the
Forney block consumed most of the power. These blocks
were investigated further and redesigned to improve the perfor-
mance. The original FIFO design involved a serial arrangement
of shift-registers. This design was the most compact in terms
of area but consumed more power since at every cycle all
the elements were shifted by one. The design was hence,
modified to have only one read and write every clock cycle
- like a RAM with pointers. This increased the design area,
but significantly reduced the power. Area of the new design of
FIFO is now 109,000

[ �
E

(with
= 6Z� ��[ � technology), while

the power consumed is only 970
[Fk

, 60% lower than the
earlier design. This results in power savings even in the case
when no errors are found.

For the Forney block, design was optimised by combining
two table lookups into one for computing the inverse of
elements. This led to a better circuit in terms of area and
also decreased the power significantly. The optimised design
for Forney now occupies an area of 13,400

[ �
E
, about 38%

lower than original design. The power consumption is lower
by at least 1.5 mW for all cases. Table III shows the area
distribution of the decoder after optimizing the design.

Figure 8 shows the power distribution in various modules
when there are 8 errors in the received codeword, while Figure
9 shows the distribution when the codeword is received intact.
As we can see, the FIFO now takes less than half the power in
no-error case, as compared to two-thirds in the original design.
In the case of 8-errors, the power consumption of Forney has



now reduced to about a quarter as compared to one-third in
the original design.
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Fig. 8. Power consumed when 8
errors are found in optimised design
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Fig. 9. Power consumed when no
errors are found in optimised design

Figure 10 shows the variation of power with the number of
errors. The total power consumption of the design now lies
between 12mW to 14mW depending upon the no-error case
to when maximum errors are found. It should be noted that
9.5mW of power is consumed in driving the input. Thus, only
about 2.5mW to 4.5mW is actually consumed in the transitions
in the design. The embedded memory AMDC C12ESRAM
- developed internally in Philips, only consumes 900

[
W of

power overall and has an area of
= 6 =V� �H�

E
. As can be noticed,

FIFOs take about 45% of the overall area in the design. Thus,
the input power dissipation will be lower by 45% when using
embedded memory - savings of

= 6 l ��m>� 6 �n� l26 �Vo��
mW.

The input power dissipation, therefore, becomes only about
5.3mW. Thus, the total power consumed is 8 for the best case
and 10mW for the worst. The overall design area is

= 6p�dq �H�
E
.

Voltage scaling measures can also be applied on the design to
further lower the power consumption.
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Fig. 10. Variation of power dissipated with number of errors for different
modules with modifications in the design.

VII. BENCHMARKING

Please note that for all the designs
����� ����� � ����� �

code
has been used for benchmarking. The design proposed in
[5] uses roughly 115K gates for

= 6p� ��[ � CMOS technology
operating at 6.0 Gbps excluding memory. The proposed design
only uses 12K cells including memory in both

= 6p� ��[ � and= 6Z� Y�[ � technology. The results are better even when they are
normalised for throughput and technology. The latency of the
design is only 284 cycles when compared to 355 cycles in [5].

A design was proposed in [3] for low power. In that design,
62mW of power is used in the best case, including memory,
using

= 6 ����[ � CMOS technology, and 100mW are consumed
in the worst case. In our design, only 10mW of power is
used in the worst case using

= 6Z� ��[ � technology. The area of
the chip proposed in [3] using

= 6 ����[ � CMOS technology is� �H�
E
, while the area of the proposed design is

= 6Z�8q �r�
E

with= 6Z� ��[ � technology. Even after scaling our design to
= 6 ����[ �

CMOS technology, our results are better.

VIII. CONCLUSIONS

A uniform comparison was drawn for various algorithms
that have been proposed in literature. This helped in selecting
the appropriate architecture for the intended application. Mod-
ified Berlekamp Massey algorithm is chosen for the VHDL
implementation. A dual-line architecture is used, which is as
fast as serial and has low latency as that of a parallel approach.

The decoder implemented is capable of running at 200 MHz
in ASIC implementation, which translates to 1.6 Gbps and
requires only about 12K design cells and an area of

= 6Z�8q �H�
E

with CMOS12 technology. The system has a latency of only
284 cycles for RS(255, 239) code. The power dissipated in
the worst case is 10mW including the memory block when
operating at 1.0 Gbps data rate. The results are better than
other proposed designs and are suitable for use in UWB.
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