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Abstract

In this paper, we address the problems of burst scheduling, network fairness, and service differentiation in wavelength division

multiplexing (WDM) optical burst switched (OBS) networks. We propose two approaches—time-slotting and burst fragmentation—to

provide efficient solutions for the above problems. We also propose a path selection algorithm to distribute label switched paths (LSP) based

on load balancing. Time slotting refers to the quantization of time into slots of fixed sizes. Time slotting aids fast implementation of

scheduling algorithms. Further, the slotting is local to the nodes and they need not be synchronized across the network. In burst

fragmentation, a burst is fragmented instead of being dropped if it cannot be accommodated on any wavelength as a whole. These fragments

are then sent on different wavelengths on the same path. Only in the event, that a fragment cannot be scheduled on any wavelength of the link,

is the burst dropped. We develop a new scheduling algorithm based on time-slotting and fragmentation. This algorithm has several attractive

features such as fast and simple implementation and improved burst dropping performance. Using the hop-based shortest path algorithm to

route a burst without accounting for the link load results in poor burst dropping performance. This is because, some links could be heavily

loaded forming a bottleneck for network performance. Load balancing approach aims at reducing the bottleneck of data traffic in the network.

We develop a path selection algorithm based on load balancing with the objectives of improving network performance in terms of burst

dropping probability and improve fairness among bursts traversing paths of different lengths. We then develop an offset-based algorithm to

provide inter-class service differentiation and intra-class fairness for the bursts belonging to classes with different levels of priority. An

attractive feature of this algorithm is that it works with a constraint of maximum permissible initial offset time in order to reduce the burst

transfer delay and also to reduce the buffer requirements at the ingress edge routers. It also ensures that shorter-hop bursts of a low-priority

class does not perform better than the longer-hop bursts belonging to a high-priority class. Extensive simulation results have been used to

demonstrate the effectiveness of the proposed approaches and algorithms for various identical and non-identical traffic demand scenarios.
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1. Introduction

Potential bottlenecks of electronic processing to carry

Internet protocol (IP) traffic over wavelength division

multiplexing (WDM) optical networks can be overcome

by aggregating multiple data packets into a super packet,

called burst which is assembled at the ingress router. Bursts

have the same network properties like ingress and egress

routers and QoS requirements. In burst switching, resources
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are reserved in a one-way process and the burst cuts through

the intermediate nodes, without any need for buffering, thus

reducing nodal complexity and alleviating synchronization

problems as opposed to packet switching [1–4].

A burst consists of a header and a payload called data

burst. The burst header is also called the control packet. The

payload and the header are sent separately on different

wavelengths/channels. The burst header contains all the

necessary information to be used by the switch control unit

(SCU) at each hop to schedule the data burst, and configure

the optical switching matrix to switch the data burst

optically [5]. The difference between the times at which

a control packet arrives and leaves a node is called
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the control processing time, denoted by D. In order to avoid

buffering of the burst at the intermediate nodes, the control

header precedes the payload by a minimum duration of hD
where h is the number of hops along the path. The separate

transmission and switching of data bursts and their headers

help to facilitate the electronic processing of headers and

lower the opto-electronic processing capacity required at

core routers. Further, it provides ingress to egress

transparent optical paths for transporting data bursts.

In the literature, several burst switching techniques have

been proposed. These include close-ended resource reser-

vation techniques like Reserve-a-fixed-duration (RFD) and

open-ended reservation techniques like Tell-and-go (TAG)

and In-band-terminator (IBT). Among the protocols avail-

able, Just-enough-time (JET), an RFD based OBS protocol

is attractive [2]. The JET protocol works as follows. After

the burst assembly is complete, the ingress node sends out a

control packet followed by the data burst after an initial

offset time. The control packet carries information such as

burst duration and offset time. Because the burst is buffered

at the source for a sufficient amount of time, no fiber delay

lines (FDL’s) are necessary at intermediate nodes to delay

the burst. When the control packet arrives at a node, a

wavelength is reserved on the relevant outgoing link at the

node from the time when the burst is expected to arrive for

the duration of the burst. If no wavelength is available, the

burst is said to be blocked and will be dropped.

As bursts arrive dynamically and multiple bursts may

attempt to traverse a link simultaneously, resource conten-

tion may occur. Therefore, an efficient scheduling algorithm

is required to allocate wavelengths to various contending

bursts. In the literature, a few burst scheduling algorithms

have been proposed [1,5]. They include First Fit Unsched-

uled Channel (FFUC), latest available unscheduled channel

(LAUC) and, latest available unused channel with void

filling (LAUC-VF) [5]. The scheduling horizon algorithm

developed in [1] is similar to LAUC scheduling algorithm.

Both FFUC and LAUC [5] do not examine and fill voids

formed on the wavelength channels. Instead, they use only

the last burst information on each wavelength. By doing so,

they become computationally simple but the scheduling

efficiency is compromised. The worst case time complexity

is O(W) where W is the number of wavelengths per link.

Among all the eligible wavelengths FFUC chooses the first

free wavelength whereas LAUC chooses the one whose latest

available time is closest to the arrival time of the new burst.

By doing so, LAUC attempts to pack the bursts as tightly as

possible. This improves the chances of successfully schedul-

ing future bursts. LAUC-VF performs significantly better

than LAUC by allowing a new data burst to fill the voids

between the existing bursts. However, it is computationally

complex. Its worst case time complexity is O(NW), where N

is the number of voids or bursts currently scheduled.

Internet traffic has different service requirements in terms

of delay and loss. Therefore, several classes of bursts with

different grades of QoS requirements such as burst loss
performance need to be handled. In the literature, different

kinds of approaches have been proposed to deal with service

differentiation. In the first approach, class isolation is ensured

by assigning extra offset time of 3L to high-priority class

bursts, where L is the mean burst duration [6]. This approach

might over-penalize the low-priority class in order to ensure

class isolation. In the second approach proportional QoS is

ensured between different classes. In [7], proportional QoS is

provided by intentionally dropping low-priority bursts when

relative performance between classes is violated. This

method ensures a fair level of performance by low-priority

bursts. However, it could lead to poor utilization of bandwidth

or wavelength resources due to the intentional dropping.

An important issue in OBS networks is fairness. In most

networks, the dropping probability of a burst increases with

the number of hops in its path. This implies that for any

given ingress–egress pair the burst dropping probability is

not uniform but depends on the path length from the ingress

to the egress, which is undesirable. In the literature, a

solution has been suggested to achieve fairness in OBS

networks. In this, the initial offset is made a function of the

number of hops the burst has to traverse, typically 5hL or

10hL, where h is the number of hops and L is the mean burst

duration [2]. Increasing offset time improves the probability

of the burst getting transmitted through the network and

hence helps in reducing the dropping probability for the

longer-hop bursts. This, however, increases the time a burst

spends in the network and can become quite undesirable.

Further, due to the increased offset time, large buffers are

required at the ingress edge routers. We note that the

fairness problem can also be caused due to other reasons

such as length of burst duration. In our work, we consider

the network fairness problem caused by differing hop

lengths of the paths traversed by bursts.

We propose two new approaches—time slotting and

burst fragmentation and a new path selection algorithm

based on load balancing—as the effective ways of

improving burst dropping performance, network fairness,

inter-class service differentiation, and intra-class fairness.

Based on the time-slotting and fragmentation approaches,

we develop a new scheduling algorithm called Best fit void

filling with fragmentation (BFVFF). This algorithm has

advantages of computational simplicity and improved burst

dropping performance. Time slotting refers to the quantiza-

tion of time into slots of fixed size. The burst duration is

specified as the number of slots and every node performs

scheduling in terms of slots. This helps reduce the number

of bits required to encode the burst duration. Further, the

maintenance of the status of slots and implementation of

scheduling at the core nodes become simpler. Fragmenta-

tion allows a burst to be fragmented when it cannot be

scheduled as a single entity on any wavelength. It enables

allocation of multiple wavelengths on the same path to

different fragments of a burst.

With the use of multi-protocol label switching (MPLS)

capabilities in OBS networks, label switched paths (LSPs)
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can be used for transporting the bursts between node pairs

[8]. In MPLS, the control packets carry only a small label

which identifies the route that needs to be taken by the burst.

Further, the LSPs could be setup by signaling which are

initiated by ingress edge routers on the specified explicit

route. Usually, a hop-based shortest path algorithm is used

to route a burst without accounting for the link load. This

can result in poor burst dropping performance if some links

are heavily loaded. Load balancing aims at reducing the

bottleneck of data traffic in the network. We develop a path

selection algorithm based on load balancing with the

objectives of improving network performance in terms of

burst dropping probability and improve fairness among

bursts traversing paths of different lengths. We then develop

an offset-based algorithm to provide inter-class service

differentiation and intra-class fairness for the bursts

belonging to classes with different levels of priority. An

attractive feature of this algorithm is that it works with a

constraint of maximum permissible initial offset time in

order to reduce the burst transfer delay and also to reduce

the buffer requirements at the ingress edge routers. It also

ensures that shorter-hop bursts of a low-priority class does

not perform better than the longer-hop bursts belonging to a

high-priority class.

We discuss the implementation issues of the proposed

approaches in the following sections. We use extensive

simulation results to demonstrate the effectiveness of the

proposed approaches and algorithms for various identical

and non-identical traffic demand scenarios.

The rest of the paper is organized as follows. In Section 2,

the proposed time-slotting and burst fragmentation

approaches are discussed. The proposed scheduling algori-

thm based on the above approaches is also described. Section

3 discusses the load balancing approach and presents a path

selection algorithm based on this approach. In Section 4, the

proposed method for providing inter-class service differen-

tiation and intra-class fairness in a multi-class environment is

described. Section 5 studies the performance of the proposed

approaches and algorithms. Finally, concluding remarks are

made in Section 6.
2. Proposed scheduling algorithm

A burst scheduling (also referred to as wavelength

scheduling or channel scheduling) algorithm has two vital

aspects, its computational complexity and its efficiency in

scheduling network resources. We develop a scheduling

algorithm called best fit void filling with fragmentation

(BFVFF) with the objectives of achieving a better network

performance than that of LAUC-VF, but at the same time,

restricting the worst case time complexity close to that of

the best known scheduling algorithm (LAUC-VF).

The computational simplicity is achieved by using time-

slotting and efficiency in scheduling resources is achieved

by using burst fragmentation.
2.1. Time-slotting approach

Time-slotting refers to the quantization of time into slots

of a fixed size. Each node in the network has a time-line for

each wavelength on each of the outgoing links. This is used to

schedule the outgoing bursts on different wavelengths on a

specific link. The burst duration is expressed as an integral

number of time slots. The time-slotting being referred to here

is fundamentally different from the photonic slots used in the

photonic slot routing in WDM packet-switched networks [9,

10]. In our time-slotting approach, there is no need for slot

synchronization globally among the nodes. Time slots and

their usage status are locally maintained by the nodes. Time-

slotting helps in improving the computational speed of a void

filling algorithm. The maintenance and lookup of the status of

time slots could be done faster by using simple data structures

such as arrays or bit vectors. It is also possible to implement

these operations in hardware resulting in a much faster

scheduling computation.

As the burst arrival time at a node is known while

scheduling the burst, it can be used to directly reference the

time-line of the resource (wavelength) being allocated, and

the availability of the resource can be determined. No

extensive search needs to be performed on the resource

schedule. Thus, if there are W wavelengths on a particular

link then the worst case time complexity to schedule a burst

is O(kW), where k is the maximum number of time slots a

burst can span. The upper bound on the value of k is usually

known as the slot size is fixed and the burst assembly

techniques are generally based on maximum-burst-size or

maximum-assembly-time schemes. The theoretical worst

case complexity is therefore close to that of LAUC-VF

algorithm whose complexity is O(NW), where N is the

number of voids or bursts currently scheduled. Regardless

of the theoretical complexity, we note that the actual

running time of time-slotting based algorithm is expected to

be smaller than that of LAUC-VF algorithm due to the use

of simple data structures as stated above.

The size of the time slot can be chosen based on various

factors such as mean burst duration, network properties and

statistics about the traffic of data. For good resource

utilization, the time slot should be small compared to the

burst duration. Since an integral number of time slots is

allocated to a burst, the start and end of a burst might not be

aligned to the beginning and ending of a time slot.

Therefore, on an average, half a time slot is wasted on

either end of the burst. A possible way to reduce this waste

is to keep track of the latest available time within each slot.

This allows two bursts to use the same slot (i.e. to use the

same wavelength on a link during the same slot) if

the beginning of a burst is later than the end of another

burst. We note that this method requires constant number of

extra operations per slot and hence it does not increase

the worst case computational complexity of the scheduling

algorithm. The smaller the time slot size, the lesser the

wastage and the more efficient is the resource utilization.
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However, the time-slot size cannot be reduced to a very

great extent. This is because, the smaller the time-slot, the

more the number of slots needed to schedule a burst. This

adds on to the processing time. Thus, for very small values

of time-slot the processing time may become unacceptably

large. Thus, a good compromise needs to be achieved.
Fig. 2. A situation wherein BFVFF successfully schedules burst B1 by

using burst fragmentation.
2.2. Burst fragmentation approach

Burst fragmentation refers to the splitting of a burst at a

node if it cannot be accommodated as a whole, on any of the

wavelengths of the particular link it is supposed to go on. In

the conventional burst scheduling algorithms like LAUC-

VF, each wavelength on a fiber is considered as a separate

resource and a burst can be scheduled on only one of them at

a time. This, however, leads to wastage on each of the

wavelengths and the cumulative wastage on all the

wavelengths is quite significant. If all the wavelengths on

a given fiber can be treated as a single resource then this

wastage can be minimized. This is the motivation for

fragmenting bursts. As voids are more easily filled by

shorter bursts, a greater number of longer bursts are dropped

as compared to the shorter ones. Therefore, the conventional

burst scheduling algorithms are unfair to longer bursts. This

becomes another motivation for fragmentation.

A burst can be scheduled on one or more wavelengths as

long as the required slots are available. For example, in

Fig. 1, if we use a void-filling algorithm, the new burst B1

cannot be scheduled on either wavelength w1 or w2 and

hence will be dropped. However, if we allow burst

fragmentation, as shown in Fig. 2, then the burst can be

accommodated on wavelengths w1 and w2 by fragmenting

the burst at time t3 and scheduling the first fragment B1 0 on

w1 and the second fragment B1 00 on wavelength w2. When

a burst is fragmented at a node each fragment of the burst is

treated like an independent burst, thus enabling further

fragmentation. The OBS nodes are assumed to have no

buffers (i.e. FDLs) to delay bursts or their fragments to

resolve contention. Therefore, a burst will be dropped at an

OBS node if no wavelengths are available to accommodate

the entire burst or all of its fragments.
Fig. 1. A situation wherein a void-filling algorithm fails to schedule burst B1.
There are several issues that arise with fragmentation. If

the permissible fragment size is an integral multiple of n

slots, then at the end of every n slots, guard bits are inserted to

account for the delay in switching to a new wavelength. This

guard time is a very small percent of the burst duration and

hence does not significantly add on to the burst size. We note

that even without fragmentation, some time gap is needed

when two bursts are scheduled in continuation. Another

important issue is the signaling overhead. When a burst is

fragmented, the information needs to be carried to the

downstream nodes. There are two possible ways to handle

this. The first way is to add the fragment information to the

original control packet. The second way is to modify the burst

duration in the original control packet and transmit a new

control packet corresponding to the new fragment through

the same path as that of the original burst. In both the cases,

the effective control packet size and processing time

increase. Therefore, signaling overhead depends on how

many times a burst is fragmented. In Section 5, we show that

the signaling overhead is very small. Thus, overall, the

fragmentation scheme aids effective use of wavelength

resources. We note that all the fragments of a burst traverse

along the same path but on different wavelengths. Therefore,

the start time and end time of the original burst are the same

as the start time of the first fragment and end time of the

\last fragment of the burst, respectively. They are finally

processed at the egress router. From the control packet

information, the egress router can infer which fragment

comes at what time and on which wavelength.

Our work on burst fragmentation with time-slotting

[12,13] is fundamentally different from a parallel work on

burst segmentation [11]. In our scheme, all the fragments of

a burst traverse the same path. Moreover, a burst is

fragmented based on its own decision and it cannot be

fragmented by other bursts. Further, a burst (with all its

constituent fragments) is either successful or dropped as a

whole. On the other hand, the segmentation scheme [11]

adopts deflection routing of segments. It allows a burst to be

segmented by other segments. Also, it is possible to

schedule some segments while dropping the remaining

segments. This results in increased out-of-order delivery of

packets and unnecessary waste of bandwidth.



G. Mohan et al. / Computer Communications 28 (2005) 754–764758
2.3. BFVFF scheduling algorithm

When a node receives a control packet, it extracts the

information about burst arrival time and burst duration. It

applies BFVFF scheduling algorithm to determine frag-

ments and assignment of slots and wavelengths to the

fragments. Let t1 be the starting time slot of the burst. Let b

be the burst duration expressed in number of slots. Our

algorithm requires that the size of a fragment should be at

least fmin slots. The key idea of the algorithm is to keep the

burst (or fragment) size as long as possible. With this

meaning we use the term ‘best fit’. Therefore, a burst is

fragmented only if it is necessary. In an iteration, the

algorithm searches each wavelength starting from slot t

looking for l contiguous free slots. The initial values of t and l

are t1 and b, respectively. It chooses wavelength wmax which

has the maximum number (denoted by max) of free

contiguous time slots starting from time t. If it is sufficient

to accommodate the entire burst, the burst is not fragmented

and the wavelength is chosen. Otherwise the burst is split

into fragments F and F 0. If the fragmentation does not meet

the minimum size requirement of a fragment, the algorithm

fails and the burst is dropped. Fragment F is of size max slots

starting from slot t and fragment F 0 is of size lKmax starting

from slot tCmax. The algorithm allocates max slots on wmax

to F and continues to search for free slots for F 0. The above

procedure is repeated until all the fragments are assigned

wavelengths. If sufficient free slots are not available for a

fragment, the burst is dropped. The maximum number of

slots searched per wavelength in each iteration is max and the

next iteration only starts from time tCmax, thus at most b

slots are searched on each wavelength. Therefore, the worst

case time complexity is O(bW). The pseudo-code of the

scheduling algorithm is given below.
lZb; tZt1;

while (l>0)
{
Determine wmax with maximum number of
free contiguous slots from t;
max Znumber of free contiguous slots on
wmax;
if (maxZ0) sufficient slots are not
available, fail;
if (max!l)

if ((lKmax)!fmin) maxZlKfmin;
else maxZl

if (max!fmin) fragment is too short, fail;
Generate fragments F of size max slots
starting from slot t and F 0 of size lKmax

starting from slot tCmax;
Allocate max slots on wmax to F; Continue
to search for free slots for F 0;
lZlKmax; tZtCmax;
}

3. Path selection based on load balancing

Multi-protocol label switching (MPLS) capabilities can

be extended to OBS networks. This has several attractive

features such as explicit routing. Here, label switched paths

(LSPs) can be established for transporting the bursts

between node pairs. This helps the control packets to

carry only a small label. Usually, in OBS networks, shortest-

hop paths are assumed to be used ignoring the network state

and traffic demands between node pairs. This results in

uneven traffic loads on different links resulting in a number

of bottleneck links. In an OBS network, bursts are dropped

once a resource bottleneck is reached. If the network traffic

is concentrated only on a few nodes and links then this

resource bottleneck is reached faster and hence a larger

number of bursts are dropped. However, if paths are chosen

in a way to balance the load on the links, it is less likely to

create bottleneck links and hence the network performance

increases in general. Thus, this feature is very important for

the optimum performance of a network.

Another desired feature in OBS networks is to ensure

fairness which means that for all ingress–egress pairs in the

network a burst must have equal likelihood of getting

through. It should be independent of the path length

involved and thus the network should not be biased towards

bursts which need to traverse a shorter path. The longer the

path that a burst needs to traverse, the greater is the

probability that it will find a resource bottleneck and will be

dropped. Thus, if paths are selected based on load balancing

then the chances of the burst getting dropped even on a

longer path is lower, hence improving fairness.

We use load balancing with the dual objectives of

improving overall burst dropping performance and network

fairness for bursts traversing paths with different hop counts.

We develop a path selection algorithm which balances the

load on the links. We use the estimated average traffic

demand (in terms of bursts per unit time) between node pairs

as a measure of the load. As the traffic demand might change

with time, the algorithm can be applied at varying time

intervals. This makes the load balancing algorithm adaptive

to the changing network traffic. Tarffic demands between

node pairs could be estimated based on the past history of

seasonal variations in traffic. Such traffic demands change

on a relatively long time scale. Therefore, the overhead

incurred due to the computation and setting up of paths is

acceptably small.

An intuitive way of achieving load balancing is to make

the path cost for using a network link a function of its length

and the amount of traffic being carried on it. This will assign

a high cost to a link which is heavily loaded and when the

minimum-cost path is being computed for a given ingress–

egress pair, this link will be avoided by the path selection

algorithm. This is the main idea behind the proposed load

balancing algorithm.

Let the traffic load carried by an LSP between node s and

node d be tsd. Let the link load information be stored in L,
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where lij is the load on the link between nodes i, j. We route

LSPs between node pairs one by one in some order and

incrementally update the link load. At any instance during

the execution of the algorithm, the load on a link (or the cost

of a link) is the sum of the load carried by the LSPs

traversing that link. Initially the load on each link is a tiny

value e. The algorithm considers node pairs in the non-

increasing order of their hop counts. First, the longest-hop

node pair is considered. The minimum-cost path between

the node pair based on the current link cost is selected. The

cost of each link traversed by the path is then updated by a

value equal to the traffic load between the node pair. Next,

based on the new link costs, the minimum-cost path for the

second longest-hop pair is chosen. This procedure continues

until paths are chosen for all the node pairs. The pseudo-

code for the algorithm is as follows:

Algorithm:
Initialize L:
lijZe, if i and j are directly connected.
lijZN, otherwise.
For every ingress--egress pair hs,di
compute hop count wsd.

Sort the node pairs in the non-increasing
order of wsd into set WS.

For every element in WS, hi,j,wsdi,
Find the minimum-cost path from i to j

based on the current link costs. Update
L by adding tsd to the cost of each of the
links lij traversed by the chosen path.
In the above algorithm, minimum-cost paths are

computed for the ingress–egress pair having the maximum

hop count prior to the ones having the smallest. This is

expected to improve the dropping performance of longer-

hop paths. The load balancing algorithm results in

significant improvement in the burst acceptance ratio and

a significant improvement in the fairness as verified through

simulation in Section 5.
4. Inter-class service differentiation and intra-class

fairness

Internet traffic carries different categories of data with

different levels of priority. A high-priority class burst

requires better QoS in terms of loss and delay than a low-

priority class burst. We propose an offset-time based

method to ensure service differentiation between classes

and to ensure fairness among bursts with different hop

counts within a class. We consider burst dropping

probability as the QoS metric. Minimizing the burst loss

will minimize the retransmissions and hence the burst or

packet delivery time. Since the burst is switched in a pure

optical domain from the ingress to the egress router, a small

initial offset time at the ingress router will lead to reduced

end-to-end delay.
The algorithm proposed for service differentiation uses

the idea of varying the initial offset time for the burst to

achieve service differentiation. When the initial offset for a

burst is increased the chances of it being successfully

transferred through the network increases. This is because

resources required for the burst can be scheduled in

advance. As the higher priority bursts need to have a higher

acceptance ratio, they are assigned a high initial offset.

In order to reduce the burst transfer delay and buffer

requirements at the ingress routers, we set an upper limit on

the initial offset time. The maximum permissible offset

range (which is predefined by a maximum offset factor) is

equally divided into two and the higher part of this offset

range is assigned to the higher priority service, and the

lower to the normal priority service. The reason for dividing

the possible initial offset region into two non-overlapping

ranges is to isolate the performance of the two services. This

idea can also be extended to any number of service types. If

there are n service categories, then the offset range can be

equally divided into n non-overlapping regions, such that

the higher priority services get the higher offset. Although

the increase in the maximum offset factor improves network

performance and degree of class isolation in terms of

acceptance ratio, the overall time spent by the burst in the

network (which is defined by the initial offset time)

increases. In real life implementation, the maximum offset

factor should be chosen in such a way that it strikes a good

compromise between improved performance in terms of

burst dropping performance, degree of class isolation, and

the end-to-end delay of the bursts.

When all the bursts of a particular class are allocated the

same initial offset, cluttering takes place. Because of this the

level of improvement in the performance of the algorithm is

mitigated. In order to overcome this problem, in the

proposed algorithm a further differentiation is done in

terms of the initial offset, depending on the path length for

each of the service categories. This in turn also improves the

intra-class fairness in the network. This improvement is

because of the fact that the longer paths are assigned a

greater initial offset as compared to smaller paths. This in

turn reduces the difference in the dropping probability for

the different path lengths. For instance, if the maximum

offset factor allowed is Omax, then the permissible

offset range is given by [0, Tmax], where Tmax is given by

[hmax!DCOmax!L]. Here, L is the mean burst duration, D
is the control processing time, and hmax is the maximum

number of hops for any ingress–egress pair. Let n be the

number of service categories with priorities ps, 1,2,.,n.

In the algorithm the Offset range is equally divided into

n!hmax segments. These offset segments are of size B. The

bursts of hop length h and belonging to class ps are then

assigned the initial offset time Oinit as determined below.

B Z Tmax=ðn!hmaxÞ;

Oinit Z ððps K1Þ!hmax C ðh K1ÞÞ!B CD!h;
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We note that the above way of choosing the offset time

values not only improves fairness within each class, but also

ensures that the shorter-hop bursts belonging to a low-

priority class do not perform better than the longer-hop

bursts belonging to a high-priority class.

Unlike the service differentiation scheme discussed in

[2], the method proposed in this paper, puts a ceiling to the

maximum time a burst can spend in the network and also

provides a way to increase fairness among bursts for the

same data class. As the proposed method does a logical

distribution of initial offsets among the different data

classes, it is more scalable and can cater to multiple traffic

classes without increasing the offset time beyond the limits

specified.
Fig. 3. Dropping probability vs arrival rate for different levels of

fragmentation.
5. Performance analysis

In this section, we verify the effectiveness of the

BFVFF scheduling and path selection algorithms based on

the proposed approaches of time-slotting and fragmenta-

tion through simulation. The simulation network is

randomly generated with 32-nodes and 104 links. It is

generated by creating a link between a node pair with a

ceratin probability (in this case it is 0.2). Each link is

bidirectional comprising two unidirectional fibers in

opposite directions. Each fiber is assumed to carry eight

data wavelengths and one control wavelength. Bursts

arrive randomly according to Poisson process, with

exponentially distributed duration with a mean of 24 ms.

The Poisson model has been widely used by the research

community since better and more accurate models for

burst traffic are yet to be developed. We believe that our

algorithms should exhibit similar behavior for other traffic

models also. The destination nodes for the bursts are

generated using a uniform distribution. The control

processing time is assumed to be 3 ms. The relationship

between the ratio of the number of data wavelengths and

control wavelengths and the ratio between the mean burst

length and control processing time [5] holds to ensure that

the control packets are processed before the data bursts

arrive at a node even under full link utilization condition.

The time slot size is chosen to be 1 ms for most of the

simulations; however, we do analyze the effect of varying

slot size. The simulation experiments were run for a

sufficiently long time and were repeated several times.

The 95% confidence interval range is within 3% of the

values plotted.

We consider identical as well as non-identical traffic

demand scenarios to demonstrate that our algorithms can

perform well for changing traffic patterns. In an identical

traffic case, the traffic demands between all the node pairs

are same. On the other hand, in a non-identical case, the

traffic demands need not be same, meaning that the burst

arrival rate between a node pair can be different from that of

another node pair. Apart from the mean burst dropping
probability, we use a new metric called count of control

packets per burst to measure the signaling overhead that is

caused by fragmentation.

5.1. Effect of traffic load and fragment size

We begin with comparing the dropping probability for

different arrival rates for various fragment sizes. The arrival

rate used here is the mean number of bursts generated per

node, per mean burst duration. As can be seen from Fig. 3,

when the burst is allowed to fragment, the dropping

probability improves. For instance, for the arrival rate of

19, 8% bursts which are dropped in the ‘no-fragmentation’

case are accepted when completely fragmented. Since a

WDM network carries a huge amount of traffic, an

improvement of 8% is attractive in terms of extra data

that can be transmitted through the network and in terms of

reduction in retransmission overhead at the higher layer.

Similar behavior can be observed for other arrival rates as

well. A compromise between the two scenarios can also be

seen when the burst is allowed to fragment only at the

boundaries of 10 time slots. It can also be observed that the

burst dropping probability decreases when the permissible

fragment size decreases. This is because, shorter fragments

are more likely to find free wavelengths when compared to

longer fragments. The ‘no fragmentation’ algorithm exhi-

bits the behavior of the LAUC-VF void filling algorithm.

5.2. Signaling overhead due to fragmentation

Fig. 4 depicts the signaling overhead that is caused by

burst framentation for varying fragment sizes. We recall

that, whenever a burst is fragmented additional information

or control packets need to be sent to the downstream nodes.

The mean number of fragments transmitted per burst on a

link reflects the signaling overhead. For arrival rate 20, for

example, an average of 1.003 control headers are sent for

each link traversed. That is an increase of only 0.3% in



Fig. 4. Signaling overhead due to fragmentation.

Fig. 6. Signaling overhead vs time-slot size.
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control header traffic when the fragment size is 1. The ratio

decreases with increasing fragment size as the chances of

fragmentation drops. When the arrival rate increases the

signaling overhead also increases. The reason is that at

higher load, the chance of finding a single free wavelength

for the whole burst is reduced resulting in fragmentation.

5.3. Effect of time-slot size

The effect of time-slot size is studied on the performance

of the BFVFF algorithm as well as the signaling overhead.

Fig. 5 shows the plot of dropping probability against time-

slot size for different arrival rates. From Fig. 5 it can be seen

that the dropping probability increases with increasing slot

size. This is because of the fact that a large slot size results

in resource wastage at the end slots of bursts. With the

increase in the arrival rate per mean burst duration, the

amount of increase in dropping probability for every time-

slot size change increases. This is because, with the

increasing arrival rate the amount of total resource wasted

increases.
Fig. 5. Burst dropping probability vs time-slot size.
Fig. 6 shows how the signaling overhead varies with the

time-slot size. As the time-slot size increases, the chance of

finding a free wavelength for the duration of a time slot

decreases, and hence the possibility of fragmentation drops,

thereby reducing the per burst control packet count.
5.4. Effectiveness of load balancing

(1) Improvement in network performance. The effect of

using load balancing on both identical and non-identical

traffic load was studied with the BFVFF algorithm. We

recall that the identical load refers to the case where all the

node pairs have the same mean burst arrival rate per mean

burst duration whereas in the case of non-identical load,

node pairs use different mean burst arrival rates. In both the

cases the algorithm shows significant improvement after

load balancing.

Fig. 7 shows the performance of the algorithm with and

without load balancing for identical load. From the graph, it

is apparent that the network performance increases

significantly after load balancing. This is because

the average resource utilization in the network increases,
Fig. 7. Burst dropping probability with and without load balancing.



Fig. 9. Impact of load balancing on network fairness for non-identical traffic

load (s1).

Fig. 10. Impact of load balancing on network fairness for non-identical

traffic load (s2).

Table 1

Dropping probability for three different non-identical traffic loading

patterns with and without load balancing

Loading pattern Load balancing No load balancing

s1 0.011067 0.028788

s2 0.012293 0.028069

s3 0.011641 0.027976
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hence the throughput increases. From Fig. 7 it can be seen

that after using load balancing the dropping probability

decreases by about 60% for arrival rate of 19. In other

words, the network can support a far higher arrival rate for a

given dropping probability.

A similar observation can also be made from Table 1,

which compares the burst dropping probability in a network

for three different non-identical loading patterns s1, s2, and

s3, with and without load balancing. The loading patterns

are generated randomly with different seeds to obtain a

network-wide mean arrival rate of 15 per node pair. Table 1

shows the dropping probability for the three different

loading patterns. From Table 1, it can be seen that after load

balancing the burst dropping probability decreases signifi-

cantly for all the loading patterns.

(2) Improvement in network fairness. The impact of load

balancing on network fairness has also been studied using

the BFVFF algorithm on both identical and non-identical

loads. Fig. 8 shows the burst dropping probability against

the hop count, with and without load balancing for a

uniform load. From the graph it is clear that load balancing

not only prevents the dropping probability from increasing

with hop count, but also reduces the magnitude for the

dropping probability for each hop count quite significantly.

For instance, for the hop count of 2, the burst dropping

probability decreases by about 60% of the initial dropping

probability after load balancing. Thus, load balancing has a

major impact on network fairness.

Figs. 9–11 show the dropping probability against hop

count for the non-identical traffic loading patterns s1, s2 and

s3, respectively. The trend is similar to that seen in Fig. 8.
Fig. 8. Impact of load balancing on network fairness for uniform load.

Fig. 11. Impact of load balancing on network fairness for non-identical

traffic load (s3).



Fig. 12. Burst dropping performance for different classes without load

balancing.

Fig. 14. Intra-class fairness without load balancing.
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5.5. Inter-class service differentiation

The burst dropping performance for the high and low-

priority data classes has been studied using the BFVFF

algorithm with and without load balancing.

Fig. 12 shows the burst dropping probability vs arrival

rate for an offset factor 2 without load balancing. It can be

seen that the dropping probability for the high-priority

bursts is nearly zero. This is because the high-priority bursts

are given a higher initial offset. The dropping probability for

the low-priority bursts is higher than that without service

differentiation and the high-priority bursts.

A similar trend can be seen in Fig. 13, which shows the

burst dropping probability vs arrival rate for service

differentiation with load balancing for an offset factor 2.

The difference between Figs. 12 and 13 lies in the fact that

the overall magnitude of the burst dropping probability is

lower in the case with load balancing. In both the cases the

impact of service differentiation on both the classes of

network traffic is quite significant.
Fig. 13. Burst dropping performance for different classes with load

balancing.
5.6. Intra-class fairness

The fairness among the bursts traversing different hop

counts within the high and low-priority classes has been

studied using the BFVFF algorithm with and without load

balancing.

Fig. 14 shows the plot of burst dropping probability

against hop count for an arrival rate of 19 on using service

differentiation without load balancing. The offset factor

used in the graph is 2. From the graph it can be seen that

with service differentiation the overall burst dropping

probability becomes more uniform with different hop

counts for both the high and low-priority classes. Another

observation that can be made from Fig. 14 is that after

service differentiation the dropping probability of the higher

priority service is less than that for the low-priority service

for all the hop counts.

Fig. 15 studies network fairness for service differen-

tiation with load balancing. From the graph similar trends

can be seen as that for without load balancing. However, it

can be observed that service differentiation with load
Fig. 15. Intra-class fairness with load balancing.
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balancing leads to a better network performance. This is due

to better resource utilization because of load balancing.
6. Conclusions

In this paper, we proposed new approaches namely, time-

slotting and burst fragmentation. We also proposed a path

selection scheme to distribute LSPs based on load

balancing. We developed new algorithms for burst schedul-

ing and path selection which achieve high performance with

low computational complexity, while improving network

fairness and providing service differentiation. The reduction

in computational complexity was achieved using time-

slotting. The improvement in burst dropping performance

was achieved by burst fragmentation and load balancing.

Further, the path selection algorithm proposed for load

balancing also helps to improve fairness among bursts with

different hop counts. We also proposed an offset-time based

service differentiation algorithm which is not only useful to

differentiate between different priority classes with the

constraint of limited permissible maximum offset time, but

also to improve fairness within each class. We discussed the

implemenation and signaling issues of the proposed

approaches. Through extensive simulation experiments we

showed the effectiveness of the proposed approaches and

algorithms.
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