
Soft Error-Aware Architectural Exploration for Designing
Reliability Adaptive Cache Hierarchies in Multi-Cores

Arun Subramaniyan3, Semeen Rehman2, Muhammad Shafique1, Akash Kumar2, Jörg Henkel4

1Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria
2Chair for Processor Design, TU Dresden, Germany

2University of Michigan-Ann Arbor, USA
2Chair for Embedded Systems, Karlsruhe Institute of Technology, Germany

Corresponding Authors: arunsub@umich.edu, muhammad.shafique@tuwien.ac.at, semeen.rehman@tu-dresden.de

Abstract— Mainstream multi-core processors employ large multi-
level on-chip caches making them highly susceptible to soft errors. We
demonstrate that designing a reliable cache hierarchy requires under-
standing the vulnerability interdependencies across different cache lev-
els. This involves vulnerability analyses depending upon the parame-
ters of different cache levels (partition size, line size, etc.) and the cor-
responding cache access patterns for different applications. This paper
presents a novel soft error-aware cache architectural space exploration
methodology and vulnerability analysis of multi-level caches consider-
ing their vulnerability interdependencies. Our technique significantly
reduces exploration time while providing reliability-efficient cache
configurations. We also show applicability/benefits for ECC-protected
caches under multi-bit fault scenarios.

I. INTRODUCTION AND RELATED WORKS
Soft errors are transient bit-flip faults in hardware that may lead to pro-
gram failures and output data errors [1]. In particular, due to their tran-
sistor sizing, their ability to latch these bit-flips and their large footprint,
multi-level caches are one of the most vulnerable components in multi-
cores [3]. Besides the increasing system soft error rate (SER) trends due
to high transistor integration [2], recent studies have also demonstrated
the occurrence of frequent multi-bit errors in memory cells [5].

Soft errors in the private L1 caches of different cores may quickly
propagate to different CPU components due to their close proximity and
can corrupt the program state [4]. In contrast, errors in the shared L2 or
last-level caches may exhibit more error masking potential but can have
a severe effect across multiple applications, especially in case of shared
data. Several offline analytical models have been developed to estimate
the last-level cache vulnerability to both single and multi-bit errors
[24][25]. Many efforts have also focused on soft error analysis, modeling
and mitigation techniques for L1 or L2 caches individually [3]-[5], [18].
Furthermore, parameters of different cache levels (partition size, line size,
and associativity) can also significantly impact the hit/miss ratio for dif-
ferent applications depending on their cache access patterns.

In this paper, we demonstrate that these varying cache access pat-
terns also lead to varying vulnerability in different cache levels and their
vulnerability interdependencies. Therefore, to design a vulnerability-min-
imizing and reliability-adaptive cache hierarchy, a soft error-aware
cache architectural space exploration methodology is required. Such a
methodology needs to find a good set of reliability-wise efficient cache
configurations to facilitate runtime adaptation. However, the proliferation
of on-chip cores (and private L1 caches), increasing last-level cache sizes
and competing multi-threaded applications with data sharing, have also
increased the complexity of the architectural space exploration. In such
scenarios, there exists a need for strategies to quickly explore the design
space and identify reliability-wise suitable cache configurations.
A. State-of-the-Art Cache Space Exploration and Limitations

Cache architectural design space exploration strategies typically
employ configurable caches as their baseline. Several exploration strat-
egies have been proposed with the aim of maximizing performance or
minimizing energy consumption [6][7][8], but ignore the reliability as-
pects. For instance, the work in [9] identifies the sensitivity of energy
consumption to different L1 cache design parameters and the work in
[10] proposes an analytical model to estimate cache hit/miss rates for

multiple L1 cache configurations in a single simulation pass. However,
besides ignoring the reliability optimization, these prior works have pri-
marily focused on a single cache level [9] [10] and have not analyzed
the interaction between concurrently executing applications in case of
multi-cores [11]. Besides that, state-of-the-art (even including the two-
level cache exploration techniques [8]) mainly considered single-
threaded applications without data sharing or did not fully explore all
parameters of the cache hierarchy when core interactions were consid-
ered [12]. However, the vulnerability of applications to soft errors is
also highly dependent on parameters of the cache hierarchy as we will
demonstrate in this work. Although reliability-aware resizing of L1
cache has been explored in [13], this work does not extensively explore
the reliability impact and optimization of other cache parameters, L2
cache, and inter-dependencies across different cache levels.

In summary, in order to design reliable cache hierarchies, vulner-
ability interdependencies across different cache levels and synergistic
reliability optimization for the complete cache hierarchy (i.e., consid-
ering multiple cache levels) need to be explored.
B. Novel Contributions

In order to explore the potential for reliability optimization in a
multi-core cache hierarchy and exploit this – so far – unused optimiza-
tion potential, we propose the following novel contributions:
1) A Comprehensive Analysis of Vulnerability Interdependencies

across Different Cache Levels for different applications consider-
ing single- and multi-threaded workloads and data sharing. Our
analysis in Section III illustrates that L1 and L2 cache parameters
can have a significant impact on the vulnerability of different appli-
cations. Furthermore, the analysis of vulnerability interdependen-
cies in a multi-level cache hierarchy illustrates that changing the L1
cache configuration for an application affects the vulnerability and
access patterns to the L2 cache. This analysis is leveraged for de-
signing a reliable cache hierarchy and its architectural exploration.

2) A Soft Error-Aware Cache Architectural Space Exploration
Methodology that employs an efficient heuristic for selecting an
appropriate set of reliability-wise beneficial configurations for the
complete cache hierarchy in multi-cores. It prunes the design space
of cache configurations while considering the vulnerability effects
of different levels of caches on each other. The pruned design space
enables an identification of vulnerability minimizing cache config-
urations, while considering their performance/energy properties.

To show the benefits of the proposed approach, we perform an extensive
design space exploration and comparison of the cache configurations se-
lected by our methodology with a baseline non-reconfigurable cache aug-
mented with the vulnerability minimizing Early Writeback [22] technique
and state-of-the-art reliability-aware reconfigurable last-level cache [18].
When applied to SECDED-ECC protected caches, the proposed ap-
proach reduces multi-bit failures by 46%.

II. CACHE ARCHITECTURE AND VULNERABILITY MODELS
A. Cache Architecture and Reconfiguration Model

We adopt the configurable cache substrate based on the well-estab-
lished architectures like [9][14], Motorola M*Core [20], and Intel
Sandy Bridge prototype [21]. The following architectural extensions for

cache reconfiguration are employed: (1) way-concatenation to reduce
cache associativity, without affecting its size; (2) way-shutdown to re-
duce cache size; and (3) line resizing by fetching multiple cache lines
on an access. The reconfiguration mechanism does not lie on the critical
path and requires minimal hardware extensions. For the shared L2
cache, we adopt a way-based cache partitioning approach (like
[15][16]) and extended the traditional LRU replacement policy to sup-
port selection of eviction candidates from only within a designated par-
tition. Without the loss of generality, in this paper, we adopt two levels
of caches in a multi-core processor. Each core has a private L1 instruction
and data cache. There exists a shared L2 cache partitioned among differ-
ent applications. Fig. 1 presents the architectural overview of a multi-
level cache architecture with the support for parameter reconfiguration
and cache partitioning.

Index Address

Decoder

Tag array Data array

Address [byte offset]
Pr

iv
at

e
L1

Ca

ch
e

Byte offsetTag

4-way
Address[index]

Main Memory

HIT
Data

Compare MUX
Drivers

MUX Drivers

........................

MISS

Reconfiguration Circuitry

Cache Partitioning Circuitry 8-way

MISS

Sh
ar

ed

L2
 C

ac
he

Fig. 1 Architectural overview of an adaptive multi-level cache.

B. Cache Vulnerability Modeling
Cache vulnerability estimation models have been proposed in [3][4]

that primarily target temporal vulnerability (i.e., error probability due
to the time a cache line is vulnerable to soft errors) but do not (precisely)
capture the spatial vulnerability (i.e., error probability due to active
cache regions and vulnerable bits in a cache line) for different applica-
tions. In this paper, we employ the advanced cache vulnerability model
of [18], which jointly accounts for both spatial and temporal vulnera-
bilities. An extensive comparison of the model to existing models and
its accuracy is described in [28]. In the following, we briefly explain
this cache vulnerability model to understand the novel contributions of
this paper and for reproducibility of the results.

Cache Vulnerability Components: Fig. 2 illustrates different vul-
nerability components in cache accesses, as defined below.
Incoming Read Read IncomingEvict Write Evict

RVT CET WNVT DET
t=0

Time

Read

RVT Time Byte i Byte j
t=0

Fig. 2 Vulnerability components in cache accesses.
1) Read Vulnerable Time (RVT) denotes the interval between a read

and previous access to the same cache byte.
2) Write Non-Vulnerable Time (WNVT) denotes the interval between

a write and previous access to the same cache byte.
3) Clean Eviction Time (CET) denotes the interval between eviction

and previous read (or incoming, if not accessed) of the same cache
block. It is non-vulnerable.

4) Dirty Eviction Time (DET) denotes the interval between eviction
and previous access of a dirty cache block. It is vulnerable.
Cache Vulnerability Models: In order to quantitatively estimate the

vulnerability of a cache level in configuration Ci, running phase Pj of an
application (i.e., parts of an application having the same behavior), two
metrics are utilized: Cache Vulnerability Index CVI(Pj,Ci) (see Eq. 1) and
Cache Criticality Factor CCF(Pj,Ci) (see Eq. 3). CVI includes VulPeri-
odl(Pj,Ci) to capture the temporal vulnerability of the cache line w.r.t. the
program state, and VulBitsl (i.e., the bits required for architecturally cor-
rect execution), to capture its spatial vulnerability.

𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑗𝑗,𝐶𝐶𝑖𝑖� =
∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑙𝑙(𝑃𝑃𝑗𝑗,𝐶𝐶𝑖𝑖)∀𝑙𝑙∈𝐿𝐿

∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑙𝑙 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃𝑗𝑗)∀𝑙𝑙∈𝐿𝐿
 (1)

CCF(Pj,Ci) of an application in phase Pj with cache configuration
Ci is defined as the product of CVI(Pj,Ci) and the fraction of the total
cache area used by phase Pj of the application weighted with the error
probability Perror(fr). L is the set of all cache lines.

𝑐𝑐𝐴𝐴�𝑃𝑃𝑗𝑗 ,𝐶𝐶𝑖𝑖� = 𝐿𝐿𝐿𝐿 × 𝑁𝑁𝐴𝐴𝐴𝐴 𝑁𝑁𝐿𝐿⁄ (2)

𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑗𝑗,𝐶𝐶𝑖𝑖� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑗𝑗,𝐶𝐶𝑖𝑖�× 𝑐𝑐𝐴𝐴�𝑃𝑃𝑗𝑗 ,𝐶𝐶𝑖𝑖� × 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓𝑓𝑓) (3)

cA(Pj,Ci) refers to the fraction of the total cache area used by the appli-
cation in phase Pj. It considers the number of cache lines NAL used in
phase Pj. Bitsl and NL refer to the total number of bits in a cache line and
the total number of cache lines, respectively. ExecTime(Pj) refers to the
execution time of the phase Pj. LA is the cache line area. CCF jointly ac-
counts for both the spatial and temporal vulnerability of the cache. For
more details on computing VulPeriodl(Pj,Ci) and cA, refer to [18][28].

Fault Modeling and Injection: The raw SRAM soft error rate (fr)
is determined based on the technology node, particle flux rate at a given
altitude, operating voltage, and cache circuit design. We inject a num-
ber of single- and multi-bit faults at random bit positions of cache lines
at different cache levels, and observe the fault propagation effects. Only
spatial multi-bit faults are considered in this work, since the failure rates
due to spatial multi-bit faults are shown to be up to 8 orders of magni-
tude greater than temporal multi-bit faults for a conservative cache life-
time of 100 years [5]. We assume the N x 1 multi-bit fault mode geom-
etry which affects bits stored on a word line. This mode has been shown
to be the most dominant and requires the greatest degree of ECC pro-
tection [2]. A conventional block-level interleaved SECDED scheme is
used to demonstrate the applicability of the proposed approach to ECC
protected caches. The reliability gains provided by word level SECDED
schemes do not justify their area costs [24]. Let NFI denote the total
number of fault injection experiments, Nfailure be the number of program
failures and pflip be the probability that a particle strike leads to a bit-
flip. Using this information, the probability of failure at a given fault
rate fr ̧Perror(fr) can be calculated as in Eq 4. Note that Perror(fr) is also
phase and configuration dependent. CCF directly relates to the mean-
time-to-failure (MTTF) of the cache to soft errors as described in [17].
Optimizations that reduce CCF contribute to improving MTTF.

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓𝑓𝑓) = 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ×
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓𝑓𝑓)
𝑁𝑁𝐹𝐹𝐹𝐹(𝑓𝑓𝑓𝑓) (4)

III. VULNERABILITY ANALYSIS FOR MULTI-LEVEL CACHES
For this motivational analysis, we used different applications from

the PARSEC and MiBench benchmark suites (details in Section V). We
perform two different types of analysis, as discussed below.

L2 partition sizes: A-256kB, B- 512kB, C-1MB, D-2MB

A B C D
0.1
0.2
0.3

0.5
0.6
0.7
0.8
0.9
1.0

0.4

0

Lame

1.0

2.0

3.0

0

L2
M

PK
I→

CA B D

(a)

Te
m

po
ra

lv
ul

ne
ra

bi
lit

y
→ (b)

Lame

Fig. 3 (a) L2 cache vulnerability across different partition sizes-
Lame; (b) L2 cache MPKI across different partition sizes-Lame.

Analysis 1 – Impact of Different L1 and L2 Cache Parameters
on Vulnerability: Fig. 3 shows that there exists a tradeoff between L2
cache vulnerability and cache performance, measured in terms of
Misses-Per-Kilo-Instructions (MPKI) for the Lame application using
different L2 partition configurations. This can be attributed to the greater
number of read hits for Lame in larger L2 cache partitions. This increases
the likelihood of error propagation towards the CPU. Similar observa-
tions for L1 cache can also be made for LU_nc and Lame in Fig. 4 .

Observation-1: Parameter adaptation for L1 and L2 cache and L2
partitioning may be leveraged to increase the reliability of the cache

hierarchy to soft errors. We refer to this as reliability-aware cache hi-
erarchy adaptation.

Analysis 2 – Vulnerability Interdependencies for Different L1 and
L2 Cache Configurations: Fig. 4 illustrates that, since different applica-
tions have diverse access patterns and working set requirements, there ex-
ists a significant variation between their utilization of different cache levels
that leads to different temporal vulnerabilities.

Observation-2: For a given configuration, different applications
show varying vulnerability for L1 and L2 caches.

For the L1 instruction cache which is read-only, increase in size
results in greater number of read hits but greater likelihood of error prop-
agation for all the chosen applications. Increase in associativity and line
sizes, also has a similar effect. For the L1 data cache, two distinct access
patterns are observed: applications for which increasing cache sizes re-
sults in: a) increase in vulnerability (e.g., LU_nc) and b) decrease in vul-
nerability (e.g., Lame). For LU_nc, the cache stores are distributed across
multiple cache lines, lowering the likelihood of overwriting faulty data.
Lame on the other hand, shows high reuse of cache blocks and many
cache stores that overwrite faulty data. These effects make large data
caches (e.g., configuration B) have lesser temporal vulnerability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16kB-Assoc2 64kB-Assoc4

Lame

Te
m

p.
vu

ln
er

ab
ili

ty
→

0.2

0.6
0.8
1.0

0.4

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

5

10

15

20

25

16kB-Assoc2 64kB-Assoc4

Lame

L1
-D

 ca
ch

e
M

PK
I→

0
5

10
15

25

A B

L1
-I

ca
ch

e
M

PK
I→

0

0.2

0.4

0.6

0.8
20

A B

Lame

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16kB-Assoc2 64kB-Assoc4

LU_noncontiguous

Te
m

p.
vu

ln
er

ab
ili

ty
→

0.2

0.6
0.8
1.0

0.4

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

5

10

15

20

25

16kB-Assoc2 64kB-Assoc4

LU_noncontiguous

L1
-D

 ca
ch

e
M

PK
I→

0
5

10
15

25

A B

L1
-I

ca
ch

e
M

PK
I→

0

0.2

0.4

0.6

0.8
20

A B

LU_nc

L1-D cache MPKI L1-I cache MPKIL1-D cache L1-I cache L2 cache

A: 16kB, 2-way, 64 B B: 64kB, 4-way, 64 B | L2: 512kB, 8 way, 64 B

Fig. 4 L1 data and instruction cache vulnerability and MPKI

across different configurations for two applications and their im-
pact on the L2 cache vulnerability.

Moreover, Fig. 4 shows that the L1 instruction and data cache con-
figurations can also impact the vulnerability of the L2 cache. For in-
stance, increasing L1 cache sizes results in reduced vulnerability for both
LU_nc and Lame. In particular, LU_nc shows close to 12% reduction in
L2 cache vulnerability when larger L1 caches are used. These can be
attributed to the increased number of hits in the upper cache levels.

Observation-3: In order to realize a reliable cache hierarchy, a se-
lection of an appropriate set of configurations for different cache levels
needs to account for their vulnerability effects on each other.

0

0.5

1

1.5

2

2.5

L1D_64kB_4_L1I_64kB_4_L2_256kB_8_64 L1D_64kB_4_L1I_64kB_4_L2_512kB_8_64 L1D_64kB_4_L1I_64kB_4_L2_2MB_8_64

0.5

1.5
2.0
2.5

1.0

0

To
ta

l V
ul

ne
ra

bi
lit

y
→

0

0.5

1

1.5

2

2.5

L1D_16kB_4_L1I_16kB_4_L2_256kB_8_64 L1D_16kB_4_L1I_16kB_4_L2_512kB_8_64 L1D_16kB_4_L1I_16kB_4_L2_2MB_8_64

0.5

1.5
2.0
2.5

1.0

0To
ta

l V
ul

ne
ra

bi
lit

y
→

L2-C

L2-: A: 256kB, 8-way, 64B | B: 512kB, 8-way, 64B | C: 2MB, 8-way, 64B

L1: 64kB, 4-way L1: 16kB, 4-way

L2-BL2-A L2-CL2-BL2-A(a) (b)
Fig. 5 Impact of ignoring L1 cache vulnerability.

Fig. 5 shows that neglecting the L1 cache can lead to sub-optimal
configurations. In [18], the L2 cache is partitioned to maximize reliability,
while the L1 cache has a fixed configuration as shown in Fig. 5(a). When
the L1 cache is adapted as shown in Fig. 5(b), close to 21% lower cache
hierarchy vulnerability is achieved. This shows that a fixed L1 configura-
tion and ignoring interdependencies between multiple cache levels can
lead to substantially higher overall vulnerability.

IV. SOFT ERROR-AWARE ARCHITECTURAL EXPLORATION FOR
DESIGNING RELIABLE CACHE HIERARCHIES

A. Architectural Methodology Overview
Fig. 6 shows the overview of our soft error-aware cache exploration

methodology. Based on the processor configuration (i.e., number of
cores, cache levels) and the possible cache configurations (i.e., parti-
tion/line size and associativity), the applications are analyzed for their

performance and vulnerability. This is afterwards used to select the fi-
nal cache configuration using the exploration heuristic (Section IV.B).

Performance

Reliability

Pareto-optimal
configurations

C
C
C
C

L2
C
C
C

C Processor
Configuration:
#Cores, Cache
Levels, etc.

Applications

L1 Cache

L2 Cache L2 Cache

L1 Cache Possible Cache
Configurations:
Partition size,
Line size, etc.

 Reliability-Aware Cache Configuration Exploration

Partition size adaptation

Line size adaptation

Associativity adaptation

Analysis

Application Vulner-
ability Analysis

Application
Performance Analysis

Fig. 6 Cache architectural space exploration methodology.

There are two main challenges to be addressed by our methodology:
(1) large cache architectural design spaces that increase exponentially
with the number of cores in the system; and (2) multi-threaded applica-
tions with data sharing that require coordinated tuning between cores and
cache levels. These challenges are explained in detail below:

Challenge 1 – Large Architectural Design Space: Consider a 4-
core system with private L1 instruction and data caches and shared L2
cache and a reconfigurable multi-level cache substrate with three pos-
sible size configurations, three associativity configurations and two
common line size configurations (32B and 64B). There are 18 possible
configurations for the private instruction and data cache of each core,
leading to a total of 162 cache configurations per core. Note, that the
number of configurations is not 324 = (18×18) since we consider a
common line size for both instruction and data caches. For our 4-core
system, this leads to 1624 (> 600 million) configurations for the L1
cache alone. When the L2 cache is also considered, the configuration
space grows to more than 5 billion points. Exhaustive exploration and
finding an optimal solution of such a large design space is infeasible,
especially for large applications and many cores. Therefore, a fast ex-
ploration heuristic is required.

Challenge 2 – Consideration of Multi-Threaded Applications:
Let us consider another scenario where each core executes an independ-
ent application task. In that case, reliability-aware parameter adapta-
tion/selection can be performed separately for the private L1 cache and
L2 partition of the application. However, in case of multi-threaded
workloads with dependent tasks and data sharing (via the shared L2
cache), it is important to explore vulnerability interdependencies be-
tween multiple cache levels to jointly identify the configurations of all
active cores. For data-sharing applications it is also important to note
that performance degrades when only private L2 partitions are availa-
ble. For such applications, a shared L2 partition may be designated after
identifying the sharing behavior at design-time. Coherence misses are
used to determine the degree of data sharing between threads (similar
to [12]). A higher number of coherence misses indicates greater degree
of data sharing between threads. Therefore, an optimization that con-
siders vulnerability interdependencies and shared partitions for multi-
threaded workloads is required.

To address the above challenges, we propose a novel heuristic that
quickly explores the architectural configuration space and identifies a
reliability-wise efficient cache hierarchy configuration. Our heuristic
prunes the configuration space at design time and finds the Pareto-
frontier (i.e., Pareto-optimal configuration points w.r.t. vulnerability
and performance). These Pareto-optimal configurations can enable a
run-time system to perform reliability-aware cache reconfiguration for
different user-provided performance constraints; the run-time aspects
are out of the scope of this paper, and left as a future work. Vulnerability
of the cache configuration is also dependent on the data set chosen. For
both profiling and performance analysis, the design time step can be
configured to consider the average of different types and sizes of input.
The history based online vulnerability prediction approach proposed in
[18] can be employed to account for run-time variations.

B. Heuristic for Configuration Exploration
Our heuristic identifies a set of Pareto-optimal configurations to

curtail the optimization space. Configurations that do not lie on the Pa-
reto-frontier (e.g., the ones which are both performance-wise and relia-
bility-wise worse) are pruned at this step. Our analysis in Fig. 7 demon-
strates that the vulnerability of applications shows greater sensitivity to
changes in cache (partition) size, when compared to line size and asso-
ciativity for all cache levels. For example, it can be seen from Fig. 7
that the instruction cache vulnerability changes by 87%, while the
change is less than 25% for line size and associativity for Lame. Alt-
hough line size can also impact the vulnerability of I-cache and D-cache
for Bodytrack and Cholesky, its effect is comparable to that of size ad-
aptation. For the L2 cache it can be seen that size adaptation shows the
greatest change in vulnerability for all applications. Therefore, the heu-
ristic aims at first identifying reliability-wise optimal cache (partition)
sizes before proceeding to adapt the other cache parameters.
Algorithm 1 shows the operation of our heuristic.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lame Patricia Bodytrack Cholesky

0.2

0.6
0.8
1.0

0.4

0

Vu
ln

er
ab

ili
ty

 →

I-Cache

PatriciaLame Bodytrack Cholesky
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lame Patricia Bodytrack Cholesky

0.2

0.6
0.8
1.0

0.4

0

Vu
ln

er
ab

ili
ty

 →

D-Cache

PatriciaLame Bodytrack Cholesky

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lame Patricia Bodytrack Cholesky

0.2

0.6
0.8
1.0

0.4

0

Vu
ln

er
ab

ili
ty

 →

L2 Cache

PatriciaLame Bodytrack Cholesky

L1: 16kB, 1-way, 64B
L2: 512kB, 8-way, 64B

L1: 32kB, 1-way, 64B
L1: 16kB, 1-way, 32B
L1: 16kB, 2-way, 64B

L2: 1MB, 8-way, 64B
L1: 64kB, 4-way, 64B

L2: 2MB, 8-way, 64B
L2: 1MB, 8-way, 32B
L2: 1MB, 16-way, 64B

Fig. 7 Vulnerability sensitivity to different parameters.

The inputs to Algorithm 1 include the set of concurrently executing
application threads, the set of multi-level cache configurations with
each cache configuration Ccache,i={Scache,i, Acache,i, Lcache,i} and cache ∈
{𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒, 𝐿𝐿2𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒}. Here Scache,i, Acache,i and Lcache,i denote the
size, associativity and line size of the ith cache configuration at the re-
spective level. The goal is to allocate multi-level cache configurations
to individual applications, i.e., TC: T→ {CImin, CDmin, CL2min} such that

the total vulnerability to soft errors (measured in terms of CCF) is min-
imized under user tolerated performance and energy constraints, Pτ and
Eτ respectively.

Objective: minimize ∑ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡, {𝑖𝑖, 𝑗𝑗,𝑘𝑘}) ∀𝑖𝑖∈𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒,∀𝑗𝑗∈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒
∀𝑘𝑘∈𝐿𝐿2𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒

∀𝑡𝑡∈ 𝑇𝑇

such that: Ploss < Pτ and Eloss < Eτ where:Ploss and Eloss are the per-
formance and energy overheads incurred in identifying reliability-wise
optimal cache hierarchy configurations. Note that Pτ and Eτ are user-
configurable parameters.

Algorithm 1 employs the parameter adaptation function as shown
in Algorithm 2, where the different parameter values are assigned and
the best combination is selected. Following the flow of Algorithm 1, the
vulnerability of the multi-level cache hierarchy is minimized in a three-
step process.

1) Application Profiling: In this step, multi-threaded application
threads are categorized based on their cache access patterns. For this,
we monitor different metrics like hit/miss rates and coherence misses
for the baseline cache configuration. Hit/miss rates capture cache usage
while coherence misses indicate inter-thread data sharing. Application
threads which show similar cache behavior may be grouped together
(Algorithm 1, Line 1) and cache tuning maybe performed for a single
thread of each group. The obtained configuration is communicated to
the rest of the threads of the same group, thereby curtailing the explo-
ration cost/time. Similarly, if the application shares data, every tuning
step is required to complete on all active cores before processing to ex-
plore a new configuration. Data sharing applications therefore require
a coordinated tuning effort, potentially leading to an increase in explo-
ration time (Algorithm 1, Line 3). Once different applications are
grouped and their cache behaviors are determined, the following explo-
ration steps are carried out in sequence.

2) Cache (Partition) Size Adaptation: Keeping the L1 instruction
cache in the smallest configuration (e.g., 16kB, 1-way, 32B) vary its
size and identify its Pareto-optimal configurations. They are identified
by iterating over all configuration points and selecting the vulnerability
minimizing configuration out of a subset with same performance prop-
erties, while discarding all the non Pareto-optimal points. The same pro-
cedure is repeated for the data cache. Using the minimum vulnerability
instruction and data cache configurations from the Pareto-set, Pareto-
optimal configurations of the L2 partition sizes for the application are
identified using a greedy search.

3) Line Size and Associativity Adaptation: In this step, we fix
the L1 cache sizes and L2 partition sizes to those identified in the pre-
vious steps. Vary the line sizes of the instruction cache and identify the

Algorithm 1: Reliability-Aware Cache Hierarchy Adaptation

1. INPUT: Set of ‘N’ concurrently executing application threads T = {T1,
T2…TN}, set of instruction, data and L2 cache configurations Ccache = {Scache,
Acache, Lcache} where cache ∈ {ICache, DCache, L2Cache}
2. OUTPUT: Mapping function of application set T to minimum vulnerability
cache hierarchy configuration TC: T→ {Copt ={CICache,min, CDcache,min, CL2Cache,min}}
BEGIN
 Step 1: Application profiling
1. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑇𝑇i, 𝑖𝑖 ∈ [1,𝑁𝑁] 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2. 𝒊𝒊𝒊𝒊 𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
3. 𝑇𝑇. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 //coordinate tuning between cores
4. 𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊𝒊𝒊
5. 𝒇𝒇𝒇𝒇𝒇𝒇 t ∈ 𝑇𝑇 do
6. 𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ← ∞ //initialize minimum cache vulnerability
 Step 2: Cache (partition) size adaptation
7. 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒. 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 , 𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)

8. 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒 . 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)
9. 𝐶𝐶𝐿𝐿2𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒. 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐿𝐿2𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒, 𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)

 Step 3: Line size adaptation
10. 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒. 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)

11. 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒 .𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 , 𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)
12. 𝐶𝐶𝐿𝐿2𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒. 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇i, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠, 𝐿𝐿2𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒, 𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)

13. Associativity adaptation
14. 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒.𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑒𝑒,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)

15. 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒 .𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑛𝑛

𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)
16. 𝐶𝐶𝐿𝐿2𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒.𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 ,𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇i, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝐿𝐿2𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒, 𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚)

17. 𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇
END

Algorithm 2: Parameter Adaptation

Function adaptParameter(t, param, level, CCFmin,, Pτ, Eτ)
 // param – size (S), associativity (A), line size (L)
1. 𝒇𝒇𝒇𝒇𝒇𝒇 𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝒅𝒅𝒅𝒅 // loop over all parameter values
2. 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒

(𝑖𝑖) ← 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
3. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡, 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒

(𝑖𝑖)) ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡,𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒
(𝑖𝑖))

4. 𝐶𝐶𝐶𝐶𝐹𝐹𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 ← 0 // to find vulnerability impact on other caches
5. 𝒇𝒇𝒇𝒇𝒇𝒇 𝑗𝑗 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 − {𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙} 𝒅𝒅𝒅𝒅
6. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡, 𝐶𝐶𝑗𝑗

(𝑖𝑖)) ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡,𝐶𝐶𝑗𝑗
(𝑖𝑖))

7. 𝐶𝐶𝐶𝐶𝐹𝐹𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 ← 𝐶𝐶𝐶𝐶𝐹𝐹𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡,𝐶𝐶𝑗𝑗
(𝑖𝑖))

8. 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒()
9. 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒()
10. 𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇
11. 𝐶𝐶𝐶𝐶𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝐶𝐶𝐶𝐶𝐶𝐶�𝑡𝑡,𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒

(𝑖𝑖) � + 𝐶𝐶𝐶𝐶𝐹𝐹𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
12. 𝒊𝒊𝒊𝒊 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 && 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑃𝑃𝜏𝜏 && 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝐸𝐸𝜏𝜏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
13. 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝑖𝑖 ; 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒
(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ← 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒

(𝑖𝑖)
14. 𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊𝒊𝒊
15. 𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇
16. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

most reliable configuration. A similar procedure is repeated for the L1
data and L2 caches. Associativity adaptation is performed in a similar
manner to line size adaptation for each cache level.

It must be kept in mind that during L2 partition adaptation, each
application thread must be guaranteed to execute on a minimum sized
L2 partition. If reconfiguration at the L1 level is found to result in sig-
nificant performance overheads, our parameter adaptation unit limits
reconfiguration to the L2 cache level.

V. EXPERIMENTAL SETUP
The experimental setup and parameters are summarized in Table I.

We extended the Gem5 [19] cycle-accurate full system simulator with the
following additional features: (1) vulnerable period estimation for appli-
cations (2) identifying the actively used cache lines; (3) supporting differ-
ent private L1 cache configurations for different cores and adapting
shared L2 partitions (also at run time) for different applications; (4) track-
ing LRU cache blocks within an L2 partition; and (5) analyzing and char-
acterizing the impact of single- and multi-bit errors for different applica-
tions. The details on the fault model and error characterization are pre-
sented in Section II. As adopted by the cache and architecture communi-
ties [7], we report statistics only for the parallel and thread synchroniza-
tion phases of applications although the initialization and thread creation
phases are also simulated. To account for a wide range of run-time sce-
narios, we consider multi-threaded applications from the PARSEC and
SPLASH-2 benchmark suites and single-threaded embedded applications
from the MiBench suite for our evaluations. Note that the effect of the
operating system scheduling and I/O are taken into account in the re-
sults. Overall execution time is used as the performance metric. This takes
into account the possible increase in DRAM access rates due to increased
L2 misses/write-backs as a result of reconfiguration. In order to compute
the energy of the cache hierarchy and the hit/response latencies of differ-
ent cache configurations, we use Cacti 6.5 [29]. We consider both the
leakage energy and the dynamic energy due to cache accesses which in-
cludes the energy spent in writing dirty cache lines to lower cache levels
or main memory during reconfiguration. The additional energy and la-
tency overheads imposed by the reconfiguration logic are negligible, but
are taken into account in the results.

Table I. Experimental setup and system parameters

Core
parameters

Alpha 21264 cores; Linux 2.6; Number of cores= 1,2,4; Core fre-
quency=2GHz; Number of Data TLB entries=64;
Number of Instruction TLB entries=48

Private L1 Cache
parameters
(Configurable)

Data and Instruction Cache: 16kB-64kB, 1-4 way, 32B-64B line size,
Hit Latency=2-3 cycles ; Number of MSHR’s=4; Baseline: 64kB,4
way, 64B

Shared L2 Cache
Parameters
(Configurable)

256kB-2MB,4-16 way, 32-64B line size; Hit Latency=19-21 cycles;
Number of MSHR’s=20; Coherence=MOESI Snooping based; Re-
placement policy=LRU based; Baseline: 512kB, 8 way, 64B

VI. RESULTS AND DISCUSSION
A. Reliability-Adaptive Cache Design Space

Fig. 8 shows the reliability-performance-energy design space for
different applications. All applications show pareto-optimal cache hier-
archy configurations that trade-off between vulnerability and perfor-
mance. The configurations that deliver highest performance also show
high vulnerability to soft errors. Another observable trend is that appli-
cations also differ in terms of the range of reliability-adaptive cache
configurations they provide. Lame and Patricia show significant varia-
tions in vulnerability (up to 54.8% and 35.2% respectively) across
cache hierarchy configurations and performance constraints. The vul-
nerability of Lame and Patricia is highly sensitive to L1 cache resizing.
Both these applications show high reuse of cache lines and large L1
caches with greater number of store hits are less vulnerable. Cholesky
and Basicmath show distinct performance based on whether their work-
ing sets fit in the cache. L2 size adaptation significantly changes their
vulnerability. Although the performance range is restricted, vulnerabil-
ity variations are observed on account of changing cache access patterns
with parameter adaptation. Both Bodytrack and Streamcluster show

plenty of reads to the data cache. Increasing data cache size leads to
large increases in energy consumption. However, vulnerability varia-
tions are limited since these applications show less reuse of cache lines
and distribute their cache accesses. Table II provides selected configu-
ration comparison with state-of-the-art performance maximizing [16]
and energy minimizing [17] heuristics for two example applications.

Patricia Lame

Bodytrack Cholesky

Basicmath Streamcluster

Fig. 8 Vulnerability, performance and energy for different cache
configurations. Pareto-optimal configurations are shown in red.

Table II. Comparing configurations selected by different
methodologies. Legend: (cacheType_size_associativity_lineSize)

Applica-
tion

Performance opti-
mizing [11]

Energy
optimizing [12]

Reliability
optimizing

Patricia D_64kB_4_I_64kB_4
_L2_2MB_8_64B

D_16kB_1_I_32kB_1
_L2_256kB_8_32B

D_16kB_2_I_16kB_4
_L2_512kB_8_64B

Cholesky D_64kB_4_I_64kB_4
_L2_2MB_16_64B

D_16kB_1_I_16kB_1
_L2_256kB_4_32B

D_32kB_1_I_16kB_1
_L2_256kB_8_64B

B. Vulnerability Comparison to State-of-the-Art

1.5
2.0

3.0 L1-EWB R2Cache Our

ln

er
ab

ili
ty

 →

2.5

Fig. 9 Vulnerability comparison of the proposed approach with

different state-of-the-art techniques
Fig. 9 shows the vulnerability savings of the proposed approach

when compared to state-of-the-art non-reconfigurable baseline cache
with L1 Early WriteBack (EWB) [22] and Reliability-Aware-Last-
Level Cache Partitioning (R2Cache) [18] schemes. It can be seen that
>50% vulnerability savings can be obtained for Lame, Patricia and
Basicmath. For Lame and Basicmath, the instruction cache data has
large vulnerable time and shows good reuse. Smaller instruction cache
sizes are less vulnerable for these applications. EWB does not operate
on read-only instruction caches and cannot provide reliability benefits.
Although R2Cache finds reliability-wise optimal L2 cache configura-
tions, it does not reconfigure L1 caches and provides limited benefits.
Streamcluster and Fluidanimate benefit from EWB that reduces the

high DET resulting from dirty data in the data cache. Although our ap-
proach cannot completely eliminate DET, we obtain comparable relia-
bility savings to EWB. Averaged across applications, the proposed ap-
proach provides 17% and 39.4% reliability savings when compared to
EWB and R2Cache respectively under 10% performance overhead.
C. Exploration Time Savings

Fig. 10 shows the time savings achieved by the proposed heuristic
when compared to (1) exhaustive exploration of the design space, (2) a
multi-level cache tuning approach that tunes different cache levels in-
dependently (MCT-1) [23], and (3) a multi-level cache tuning heuristic
that coordinates tuning amongst cache levels and traverses the design
space in the order size, line size and associativity but ignores applica-
tion data sharing (MCT-2) [6]. While data sharing applications like
Bodytrack require more design effort to coordinate tuning between mul-
tiple cores, the proposed heuristic still identifies reliability-wise effi-
cient cache configurations while exploring less than 2% of the entire
exhaustive cache configuration design space.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 core 2 core 4 core 1 core 2 core 4 core 1 core 2 core 4 core 1 core 2 core 4 core

Lame Patricia Bodytrack Cholesky

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1 core 2 core 4 core 1 core 2 core 4 core 1 core 2 core 4 core 1 core 2 core 4 core

Lame Patricia Bodytrack Cholesky

(a)

4 core1 core 2 core 4 core1 core 2 core

108

106

104

102

100

4 core1 core 2 core 4 core1 core 2 core

(b)

4 core1 core 2 core 4 core1 core 2 core

Lame Patricia

108

106

104

102

100Ex
pl

or
at

io
n

tim
e

[s
]

4 core1 core 2 core 4 core1 core 2 core

Bodytrack Cholesky

Exhaustive search Our HeuristicMCT-1 MCT-2

Co
nf

ig
ur

at
io

ns

ex
pl

or
ed

Fig. 10 Exploration time savings for different number of cores.

D. Applicability in ECC Protected Caches
Fig. 11 (a) shows the reduction in the number of multi-bit failure sce-
narios of the reliability-wise efficient cache hierarchy configuration
found by our technique in comparison with a non-reconfigurable
SECDED (Single Error Correction Double Error Detection) protected
L1 and L2 cache [26][27] (L1 caches: 32kB, 4 way, 64B and L2 cache:
512kB, 8-way, 64B). The parameters and interleave assumed for ECC
are discussed in Section II.B. Cache hierarchy parameter adaptation can
reduce both the spatial and temporal vulnerability of different cache
levels and an average 46% reduction in multi-bit failure scenarios is
observed for applications of the MiBench suite. Fig. 11 (b) shows the
distribution of multi-bit failure scenarios and the error masking proper-
ties of MiBench applications for an ECC-protected non-reconfigurable
cache hierarchy. Amongst the chosen applications, Bitcount shows the
least number of failures, because bit flips in its cached input array (0’s
and 1’s) lead to incorrect outputs. Patricia on the other hand deals with
a tree data structure and bit flips often lead to pointer corruption and
subsequently application failures.

´B
itc

ou
nt

s
´D

jik
st

ra
Pa

tr
ic

ia
Sh

a

´B
itc

ou
nt

s
´D

jik
st

ra
Pa

tr
ic

ia
Sh

a

´B
itc

ou
nt

s
´D

jik
st

ra
Pa

tr
ic

ia
Sh

a

´B
itc

ou
nt

s
´D

jik
st

ra
Pa

tr
ic

ia
Sh

a

Pe
rc

en
ta

ge
 re

du
ct

io
n

in
 th

e
nu

m
be

r
of

 m
ul

ti-
bi

t f
ai

lu
re

s →

40

30

20

10

0

50

´B
itc

ou
nt

s
´D

jik
st

ra
Pa

tr
ic

ia
Sh

a

´B
itc

ou
nt

s
´D

jik
st

ra
Pa

tr
ic

ia
Sh

a

90
80
70

60
50
40

30

20
10
0

100

Er
ro

rd
is

tr
ib

ut
io

n
→

No failure FailuresReliability comparison with ECC-
protected cache(a) (b)

2-bit error 3-bit error 4-bit error2-bit error 3-bit error 4-bit error

60

70

Fig. 11 (a) Reduction in number of multi-bit failures in compari-

son to a fixed configuration multi-level ECC protected cache;
(b) Number of failure scenarios for a non-reconfigurable ECC

protected multi-level cache.

VII. CONCLUSION
In this paper, an analysis of the vulnerability interdependencies across

different cache levels in multi-core processors is presented, which shows
the impact of different access patterns and vulnerabilities of different ap-
plications for diverse cache configurations. This knowledge is leveraged
to propose a soft error-aware cache architectural space exploration meth-
odology, which determines a set of reliability-wise beneficial configura-
tions for the complete cache hierarchy while significantly reducing the
exploration time. The selected configurations will enable a run-time sys-
tem to perform reliability-aware cache reconfiguration in perfor-
mance/energy-constrained scenarios, which is planned as a future work.
Since the vulnerability of applications also varies in different execution
phases, reliable caches could further benefit from extending the approach
in this direction.

REFERENCES
[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technolo-

gies”, IEEE TDMR, vol. 5, no. 3, pp. 305-316, 2005.
[2] E. Ibe et al., “Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250

nm to a 22 nm Design Rule”, IEEE TED, vol.57, no.7, pp.1527-1538, 2010.
[3] S. Wang, J. S. Hu, S. G. Ziavras, “On the characterization and optimization of on-

chip cache reliability against soft errors”, IEEE TC, 58(9):1171-1184, 2009.
[4] W. Zhang, “Computing cache vulnerability to transient errors and its implication”,

DFT Symposium, pp. 427-435, 2005.
[5] M. Wilkening et al., “Calculating Architectural Vulnerability Factors for Spatial

Multi-Bit Transient Faults”, IEEE MICRO-47, pages 293-305, 2014.
[6] W. Wang, P. Mishra, S. Rank, “Dynamic cache reconfiguration and partitioning for

energy optimization in real-time multi-core systems”, DAC, pp.948-953, 2011.
[7] K. T. Sundararajan, T. M. Jones, N. P. Topham, “RECAP: region-aware cache par-

titioning”, ICCD, pages 294-301, 2013.
[8] A. Gordon-Ross, F. Vahid, N. Dutt, “Automatic tuning of two-level caches to embed-

ded applications”, DATE, pp. 208-213, 2004.
[9] C. Zhang, F. Vahid, W. A. Najjar, “A highly-configurable cache architecture for em-

bedded systems” ISCA, pages 136-146, 2003.
[10] A. Janapsatya, A. Ignjatovic, S. Parameswaran, “Finding optimal L1 cache configu-

ration for embedded systems”, ASP-DAC, pages 796-801, 2006.
[11] I. Nawinne, J. Schneider, H. Javaid, S. Parameswaran, “Hardware-based fast explo-

ration of cache hierarchies in application specific MPSoCs”, DATE, 2014.
[12] M. Rawlins, A. Gordon-Ross. “A cache tuning heuristic for multicore architectures”,

IEEE Trans. Computers, 62(8):1570-1583, 2013.
[13] Y. Cai, M. T. Schmitz, A. Ejlali, B. M. Al-Hashimi, S. M. Reddy, “Cache size selec-

tion for performance, energy and reliability of time-constrained systems”, ASP-DAC,
pp.923-928, 2006.

[14] C. Zhang, F. Vahid, R. L. Lysecky, “A self-tuning cache architecture for embedded
systems”, ACM Trans. Embedded Comput. Syst., 3(2):407–425, 2004.

[15] A. Settle, D. Connors, E. Gibert, A. Gonzalez, “A dynamically reconfigurable cache
for multithreaded processors”, J. of Embedded Computing 2.2, pp. 221-233, 2006.

[16] M.K. Qureshi, Y.N. Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches”, MICRO-39, pp 423-
432, 2006.

[17] S. S. Mukherjee et al., “A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor”, MICRO, pp. 29-40, 2003.

[18] F. Kriebel, A. Subramaniyan, S. Rehman, S. J. B. Ahandagbe, M. Shafique, J. Hen-
kel, “R2Cache: reliability-aware reconfigurable last-level cache architecture for
multi-cores”, CODES+ISSS, 2015

[19] N. Binkert et al. “The gem5 simulator”, SIGARCH Comput. Archit. News, pages 1-
7, August 2011.

[20] A. Malik, B. Moyer, D. Cermak, “A low power unified cache architecture providing
power and performance flexibility”, ISLPED, 2000.

[21] H. Cook et al. “A hardware evaluation of cache partitioning to improve utilization
and energy-efficiency while preserving responsiveness”, ISCA, 2013.

[22] R. Jeyapaul, A. Shrivastava, “Enabling energy efficient reliability in embedded sys-
tems through smart cache cleaning”, ACM TODAES, 18(4):53, 2013.

[23] W. Wang, P. Mishra, “Dynamic Reconfiguration of Two-Level Cache Hierarchy in
Real-Time Embedded Systems”, J. Low Power Electronics 7(1): 17-28, 2011

[24] J. Suh, M. Manoochehri, M. Annavaram, M. Dubois, “Soft error benchmarking of
L2 caches with PARMA”, SIGMETRICS, 2011

[25] H. Asadi, V. Sridharan, M. B. Tahoori, D. R. Kaeli, “Vulnerability analysis of L2
cache elements to single event upsets”, DATE, 2006

[26] M. K. Qureshi, Z. Chishti, “Operating SECDED-based caches at ultra-low voltage
with FLAIR”, DSN, pp. 1–11, 2013

[27] A. R. Alameldeen et al., “Energy-efficient cache design using variable-strength er-
ror-correcting codes”, ISCA, pp. 461-472, 2011

[28] F. Kriebel et al. "Reliability-Aware Adaptations for Shared Last-Level Caches in
Multi-Cores", TECS, vol 15, no. 4, 2016

[29] “Cacti 6.5”, http://www.hpl.hp.com/research/cacti

