
Microprocessors and Microsystems 47 (2016) 231–243

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Leakage aware resource management approach with machine learning

optimization framework for partially reconfigurable architectures

Nam Khanh Pham

a , b , ∗, Akash Kumar c , ∗, Amit Kumar Singh

d , Mi Mi Aung Khin

b

a Department of Electrical and Computer Engineering, Faculty of Engineering, NUS, Singapore
b Data Storage Institute, A ∗STAR, Singapore
c TU Dresden, Center for Advancing Electronics Dresden (cfaed), Germany
d School of Electronics and Computer Science, University of Southampton, UK

a r t i c l e i n f o

Article history:

Received 22 December 2015

Revised 30 April 2016

Accepted 28 September 2016

Available online 14 October 2016

Keywords:

Scheduling

Mapping

Resource management

Design space exploration

Machine learning

a b s t r a c t

Shrinking size of transistors has enabled us to integrate more and more logic elements into FPGA chips

leading to higher computing power. However, it also brings a serious concern to the leakage power dis-

sipation of the FPGA devices. One of the major reasons for leakage power dissipation in FPGA is the

utilization of prefetching technique to minimize the reconfiguration overhead (delay) in Partially Recon-

figurable (PR) FPGAs. This technique creates delays between the reconfiguration and execution parts of a

task, which may lead up to 38% leakage power of FPGA since the SRAM-cells containing reconfiguration

information cannot be powered down. In this work, a resource management approach (RMA) containing

scheduling, placement and post-placement stages has been proposed to address the aforementioned issue.

In scheduling stage, a leakage-aware priority function is derived to cope with the leakage power. The

placement stage uses a cost function that allows designers to determine the desired trade-off between

performance and leakage-saving. The post-placement stage employs a heuristic approach to close the

gaps between reconfiguration and execution of tasks, hence further reduce leakage waste. To further ex-

amine the trade-off between performance (schedule length) and leakage waste, we propose a framework

to utilize the Genetic Algorithm (GA) for exploring the design space and obtaining Pareto optimal design

points. Addressing the time-consuming limitation of GA, we apply Regression technique and Clustering al-

gorithm to build predictive models for the Pareto fronts using a training task graph dataset. Experiments

show that our approach can achieve large leakage savings for both synthetic and real-life applications

with acceptable extended deadline. Furthermore, different variants of the proposed approach can reduce

leakage power by 40–65% when compared to a performance-driven approach and by 15–43% when com-

pared to state-of-the-art works. It’s also proven that our Machine Learning Optimization framework can

estimate the Pareto front for new coming task graphs 10x faster than well-established GA approach with

only 10% degradation in quality.

© 2016 Elsevier B.V. All rights reserved.

1

d

d

F

r

p

a

p

a

d

i

A

m

i

p

p

h

h

0

. Introduction

Field-programmable gate arrays (FPGAs) are promising candi-

ates for digital circuit implementation because of their growing

ensity and speed, short design cycle, and steadily decreasing cost.

urthermore, most of the FPGA devices nowadays can be partially

econfigured at run time, i.e., a configuration can be loaded into

art of the device while the rest of the system continues oper-

ting. This feature obviously provides greater flexibility and more

owerful computing ability. However, these advantages come with
∗ Corresponding author.

E-mail address: phamnamkhanh@u.nus.edu (N.K. Pham).

o

o

w

ttp://dx.doi.org/10.1016/j.micpro.2016.09.012

141-9331/© 2016 Elsevier B.V. All rights reserved.
dditional problems related to reconfiguration time and power

issipation.

A drawback of FPGA due to its hardware redundancy is its

nefficiency in term of power consumption when compared to

SIC components [1,2] . In practice, an FPGA circuit implementation

ay use only a fraction of the hardware resource but the power

s dissipated in both the used and the unused components. The

ower consumption in FPGA includes static (leakage) and dynamic

ower and their contribution into the total power consumption

eavily depends on the circuit technology. Beyond 65 nm technol-

gy, leakage power becomes an increasingly dominant component

f total power dissipation [3] . This has motivated us to focus our

ork on reducing the leakage power dissipation.

http://dx.doi.org/10.1016/j.micpro.2016.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.09.012&domain=pdf
mailto:phamnamkhanh@u.nus.edu
http://dx.doi.org/10.1016/j.micpro.2016.09.012

232 N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243

Fig. 1. Example of leakage waste caused by prefetching technique.

t

t

2

a

a

d

s

T

s

t

c

t

t

o

n

t

d

t

o

G

c

f

p

b

o

t

t

F

L

o

S

t

Configuration prefetching [4] is a widely adopted technique for

reducing the reconfiguration delay in Partially Reconfigurable (PR)

FPGA. In prefetching, a task is loaded into the FPGA as soon as

possible and this may result in overlap between the configuration

part of the waiting task (to be executed) with the execution part of

operating tasks, facilitating for reduced reconfiguration overhead

(time). However, even after the task is loaded (prefetched), it may

not execute and has to wait until few other tasks complete due

to involved dependencies. Such waiting introduces delays between

the configuration and execution part of the same task. During the

delay interval, the SRAM-cells of the FPGA (containing bits of the

waiting task to be executed) cannot be powered down to avoid

the loss of configuration data from the cells. Therefore, the cells

dissipate a significant amount of power.

Motivational Example: Fig. 1 presents an example to demon-

strate aforementioned issues. In this example, the task graph

on the left-hand side is scheduled on an FPGA platform with

prefetching technique. During the interval between R3 and E3,

the logic blocks of columns 1 and 2 can be powered down to

remove leakage wastes. However, since the SRAM-cells of these

columns cannot be powered down as the configuration data will

be lost, they consume a considerable amount of power. As SRAM

cells leakage contributes ≈38% to FPGA leakage [5] , reducing FPGA

SRAM leakage is of paramount importance.

In order to reduce leakage, a scheduling approach needs to be

developed aiming at allocating reconfiguration and execution parts as

close as possible while keeping task dependencies, timing and archi-

tecture constraints into account. Several works have been proposed

to solve this problem [6,7] . However, these works attempt to ad-

dress the leakage problem in a single phase of the resource man-

agement process (details in later sections). As a result, the leakage

power cannot be significantly reduced. It has also been observed

that there exists a trade-off between leakage waste and perfor-

mance [6] . However, the trade-off analysis by employing the exist-

ing approaches is not efficient. A high degradation in performance

is noticed in order to achieve small amount of leakage savings. To

tackle the problem in a comprehensive perspective towards achiev-

ing high leakage reductions, we propose a multi-stage Leakage-

aware resource management approach (RMA) consisting of three

stages. Our main contributions to each stage are as follows:

• Scheduling: A list-scheduling algorithm has been developed

with a specific priority function that is customized for address-

ing the leakage power reduction.
• Placement: A cost function has been derived for the placement

stage to further reduce the leakage power. This function pro-

vides designers a flexibility to manage the trade-off between

performance and leakage waste.
• Post-placement: A post-placement heuristic has been proposed

to improve the scheduling results (leakage savings) from previ-

ous stages.

As our multi-stage Leakage-aware RMA utilizes two cost func-

ions in scheduling and placement stage with various parameters,

hese parameters form a multidimensional design space with

 objectives on performance and leakage saving. To further ex-

mine the trade-off between these two objectives, we propose

n Optimization Framework with Genetic Algorithm to help the

esigners to efficiently traverse the design space and generate a

et of points that are superior in one of the objective dimensions.

hese points form the Pareto front, which is the Holy Grail for

ystem designers since it not only provides the insight into the

rade-off between different objectives but also allows them to

hoose the most efficient design for different purposes. However,

he process of traversing the design space with GA is usually very

ime-consuming due to the exponential increase in the number

f design points with the dimension of the space, which is the

umber of coefficients in the priority/cost functions. In attempting

o solve the time consuming problem of GA optimization, we

evelop a Machine Learning (ML) component for our Optimiza-

ion Framework that can accurately estimate the Pareto fronts

f new incoming tasks in a fraction of time when compared to

A approach. To achieve such a superior performance, our ML

omponent utilizes Linear Regression to build predictive models

or Pareto fronts from a training set of task graphs (TG) at training

hase and applies these predictive models together with Density-

ased Clustering algorithm at prediction phase. Main components

f our ML Optimization Framework are summarized as follows:

• A comprehensive framework for integrating GA and ML tech-

niques to optimize our Leakage-aware RMA : from generating

data to building predictive models and predicting Pareto fronts

for new TGs;
• A Linear Regression model describing the dependency between

the range of Pareto front and TGs features;
• A Density-base Clustering Algorithm to generate near-Pareto-

optimal design points.

Paper Organization: Section 2 presents state-of-the-art related

o leakage power reduction and existing works on GA and ML

echniques in scheduling domain. Section 3 provides the targeted

PGA architecture, application model and problem definition. Our

eakage-aware RMA are presented in Section 4 . The details of

ur ML Optimization Framework are presented in Section 5 . In

ection 6 , experimental results are reported and Section 7 provides

he conclusion.

N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243 233

2

t

[

t

t

L

F

t

a

s

u

t

r

p

a

e

l

s

A

e

a

s

t

o

d

p

m

b

i

d

p

c

c

w

m

c

t

f

a

p

c

t

H

a

a

s

t

b

a

v

t

t

a

m

i

s

a

c

p

Table 1

Comparison of various approaches.

Features Ref. [20] Ref. [6] Ref. [7] Our work

Scheduling Performance No Performance Leakage

driven driven aware

Placement Performance No Leakage Leakage

driven aware aware

Post No Leakage No Leakage

placement aware aware

Priority Dynamic No Static Dynamic

of tasks

a

p

b

p

c

s

o

L

d

o

a

s

t

a

t

c

s

g

c

a

T

t

t

b

s

a

m

a

o

s

(

q

p

n

t

p

M

[

s

p

m

G

t

r

i

c

M

p

t

p

p
. Related work

There are various techniques reported in literature to reduce

he leakage power of FPGAs. At architecture level , Calhoun et al.

8] introduce a fine-grained leakage control scheme using sleep

ransistors [9] . With the similar idea, Gayasen et al. [10] applied

he sleep transistor methods by partitioning FPGA into regions. Fei

i et al. [11] proposed the programmable supply voltage (V dd) in

PGAs. Elements on critical path are provided high supply voltage

o ensure high performance, while components on noncritical path

re supplied with low voltage and unused part of the device is

witched-off. The leakage power of FPGAs significantly depends

pon the threshold voltage (V T) and an approach using high V T

ransistors is proposed in [12] . A profound survey of leakage

eduction techniques for SRAMs has been provided in [13] .

In [14] , Hoyer et al. developed an RTL delay model with all the

arameters required for high level leakage optimization techniques.

At system level , works focusing on leakage power problems

re fewer than those of the architecture level [15] . Bharadwaj

t al. [16] propose a design methodology that groups temporal

ocality design into cluster. The authors also develop a power

tate controller for effectively switching the states of the cluster.

ddressing the leakage problem from system level as well, Zapater

t al. has proposed an empirical model for leakage components

nd used it to design an energy-efficient control mechanism for

ervers in data centers [17] .

Task graph scheduling for FPGA is an extensively studied

opic [18–20] . Most of the scheduling methods for FPGA focus

n specific problems related to reconfiguration overhead and

efragmentation. Ahmadinia et al. [18] combined scheduling and

lacement method for 2D FPGA architecture using cluster-based

ethod to improve the performance by 20% and task rejection

y 16.2%. Christoph et al. [19] integrated an on-line placement

nto a scheduling algorithm using small tasks first and earliest

eadline first techniques. However, they do not take into account

refetching technique and resource constraint due to single re-

onfiguration controller pertaining to PR FPGA. The first work that

onsidered both prefetching technique and resource constraint

as introduced by Banerjee et al. [20] . The scheduling and place-

ent models are included with the partitioning stage to form a

omplete HW-SW co-design approach for PR systems. Adopting

he same linear placement model and reconfiguration constraint

or Partially Reconfigurable system, Ferrandi et al. [21] proposed

n Ant Colony Optimization approach for mapping, scheduling and

lacing Task Graph on a heterogeneous platform, which might

ontain different type of cores (CPU, FPGA, DSP ...). While the last

wo works focus on system level PR platform, Yuh et al. [6] and

sieh et al. [7] shipped their focus to HW only task graphs to

ddress the leakage power issues for FPGA-only platform.

Yuh et al. [6] first introduced the idea of using scheduling

pproach to mitigate the leakage issue. The authors utilized the

cheduling and placement results from [20] and on top of that

hey developed a post-placement heuristic to reduce the delays

etween execution and reconfiguration parts. They also proposed

n exact ILP solution to perform the post-placement in order to

erify the effectiveness of the heuristic. Since their work tackles

he leakage optimization after the tasks are already allocated onto

he FPGA, the existing placement results may not allow their

pproach to significantly eliminate the leakage power. To achieve

aximal leakage saving, our work addresses the leakage problem

n all phases of the resource management process: scheduling

tage, placement stage and post-placement stage .

With the same model and target, Hsieh et al. [7] introduced

nother approach to reduce the leakage waste. Their method

onsists of 3 phases: binding, priority dispatching and split-aware

lacing . First, the reconfiguration and execution parts of all tasks
re combined together in the binding phase so that the leakage

ower is minimal. Then, each task is assigned a priority value

ased on the position of the task in the task graph. Finally, while

lacing the tasks into FPGA architecture, the split-aware placer

hecks for the deadline. If the deadline is violated, the placer

plits the reconfiguration and the execution phase of the task. One

f our main targets is to explore the trade-off between Schedule

ength and Leakage Saving, therefore we consider soft-deadline

uring the scheduling process. However, after getting the trade-

ff curve, solutions satisfied hard-deadline requirements can be

chieved by filtering design points with the Schedule Length

maller than the deadline. While the work in [7] tried to solve

he leakage problem in the placement phase only, we propose

 more complete solution having multiple stages. Furthermore,

he scheduling algorithms in [7] used static priority, which is

omputed before the actual scheduling process takes place. The

tatic priority is computed based on the characteristic of the task

raph and remains unchanged during the scheduling process. In

ontrast, our algorithm dynamically recalculates the priorities of

ll available tasks every time a task is allocated onto the FPGA.

herefore, our algorithm updates the current available resource of

he FPGA, leading to a better scheduling decision.

Table 1 summarizes the distinction of our work in comparison

o the closely related works reported in the literature. As can

e seen, existing works perform leakage aware optimization in

cheduling, placement, or post-placement stages, whereas our

pproach performs optimization in all the stages. Further, unlike

ost of the approaches that consider static priorities of tasks, our

pproach considers dynamic priorities.

Genetic algorithm approaches have been used intensively for

ptimizing scheduling algorithms, especially in cloud computing

ystems [22] . However, when it comes to multiprocessor systems

MPS) with tight timing requirements, the applications of GA are

uite limited because of its time-consuming behavior. Sutar et al.

roposed memetic algorithm that combines GA with simulated an-

ealing to solve the scheduling problem of precedence constrained

asks [23] . Towards using GA-based scheduling algorithm with

rimary-backup scheme to improve the fault-tolerance of real-time

PS, Zarinzad et al. and Samal et al. proposed their frameworks in

24] and [25] respectively. Obviously, none of the above-mentioned

tudies incorporates ML techniques to solve the time-consuming

roblem of GA methods in scheduling domain. That unique point

akes our work stand out from previous studies, which applies

A approaches for solving scheduling problems. Recently, ML

echniques have emerged as a promising and efficient solution for

esource management problems. A comprehensive survey on ex-

sting learning-based approaches for the same problems on cloud

omputing systems has been conducted by Hormozi et al. [26] .

ore specific overview on the direction of energy minimization is

resented by Berral et al. [27] . As summarized from these works,

he main application of ML techniques in scheduling problem is

erformance modeling and Quality of Service (QoS) modeling. For

erformance modeling purpose, the historical data on execution

234 N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243

Fig. 2. Multi-stage scheduling scheme.

i

s

e

t

c

c

w

a

p

r

p

a

4

i

P

i

P

t

m

a

t

p

m

c

i

trace of previous applications is used to build predictive models

to forecast the performance of new coming applications [28] . On

the other hand, the models for QoS are usually built based on the

dependency with available resource (CPU, memory, bandwidth ...)

and application requirements [29] . These models are then used

to assist the scheduler at runtime to efficiently allocate the re-

sources. The second approach applying ML techniques in resource

management is to classify applications and make decisions based-

on the classification results [30] . Using unsupervised learning

techniques such as Reinforcement Learning to build autonomic

self-management schedulers is another trend not only in cloud

computing [31] , but also in digital system design [32] . Amongst

above-mentioned body of works, our ML optimization framework

is most related to the first application of ML in resource manage-

ment domain, since we also use regression techniques to build

predictive models. However, the differences in purpose and the

interaction between scheduling algorithms and ML techniques

make our framework unique and novel. While the existing works

try to assist the schedulers by predicting the performance or QoS

of new applications, our framework tries to model the behavior

of schedulers during GA optimization process and build predictive

models for the result of that procedure (i.e. Pareto front).

3. System model and problem definition

The targeted architecture used in this work is 1 dimensional

(1D) FPGA, where the configurable logic blocks (CLBs) are arranged

in fixed vertical columns, and a task occupies an integer number

of columns. The basic configuration unit is a column. A task can be

deployed on an adjacent set of columns, and the reconfiguration

time of the task is proportional to the number of columns. Such an

architecture is similar to Xilinx FPGA Virtex family [33] . The device

can be configured by a bitstream through configuration ports like

JTAG or ICAP. However, both configuration ports are managed

by only one configuration controller. Therefore, two different

tasks cannot be reconfigured at the same time. Such architectural

constraint plays a critical role in the process of scheduling and

placement. Moreover, there are 2 main requirements that make

the system fully beneficial from our RMA:

• The device needs to support dynamic partial reconfiguration at

runtime: a part of the platform can be configured while other

parts operate without interruption.
• Another key element realizing the benefits of scheduling algo-

rithm on FPGA is sleep transistors. It is assumed that unused

CLBs can be totally powered off by the sleep transistors inte-

grated into the device. Based on this assumption, each column

can be independently controlled by a sleep transistor [6] .

These conditions constraint the targeted architecture to 1D

FPGA only.

Task model: In this work, we consider problem of scheduling

only hardware tasks, i.e., a task can be synthesized and imple-

mented on the FPGA platform. In comparison to software tasks,

hardware tasks have some additional parameters related to the

required hardware area and configuration time. Directed acyclic

graph (DAG) is used to represent the task set of an application.

An example of the task graph model is presented in Fig. 1 . In

the DAG, each node u represents a task, while an edge e (u ; v)

indicates the data dependency between tasks u and v (task v can

start only after task u finishes).

A task has two components: reconfiguration and execution.

Reconfiguration part is scheduled under the architectural con-

straint (only one reconfiguration controller) while scheduling of

execution part depends on the data dependencies, where a linear

task placement model as that of [20] has been adopted. In the

scheduling process, the communication overhead between tasks is
gnored due to two reasons: (1) since all tasks are executed on the

ame hardware device (FPGA chip), they can communicate with

ach other through a shared memory (BRAM or DDRAM) with

he same latency and cost; and (2) this latency is negligible in

omparison to runtime reconfiguration overhead (time) and exe-

ution time. Similar assumption has been undertaken in previous

orks [20] , [6] and [7] , which adopt the same hardware model

nd application model as ours.

Scheduling Problem

The problem targeted in this paper is an online scheduling

roblem where the new incoming task graph can be handled at

untime without prior information about it and the scheduling

rocess starts as soon as all tasks of the application (task graph)

re read. Following are the set of input, constraints and objective:

• Input: The application task graph and FPGA architecture (num-

ber of columns, 1 reconfiguration controller and 1D architec-

ture).
• Constraints: Task graph dependency for execution parts, re-

configuration controller constraint for reconfiguration part and

sequential relation between the reconfiguration and execution

parts of the same task.
• Objective: Minimize leakage power dissipation because of the

delays between the reconfiguration and execution parts, mini-

mize schedule length.

. Proposed leakage-aware resource management approach

An overview of the proposed resource management approach

s provided in Fig. 2 . The approach has 3 stages: Scheduling,

lacement and Post-placement . At first, the application task graph

s processed iteratively in the first two stages (Scheduling and

lacement). In each iteration, the Scheduler will define the next

ask coming to the Placer by a dynamic priority scheme, which

eans that the priorities of all the schedulable tasks are changed

fter each iteration. The Placer then decides the column where

he task should be mapped and update the current status of the

latform for the Scheduler. Once all the application tasks are

apped, the post-placement stage tries to reduce gaps between

onfiguration and execution parts for all the tasks in order to

mprove results obtained from earlier stages.

N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243 235

Algorithm 1 Leakage aware task scheduling algorithm.

Require: Task graph G=(U,V)

Ensure: Schedule with minimal LK

1: Put source tasks { t i ∈ U : pred (t i) = ∅} into set S

{ S ̃− Set of schedulable tasks}

2: while S � = ∅ do

3: Calculate priorities of unscheduled tasks in S (by Equation 1)

4: Choose the task t with maximum priority

5: Choose the best column C for task t(by Algorithm 2)

6: Schedule task t starting from column C

7: if child tasks of t are not already added to S then

8: Add new available tasks to S

9: end if

10: Remove task t from S

11: end while

4

A

s

c

a

t

S

i

t

i

m

t

g

a

i

F

L

w

s

s

p

t

r

o

f

r

s

t

s

s

i

t

T

b

s

t

s

l

f

p

a

t

v

o

E

F

i

a

p

f

c

p

t

4

t

A

R

E

u

s

f

t

H

p

G

w

f

c

o

t

a

l

a

s

o

r

4

h

o

b

T

t

i
.1. Scheduling stage

Algorithm 1 presents our algorithm for the scheduling phase.

t each step, all schedulable tasks whose parents have been

cheduled are stored in a set of ready task −S. Then, the scheduler

alculates the dynamic priorities of all tasks in set S according to

 priority function defined by Eq. (1) . Thereafter, it chooses the

ask with highest priority to pass to the placer. As mentioned in

ection 2 , we use a dynamic priority function so that the schedul-

ng process can adapt with the current status of the FPGA. Since

he priority function has a strong impact on the schedule quality,

t is carefully designed to address both leakage saving and perfor-

ance requirement. The function includes different components

hat reflect the affection of constraints (FPGA architecture and task

raph dependency) as well as optimization targets (leakage saving

nd schedule length) on scheduling decision. Our priority function

s described as follows:

 = αBT + σC − βE E T − γ E RT − μLK (1)

K = C ∗(E E T − (RT + ERT)) (2)

here,

BT : bottom level of the task that represents the length of

the longest path in task graph starting from this task;
E E T : earliest execution time of the task;

ERT : earliest reconfiguration time of the task;

C: number of columns required by the task;

RT : the reconfiguration time of the task;
LK: leakage waste caused by scheduling the task. The

leakage waste is the product of the used columns and

the delay between reconfiguration and execution parts.

EET, ERT and LK are dynamic factors and are computed in

cheduling process based on the current status of the partial

chedule. Since these variables are fundamentals for scheduling

roblem, the details of their calculation can be found in basic

extbook about task scheduling, such as [34] . α, β , γ , σ , μ are pa-

ameters related to each factor and used to determine the intensity

f their impact on the cost function. The signs of elements in the

unction are given based on their impact on the schedule: tasks

equiring larger columns should be placed earlier to increase the

pace for other tasks; tasks with higher bottom level (close to leaf

asks) should be scheduled first because they strongly affect the

chedule length. Additionally, tasks with minimal EET, ERT and LK

hould be chosen for the desired optimization objective. As shown

n Fig. 2 the output of the scheduling stage is a set of schedulable

asks with the task of the highest priority in the front of the set.

his highest priority task is then transferred to Placement Stage to
e allocated onto the FPGA. Since we are using a dynamic priority

cheme, both the schedulable task set and the priorities of tasks in

he set are changed every time a task is placed in FPGA. The fea-

ibility of a task placement is considered while computing its Ear-

iest Execution Time (EET) and Earliest Reconfiguration Time (ERT)

or the priority function in Line 3 , Algorithm 1 . Given the current

artial scheduling status (for example when task 1 and task 2 are

lready placed on FPGA), the next task can always be placed on

he FPGA at some moment in the future. In case the new task is

ery large, i.e., it needs lot of space for placement, it can be placed

nly when earlier placed tasks finish their execution. The EET and

RT capture the moment when the task is feasible to be placed on

PGA platform. Therefore, when a task is transferred from schedul-

ng stage to placement stage, it should be sent along with its EET

nd ERT hence it will always be feasible to be placed on the FPGA

latform from the latest time of EET and ERT onward. The loop

rom placement stage to scheduling stage ensures the scheduler

aptures the latest status of FPGA platform after each new task

lacement so that it can dynamically compute EET, ERT and LK for

he priority function (1) of each task in the Schedulable Set S .

.2. Placement stage

After getting the task with highest priority, the placer applies

he steps in Algorithm 2 to allocate the task into physical col-

lgorithm 2 Leakage aware placement algorithm.

equire: Task t , set of columns P

nsure: column C- with minimal LK

1: for each column c i ∈ P do

2: Schedule task t starting from column c i
3: Calculate cost of placing t on c i (by Equation 3)

4: end for

5: Choose the column C with minimal cost function

mn(s) of FPGA. When a task comes to this stage, the algorithm

cans all the columns to find available positions for the task and

or each available position, the cost function is computed. Then,

he task is placed into the position with minimal cost value.

ere, also the cost function is also designed to optimize for both

erformance and leakage waste, which is presented as follows:

 =

a

10

∗ LK + (1 − a

10

) ∗ EST (3)

here, LK and EST represent leakage power and earliest start time

or a placement; a is the leakage-schedule length trade-off coeffi-

ients, which can be used to provide a balance between the two

ptimization goals. Therefore, the cost function not only facilitates

o reduce the leakage dissipation but also provides designer the

bility to manage the trade-off between performance (schedule

ength) and leakage saving. The trade-off values can be achieved by

djusting the value of a in Eq. (3) . By increasing the value of a , de-

igner can save more leakage power with a longer schedule length.

Fig. 2 demonstrates the placement results from the first 2 stages

f our approach. It is expected to have small leakage power as a

esult of above optimization techniques as shown in the figures.

.3. Post-placement heuristic

Our post-placement heuristic is presented in Algorithm 3 . The

euristic takes task graph & tasks’ placement as input and provides

ptimized placement of tasks so that leakage power due to delays

etween reconfigurations and executions is further minimized.

he heuristic first schedules leaf tasks to maintain the same finish

ime towards meeting the timing deadline. For each leaf task,

t’s parent tasks are evaluated for their reconfiguration costs and

236 N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243

Fig. 3. ML framework.

Algorithm 3 Leakage aware post-placement algorithm.

Require: Task graph G=(U,V), Tasks’ placement after placement

stage

Ensure: Optimized placement of tasks

1: for each leaf task t i ∈ U do

2: Schedule configuration and execution of task t i by consider-

ing architectural constraint

3: while parents ̃of ˜t i � = ∅ do

4: Find reconfiguration costs for parent tasks of t i by Equation

4

5: Sort reconfigurations in descending order based on cost

6: Schedule reconfigurations considering architectural con-

straints

7: Select parents one by one from maximum to minimum

cost as t i
8: end while

9: Move executions close to reconfigurations if dependencies do

not violate

10: end for

C

P

t

g

d

T

L

i

F

b

o

f

T

b

n

m

o

h

b

a

M

P

f

a

A

m

c

P

i

5

5

t

p

a

h

t

u

P

p

c
scheduled by taking architectural constraints into account. The

cost is computed as follows

 = lw ∗ NC − sw ∗ SP (4)

where, NC and SP are the number of occupied columns and range

of reconfiguration space, respectively. The lw and sw are the

weights to be given to NC and SP respectively, which determine

the leakage power dissipation. After all the tasks are scheduled,

the executions are tried to place close to the respective reconfig-

urations if dependencies are not violated. This helps us to achieve

placement that contains reconfigurations and executions close to

each other as shown in Fig. 2 , leading to reduced leakage power.

5. Proposed ML optimization framework

In this section, we provide an overview of the working flow

and the general functionality of the components in our ML Opti-

mization framework. We explain how the Genetic Algorithm (GA)

and Machine Learning (ML) techniques are utilized to optimize our

Leakage-aware RMA. As can be seen from Fig. 3 , our framework

has two main phases, the Model Building Phase executes at design

time, while the other Prediction Phase executes at deployment

time (after coming of new TG and before executing Leakage-aware

RMA).
hase 1: Building the predictive models

In the first phase, the Leakage-aware RMA is wrapped by

he GA optimization process, which takes a bunch of previously

enerated task graphs (TG) as the input, iterates through their

esign spaces and generates the optimal Pareto front for each TG.

he generated Pareto fronts are stored in a database and fed to the

inear Regression block. This module receives historical data, which

s the range of Pareto front from previous block, as well as the

eatures of respective TGs in the TG dataset. From these inputs, it

uilds Linear Regression models that characterize the dependences

f Pareto range on the TG features. The Predictive models output

rom this module are sent to Phase 2 for use at deployment time.

he last component of Model Building Phase is Feature Extraction

lock, which computes the most important metrics of TG such as:

umber of tasks, maximum bottom level, maximum top level [35] ,

ean of task size, variance of task size, mean of columns, variance

f columns. In the training phase, this block processes the TG from

istorical training set and sends the features to Linear Regression

lock; while in Prediction Phase, it computes features for new TGs

nd feeds them to the Applying Model block. The components of

odel Building Phase are further presented in Subsection 5.1 .

hase 2: Prediction at deployment time

The second phase in our ML framework utilizes the results

rom previous stages to generate the Pareto front for a new TG

t deployment time. The first building block in this phase is

pplying Model component, which takes the Linear Regression

odels and features of the new TG to estimate the range of Pareto

urve. The Trace back block produces the real design points on

areto front using Density-based clustering algorithm. The detail

mplementation of this phase is discussed in Section 5.2

.1. Phase 1: Building the predictive models

.1.1. Generating Pareto front with GA

To apply the GA for our Leakage-aware RMA, we first define

he hyper-parameter set fed to the GA as the combination of

arameters (α, β , γ , σ , μ) of scheduling priority function (Eq. (1))

nd parameter a of placement cost function (Eq. (3)). Varying the

yper-parameter set (α, β , γ , σ , μ, a) gives various solutions in

erm of schedule length and leakage waste. Thereafter, the GA is

sed to explore the design space of these parameter set to find the

areto front in the objectives space. In general, the GA encodes the

arameters in the form of chromosome and uses the objectives as

riteria to heuristically search for better parameters by iterating

N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243 237

Fig. 4. Details of Traceback module.

f

f

p

n

I

5

e

t

(

i

m

f

Y

w

o

r

m

s

β

4

P

i

I

b

m

5

t

f

-

s

P

A

P

s

p

n

T

a

i

o

w

a

n

c

i

t

m

t

o

u

T

E

w

o

r

n

v

p

m

a

(

m

d
rom generation to generation. The good parameter sets are trans-

erred through generations by inheritance while the new potential

arameter sets are explored through mutation. There are quite a

umber of different implementations of GA but we use the NSGA

I algorithm because of its proven efficiency and popularity [36] .

.1.2. Build linear regression for Pareto’s range

From previous training data, we need to build predictive mod-

ls to capture the dependencies of the range of Pareto curve on

he TGs features. That also describes the role of Linear Regression

LR) block in our framework. This block takes input from train-

ng Pareto curves and associate TG features to generate the LR

odels for predicting the min, max of Pareto curves. The general

ormulation of LR model is given in Eq. (5) :

 i = β0 + β1 X 1 + β2 X 2 + . . . + βn X n + εi (5)

here Y i is the outcome. In our framework it will be the min , max

f Schedule Length and Leakage Waste of points on Pareto front. X i

efers to the features extracted from TGs such as: number of tasks,

aximum bottom level, maximum top level [35] , mean of task

ize, variance of task size, mean of columns, variance of columns.

i are the coefficients of LR model. In our example, there will be

 models and coefficient sets in total for estimating the range of

areto front. The reason behind the choices of TGs features and LR

s the trade-off between accuracy and computational complexity.

n fact, our simple LR model can well describe the dependency

etween the TGs features and the outcomes since it can explain

ore than 95% of the variation in the dataset (R 2 > = 0 . 95) .

.2. Phase 2: applying the ML models for prediction at deployment

ime

Fig. 4 presents the procedure in the second phase of our

ramework. On the top, it shows the results from previous phase

 the Pareto fronts in the Normalized Objective space and the

et of parameters in Parameter space for obtaining the points on

areto front, which are necessary input for Traceback Module.
When a new TG comes, its features are extracted and sent to

pplying Model block to generate an estimated range of potential

areto curve, which is denoted as T min and T max in the objective

pace. The Trace back module is introduced to obtain real Pareto

oints on the curve. First the estimated range are partitioned into

 intervals with n + 1 knots on the ScheduleLength axis (including

 min and T max). Then the procedure presented in the dotted rect-

ngle (Traceback) is applied for each knots. Fig. 4 shows the steps

mplemented for l -th knot T l (l = 1 , n). First, the objective space

f targeted TG is normalized and put on the same objective space

ith the normalized Pareto fronts of training TGs.

Fig. 5 explains the reason behind normalization step. It shows

n example of different Pareto fronts of 9 TGs before and after

ormalizing. As can be observed in Fig. 5 a, the scale of the Pareto

urves have major differences and they couldnot help to add more

nformation for generating the Pareto front of new TG. To overcome

his problem and make the Pareto fronts easier to interpret and

ore uniformly across the TG dataset, we normalize the curves so

hat all the Pareto fronts fit in the range of [0, 1] for all dimensions

f objectives (Schedule length and Leakage Waste). The formulas

sed in the normalization process are given in Eqs. (6) –(7) .

 i = (T i − T min) / (T max − T min) (6)

 i = (E i − E min) / (E max − E min) (7)

here T i and E i denote the Schedule Length and Leakage Waste

f the i -th point on the Pareto front. T max , T min and E max , E min

epresent the range of Pareto curve in two objective dimensions.

As can be seen from Fig. 4 , after normalizing, k points in the

ormalized objective space with smallest distance (k-NN) to the

ertical line associated with T l are extracted. Subsequently, the

arameter space of these k points are fed from historical data and

erged together to form a potential parameter space . A clustering

lgorithm called Ordering points to identify the clustering structure

OPTICS) [37] is applied to potential parameter space to filter out

 potential parameter sets , which have the smallest reachability

istance [37] . Finally, our Leakage-aware RMA is called for these m

238 N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243

Fig. 5. Pareto fronts of several TGs before and after normalizing.

b

r

9

n

[

w

t

s

p

w

m

e

1

b

t

t

F

S

i

6

t

a

l

s

w

e

o

a

e

i

t

a

t

t

(

a

P

i

u

a

p

(

l
potential parameter sets to generate the desired points on objective

space that are closest to the T 0 . The rationale behind the k-NN

and OPTICS steps is to extract the most potential parameter sets

from the historical parameters space.

The detailed implementation of Traceback block is given in

Algorithm 4 . The first input of this procedure is the Objective

Space S O of all normalized Pareto front Pareto i of TG i -th in the

training set TrainSet . The second input is the Parameter Space S P
containing all the Parameter sets P i associated with Pareto front

Pareto i . Another input is the predicted Pareto range T min , T max of

the new coming TG, which is generated by Applying Model block.

The hyper-parameter n, k, m are respectively the number of knots

in interval [T min , T max] , the number of selected nearest neighbors

in kNN step and the number of selected potential parameter sets

from density filtering step. Especially, the two hyper-parameters n,

m have huge decision role on the complexity and performance of

the whole framework. Therefore, their impact is examined more

thoroughly in the experimental Section. The expected output of

this Block is the Pareto front Pareto new

of the new TG. The main

part of the Algorithm (the For Loop from Line 2–25) is described

above and illustrated in the dotted rectangle (Traceback) of Fig. 4 .

6. Experimental results

6.1. Performance of leakage-aware RSA

A series of experiments are conducted to demonstrate the

performance of the proposed Leakage-Aware RSA. Three versions

of our scheduling and placement approach with different value

of constant a in Eq. (3) (a = 1, a = 2, a = 10) are compared

with following existing approaches: performance-driven algorithm

(PDA) proposed in [20] , Enhanced Leakage Aware Algorithm (ELAA)

employed in [7] , the ILP and Iterative Refinement (ITE) heuristic

approach proposed in [6] . The PDA does not consider the leakage

waste in the scheduling process, and has been used as the baseline

approach for comparisons. ELAA demonstrates high performance

when dealing with the leakage problem [7] . One important target

in this work is to examine the trade-off between leakage saving

and the schedule length, so no deadline (in terms of schedule

length) is set for the trade-off analysis. The results from our

post-placement approach are compared to that of [6] .

Our algorithm is implemented in Java language and experi-

ments are performed on an Intel Core i7 2.26 GHz CPU with 4GB

RAM. The experiments are performed with real-life task graphs

and synthetic task sets generated by the TGFF tool [38] . For the

synthetic case, five task sets are considered. Each task set contains

10 task graphs with different level of parallelism, which is defined
y the task_degree option in TGFF tool; each task in the task graph

equires 10–50 columns and has the execution time from 1 to

 time units. The FPGA platform is considered to have a fixed

umber of columns as 100. For real-life task graphs, JPEG encoder

20] , MP3 decoder [39] and MPEG4 decoder [40] are considered

ith their specifications provided in respective references in order

o demonstrate the applicability of our approach for real-life

cenarios. The size of the HW implementation is estimated in

roportion with their SW implementation in these references.

The criteria of the comparison are schedule length, leakage

aste, and the runtime of the algorithms. The schedule length is

easured in time unit, while the leakage waste is measured in

nergy unit, which is the power dissipation of one column during

 time unit. The leakage waste of a particular task is computed

y Eq. (2) . The leakage waste of the task graph after scheduling is

he sum of leakage waste of all its tasks. For leakage waste of a

ask set, leakage values of all the contained task graphs are added.

urther, as sleep transistors are used to switch-off the unused

RAM cells for each column, the leakage waste for a task before

ts configuration and after the execution is considered as zero.

.1.1. Leakage waste and schedule length

Fig. 6 presents the leakage waste and schedule length (in

erms of time extension over baseline approach PDA) of all the

pproaches over the five task sets. The whole bars present the

eakage waste obtained after Scheduling and Placement (S&P)

tage, while the lower parts of the bars describe the leakage

aste after applying Post-Placement (PP) methods. Therefore, for

xisting approaches, the whole bars describe the leakage waste

f PDA methods, and the lower part of each bar is the leakage

fter post-placement refinement (PDA+ITE or PDA+ILP). The time

xtension is the extended deadline required for leakage reduction

n proportion with the original execution time with no optimiza-

ion. It is computed by subtracting the schedule length of each

pproach to the schedule length of the baseline approach (PDA)

hen dividing to the later to get an relative value in percentage;

hese values are presented by columns with reversed direction

up to down). The horizontal axis declares notations for different

pproaches. For example, the first two notations PDA+ILP and

DA+ITE denote two approaches used in [6] , where PDA is used

n Scheduling and Placement (S&P) phase and either ILP or ITE is

sed in Post Placement phase.

It can be seen from Fig. 6 that all versions of our approach

chieve better leakage saving when compared with the two ap-

roaches in [6] . Furthermore, when the number of tasks is large

greater than 10), our approach with a = 10 can reach the optimal

eakage saving (leakage waste = 0) with smaller extension in time

N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243 239

Fig. 6. Leakage and schedule length when employing different approaches.

Table 2

Leakage waste and algorithm runtime of post-placement methods.

Algorithms Number of tasks in task graphs

10 20 30 40 50

Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s) Leakage Runtime (s)

PDA+ILP 0 2 .278 40 12 .451 60 25 .812 0 50 .24 60 199 .24

PDA+ITE 20 2.46E −04 80 4.32E −04 180 8.17E −04 80 1.14E −03 80 3.69E −03

PDA + 20 2.15E −04 80 4.36E −04 100 3.66E −04 80 4.32E −04 80 5.02E −04

Our heuristic

w

w

o

w

a

a

o

o

p

p

t

m

t

i

p

6

o

h

a

g

a

p

c

n

t

m

t

l

A

a

a

t

b

Table 3

Leakage waste and schedule length for real-life applications.

PDA+ITE a = 1 a = 10 ELAA

MPEG Schedule length 44 44 53 57

Leakage S&P 140 80 0 0

Leakage PP 0 0 NA NA

JPEG Schedule length 22 23 24 29

Leakage S&P 60 20 0 0

Leakage PP 20 20 NA NA

MP3 decoder Schedule length 50 57 61 63

Leakage S&P 270 30 0 0

Leakage PP 270 30 NA NA

s

p

o

6

p

d

a

i

T

o

s

a

(

t

t

i

s

t

i

a

hen compared to ELAA. On an average, our approach adopted

ith the parameter a = 1 and a = 2 shows leakage power savings

f 40% and 65% respectively when compared to PDA. Furthermore,

hen compared with existing approach PDA+ITE, our approach

chieves 15% and 43% more leakage savings with parameter a = 1

nd a = 2 , respectively. The reason behind superior results by

ur approach over other approaches is that we consider leakage

ptimization first in scheduling and placement stages and then in

ost-placement stage as well. The optimization in scheduling and

lacement stages results in minimize delays between configura-

ions and executions, and the post-placement stage try to further

inimize the left delays in order to reduce the leakage dissipa-

ion. However, other approaches tackle the leakage optimization

n only one stage (e.g., in placement stage in ELAA [7] and in

ost-placement stage in [6]).

.1.2. Post-placement leakage waste and algorithm runtime

In this experiment, we examine the leakage saving and runtime

f 3 post-placement methods ILP, ITE in [6] , and our proposed

euristic. The methods are executed with the same inputs, which

re the placement results from PDA. The deadline of all the task

raphs are set to the schedule length of our approach when

chieving optimal value of leakage saving (i.e., a = 10).

Table 2 shows leakage waste and algorithm runtime for various

ost-placement methods. As can be seen from Table 2 , in many

ases, all the post-placement methods are unable to totally elimi-

ate the leakage dissipation over the PDA placement. However, for

he same deadline, our multi-stage approach can achieve the opti-

al solution (leakage waste = 0) as described earlier. This signifies

he advantages of our comprehensive strategy that addresses the

eakage problem throughout the resource management process.

lthough our scheduling and placement stages achieve high leak-

ge savings, they still can leave spaces between reconfiguration

nd execution parts of many tasks. Our post-placement stage tries

o reallocate reconfigurations and executions so that the spaces

etween them are minimized in order to achieve further leakage
avings. Table 2 shows that our post-placement heuristic can

roduce better leakage results than ITE. Additionally, our heuristic

btains the results in a smaller runtime.

.1.3. Case-study: real-life applications

We applied different scheduling approaches on real-life ap-

lications: JPEG encoder [20] , MP3 decoder [39] and MPEG4

ecoder [40] as mentioned earlier. Table 3 shows leakage waste

nd schedule length for real-life applications. The notations used

n this experiment are the same as those in previous experiments.

he ELAA and our approach with a = 10 always achieve the

ptimal value of leakage waste (zero) with some extension in

chedule length. Therefore, leakage in these cases does not need

ny improvement by Post-placement methods and not applicable

NA) has been mentioned for the same. As can be seen from the

able, for MPEG and JPEG, our approach with a = 1 can obtain

he same results as that of approach PDA+ITE . However, when

t comes to MP3 decoder, the advantage of our comprehensive

trategy becomes obvious. Due to low quality solution in the first

wo phases, the ITE approach cannot remove all the leakage from

nitial placement of previous phases. In contrast, all stages of our

pproach still work well to get maximum leakage saving.

240 N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243

Fig. 7. Pareto fronts generated from GA and our framework.

Algorithm 4 Trace back procedure.

Require: Normalized Pareto sets on Objective Space: S O =

{ Pareto i , i ∈ T rainSet} ,
Parameter sets associated with Pareto points on Parameter

Spaces: S P = { P i , i ∈ T rainSet} ,
Predicted Pareto Range of new TG: T min , T max ,

Hyper-parameter: n, k, m .

Ensure: Pareto set of new TG: Pareto new

1: O new

= ∅ /* initializing the Objective Space of new TG */

2: for each knot l-th (l = 1 , n) in interval [T min , T max] do

3: T l = T min + l ∗ (T max − T min) /N

4: t l = (T l − T min) / (T max − T min)

5: /* find k- nearest neighbours points from training set */

6: for each TG i -th in training set T rainSet do

7: for each point j-th Pareto i j = (T i j , E i j) on Normalized

Pareto front of TG i -th do

8: Compute distance: d i j = T i j − t l
9: end for

10: end for

11: Sort distance array d

12: Add k points with smallest distance to kNN set

13: /* find the potential parameter space for Pareto front of new TG

*/

14: P new

= ∅ /* initializing the Parameter Space of new TG */

15: for each points k -th in kNN set do

16: extract the parameter space P k of point k -th

17: P new

= P new

∪ P k
18: end for

19: reach _ dist = OP T ICS(P new

)

20: Sort reach _ dist and extract m parameter set with smallest

reachability distance to potential parameter space P potential

21: for each parameter set m -th in P potential do

22: O temp = Leakage-aware RMA(parameter set m -th)

23: O new

= O new

∪ O temp

24: end for

25: end for

26: Extract the Pareto set Pareto new

of new TG from its Objective

Space O new

i

p

e

g

f

d

m

p

W

l

u

m

p

T

M

t

s

t

c

w

f

G

f

f

p

t

d

w

o

R

B

o

i

b

m

a

o

t

T

f

r

R

t

e

a

o

e

e
6.2. Performance of machine learning optimization framework

A number of experiments are conducted to evaluate the per-

formance and efficiency of our ML optimization framework. The

GA optimization is implemented with the NSGA II algorithm from

NGPM package [36] in Matlab 2013 and run with a configuration

of 50 population size and 10 generations. The ML techniques are

developed with R 3.2 and OPTICS package [41] . Our ML framework
s compared directly with the GA method . The criteria for com-

arison are quality of generated Pareto fronts and the number of

valuations that each method need to call the Leakage-aware RMA.

In this experiment, three groups of TGs, each with 50 TGs, are

enerated from TGFF tool [38] with different levels of parallelism:

at, medium, slim . As discussed earlier, the parallelism is depen-

ent on the task d egree option from TGFF tool, which represents

aximum number of edges coming out from a task. When this

arameter is small, the task has low parallelism and a thin shape.

hereas, a larger parameter gives TG with higher level of paral-

elism and a fat shape. Out of 50 TGs in each group, 40 TGs are

sed as training set in Phase 1 of our framework. The predictive

odels are built with 10-fold Leave One Out Cross Validation

rocess [42] to assure the generalization capability of the models.

he other 10 TGs are used as new TGs to test the accuracy of the

L techniques. All the results shown in this Section are from the

est set.

Fig. 7 shows the result for a random TG three different TG

ets. The red circles are the Pareto front generated by GA. All

he points generated from Trace back step are marked with blue

olor, where the plus signs and square signs represent the result

ith m = 2 and m = 10 respectively. As can be seen, the Pareto

ronts generated by our framework are close to the ones from

A method. The figure also shows how the quality of our Pareto

ronts improve with the increase in m .

Since the most time consuming process in both GA and our

ramework is executing the Leakage-aware RSA to get the design

oint on objective space, we designed the experiments around

wo hyper-parameters: n-interval and m-potential candidates , which

irectly decide on the number of evaluation points in our frame-

ork. After varying the value of m and n , we quantify the quality

f the Pareto fronts using popular metrics in the MOA domain:

2-indicator (R2I) [43] and Hyper-volume indicator (HVI) [44] .

asically, the Hyper-volume indicators characterize the area in

bjective space covered by the Pareto front and a reference point

n the top-right corner. Therefore, bigger HVI usually indicates

etter quality of Pareto front. The R2-indicator is a widely used

etric to measure the difference between a targeted Pareto front

nd a base-line Pareto front. In our set up, the base-line is the

rigin of the objective space. It means Pareto front with smaller

he R2-indicator is closer to the origin and has better quality.

he quality degradation of the Pareto fronts generated by our

ramework when compared with GA’s Pareto fronts are measure

elatively by the Quality Trade-off (QT) in percentage of the GA’s

2-indicator and HVI. The measurements are averaged over all

he TGs of the test set and reported a long with the number of

valuations in Table 4 . As can be observed from both the Table

nd the Figure, the quality of our framework is approached to the

ne generated by the GA method when increasing the number of

valuations (by increasing m or n) and that is also the pay-off in

xecution time. However, to achieve the comparable quality to the

N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243 241

Table 4

Execution time and quality comparison.

Our approach GA

TGs m 5 10 5 5 5 10

n 10 10 20 40 80 50

Evaluations 50 100 200 200 400 500

R2I 0 .6966 0 .6974 0 .6924 0 .6946 0 .6845 0 .6412

Fat QT-R2 (%) 8 .64 8 .77 7 .98 8 .33 6 .76

HVI 4 ,651,619 4 ,597,379 4 ,672,818 4 ,625,446 4 ,747,431 5 ,101,319

QT-HV (%) 8 .82 9 .87 8 .4 9 .33 6 .94

R2I 0 .6866 0 .6827 0 .6777 0 .6719 0 .6719 0 .6235

Medium QT-R2 (%) 10 .13 9 .5 8 .69 7 .77 7 .77

HVI 3 ,839,951 3 ,668,927 3 ,890,741 3 ,887,740 3 ,887,740 4 ,089,676

QT-HV (%) 6 .11 10 .29 4 .86 4 .94 4 .94

R2I 0 .6822 0 .6726 0 .6822 0 .6735 0 .6739 0 .6278

Slim QT-R2 (%) 8 .67 7 .15 8 .67 7 .29 7 .35

HVI 4 ,213,634 4 ,371,432 4 ,213,634 4,335,209 4 ,324,271 4 ,411,757

QT-HV (%) 4 .49 0 .91 4 .49 1 .74 1 .98

r

n

1

t

h

a

7

p

p

a

s

a

F

A

i

(

t

T

t

h

a

c

m

t

a

t

R

[

[

[

[

[

[

[

[

[

[

esult from GA we need only a fraction of time. With m = 5 and

 = 10 , we can achieve 10x speed-up over the GA with around

0% deficiency in the quality of the Pareto front for all types of

ask graph. Such an achievement is due to the fact that all the

eavy computation is moved to the training phase and we take

dvantage of the ML models built upon the historical data.

. Conclusion

This work presents a multi-stage resource management ap-

roach with ML Optimization framework to tackle the leakage

ower problem in Partially Reconfigurable FPGAs. Our multi-stage

pproach employs leakage-aware priority function in scheduling

tage, leakage-performance trade-off function in placement stage

nd a heuristic in post-placement stage. Meanwhile, the ML

ramework uses Linear Regression and Density-based Clustering

lgorithm to estimate the Pareto front with only 10% degradation

n quality and 10 × faster compared with an well-established MOA

NSGM II). A series of experiments are performed to highlight

he advantages of the proposed approach over existing works.

he results demonstrate that the proposed approach dominates

he existing approaches when the application task graph contains

igher number of tasks. Additionally, experiments show that our

pproach can always achieve the smallest leakage waste as a

omprehensive strategy is adopted, whereas other single-stage

ethods may not achieve the same level of leakage saving. Fur-

hermore, through the GA integration and ML Framework, our

pproach also provides the flexibility to the designers to explore

he trade-off values between leakage saving and performance.

eferences

[1] I. Kuon , J. Rose , Measuring the gap between fpgas and asics, TCAD 26 (2007)
203–215 .

[2] M. Shafique , L. Bauer , J. Henkel , Remis: run-time energy minimization scheme
in a reconfigurable processor with dynamic power-gated instruction set, in:

ICCAD, 2009, pp. 55–62 .
[3] J. Kao , S. Narendra , A. Chandrakasan , Subthreshold leakage modeling and re-

duction techniques, in: ICCAD, 2002, pp. 141–148 .

[4] S. Hauck , Configuration prefetch for single context reconfigurable coprocessors,
in: FPGA, 1998, pp. 65–74 .

[5] T. Tuan , B. Lai , Leakage power analysis of a 90 nm fpga, in: CICC, 2003,
pp. 57–60 .

[6] P. Yuh , et al. , Leakage-aware task scheduling for partially dynamically recon-
figurable fpgas, TODAES 14 (2009) 52 .

[7] J. Hsieh , et al. , An enhanced leakage-aware scheduler for dynamically recon-
figurable fpgas, in: ASP-DAC, 2011, pp. 661–667 .

[8] B. Calhoun , F. Honore , A. Chandrakasan , Design methodology for fine-grained

leakage control in mtcmos, in: ISLPED, 2003, pp. 104–109 .
[9] A. Sathanur , B. Luca , M. Alberto , M. Enrico , P. Massimo , Row-based power-gat-

ing: a novel sleep transistor insertion methodology for leakage power opti-
mization in nanometer CMOS circuits, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 19 (3) (2011) 469–482 .
[10] A. Gayasen , et al. , Reducing leakage energy in fpgas using region-constrained

placement, in: FPGA, 2004, pp. 51–58 .
[11] F. Li , Y. Lin , L. He , Field programmability of supply voltages for fpga power

reduction, TCAD 26 (2007) 752–764 .
[12] L. Ciccarelli , A. Lodi , R. Canegallo , Low leakage circuit design for fpgas, in: CICC,

2004, pp. 715–718 .

[13] A. Calimera , et al. , Design techniques and architectures for low-leakage srams,
Circuits Syst. I: Regul. Pap. IEEE Trans. (2012) 1992–2007 .

[14] M. Hoyer , D. Helms , W. Nebel , Modelling the impact of high level leak-
age optimization techniques on the delay of rt-components, in: ICSD, 2007,

pp. 171–180 .
[15] A. Raghunathan , N.K. Jha , S. Dey , High-Level Power Analysis and Optimization,

1998 .

[16] R. Bharadwaj , et al. , Exploiting temporal idleness to reduce leakage power in
programmable architectures, in: ASP-DAC, 2005, pp. 651–656 .

[17] M. Zapater , et al. , Leakage and temperature aware server control for improving
energy efficiency in data centers, in: DATE, 2013, pp. 266–269 .

[18] A. Ahmadinia , C. Bobda , J. Teich , A dynamic scheduling and placement algo-
rithm for reconfigurable hardware, in: Organic and Pervasive Computing–ARCS

20 04, 20 04, pp. 443–465 .

[19] C. Steiger , H. Walder , M. Platzner , Heuristics for online scheduling real-time
tasks to partially reconfigurable devices, in: FPGA, 2003, pp. 575–584 .

20] S. Banerjee , E. Bozorgzadeh , N. Dutt , Physically-aware hw-sw partitioning for
reconfigurable architectures with partial dynamic reconfiguration, in: DAC,

2005, pp. 335–340 .
[21] F. Ferrandi , P.L. Lanzi , C. Pilato , D. Sciuto , A. Tumeo , Ant colony heuristic for

mapping and scheduling tasks and communications on heterogeneous embed-

ded systems, Comput.-Aided Des. Integr. CircuitsSyst. IEEE Trans. 29 (6) (2010)
911–924 .

22] M. Guzek , et al. , A survey of evolutionary computation for resource manage-
ment of processing in cloud computing [review article], Comput. Intell. Mag.

IEEE 10 (2) (2015) 53–67 .
23] S. Sutar , et al. , Task scheduling for multiprocessor systems using memetic al-

gorithms, in: 4th International Working Conference Performance Modeling and

Evaluation of Heterogeneous Networks, 2006 .
[24] G. Zarinzad , et al. , A novel intelligent algorithm for fault-tolerant task schedul-

ing in real-time multiprocessor systems, in: Convergence and Hybrid Informa-
tion Technology, 2, IEEE, 2008, pp. 816–821 .

25] A.K. Samal, et al., Fault tolerant scheduling of hard real-time tasks on multi-
processor system using a hybrid genetic algorithm, Swarm Evol. Comput. 14

(2014) 92–105, doi: 10.1016/j.swevo.2013.10.002 .
26] E. Hormozi, et al., Using of machine learning into cloud environment (a sur-

vey): managing and scheduling of resources in cloud systems, in: Proceedings

- 3PGCIC, 2012, pp. 363–368, doi: 10.1109/3PGCIC.2012.69 .
[27] J. Berral, et al., Toward energy-aware scheduling using machine learning, En-

ergy Effic. Distrib. Comput. Syst. (2012) 215–244, doi: 10.1002/9781118342015.
ch8 .

28] N.H. Kapadia , et al. , Predictive application-performance modeling in a compu-
tational grid environment, in: International Symposium on High Performance

Distributed Computing, IEEE, 1999, pp. 47–54 .

29] J.L. Berral, et al., Power-aware multi-data center management using machine
learning, in: ICPP, 2013, pp. 858–867, doi: 10.1109/ICPP.2013.102 .

30] H. Eom, et al., MALMOS: machine learning-based mobile offloading scheduler
with online training, in: International Conference on Mobile Cloud Computing,

Services, and Engineering, 2015, pp. 51–60, doi: 10.1109/MobileCloud.2015.19 .
[31] J. Perez , et al. , Utility-based reinforcement learning for reactive grids, in: Inter-

national Conference on Autonomic Computing, IEEE, 2008, pp. 205–206 .

32] A.K. Das , et al. , Reinforcement learning-based inter-and intra-application ther-
mal optimization for lifetime improvement of multicore systems, in: Design

Automation Conference, IEEE, 2014, pp. 1–6 .
[33] Xilinx, Partial Reconfiguration User Guide, Technical Report.

34] O. Sinnen , Task Scheduling for Parallel Systems, 60, 2007 .

http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0024
http://dx.doi.org/10.1016/j.swevo.2013.10.002
http://dx.doi.org/10.1109/3PGCIC.2012.69
http://dx.doi.org/10.1002/9781118342015.ch8
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0028
http://dx.doi.org/10.1109/ICPP.2013.102
http://dx.doi.org/10.1109/MobileCloud.2015.19
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0033

242 N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243

[

[35] Y.-K. Kwok , et al. , Benchmarking and comparison of the task graph scheduling
algorithms, J. Parallel Distrib. Comput. 59 (3) (1999) 381–422 .

[36] L. Song, Ngpm–a nsga-ii program in matlab, (2011).
[37] M. Ankerst , M.M. Breunig , H.-P. Kriegel , J. Sander , Optics: ordering points

to identify the clustering structure, in: ACM Sigmod Record, 28, ACM, 1999,
pp. 49–60 .

[38] R.P. Dick , et al. , Tgff: task graphs for free, in: Proceedings of the 6th Inter-
national Workshop on Hardware/Software Codesign, IEEE Computer Society,

1998, pp. 97–101 .

[39] P. Kumar , L. Thiele , Thermally optimal stop-go scheduling of task graphs with
real-time constraints, in: ASP-DAC, IEEE Press, 2011, pp. 123–128 .

[40] J. Cong , K. Gururaj , Energy efficient multiprocessor task scheduling under in-
put-dependent variation, in: DATE, 2009, pp. 411–416 .
[41] R Core Team , R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2015 .

[42] J. Friedman , et al. , The Elements of Statistical Learning, Springer series in
statistics, 1, Springer, Berlin, 2001 .

[43] D. Brockhoff, T. Wagner , H. Trautmann , On the properties of the r2 indicator,
in: Proceedings of the 14th Annual Conference on Genetic and Evolutionary

Computation, ACM, 2012, pp. 465–472 .
44] E. Zitzler , L. Thiele , Multiobjective optimization using evolutionary algorithm-

s—a comparative case study, in: Parallel Problem Solving from Nature—PPSN V,

Springer, 1998, pp. 292–301 .

http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0042
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0042
http://refhub.elsevier.com/S0141-9331(16)30232-0/sbref0042

N.K. Pham et al. / Microprocessors and Microsystems 47 (2016) 231–243 243

 State University of Technology, Russia, in 2012. Since then, he has been working toward

 Engineering, National University of Singapore. At the same time, he is a Research Scholar
scholarship. His research interests include mapping and scheduling for MPSoC, High Level

 in Resource Management for Embedded System.

eering from the National University of Singapore (NUS), Singapore, in 2002. He received

dded systems from NUS and the Eindhoven University of Technology (TUe), Eindhoven,
egree in electrical engineering in the area of embedded systems from TUe and NUS, in

 Center for Advancing Electronics Dresden, Technische Universität Dresden, Germany. His
anagement of low-power and fault tolerant embedded multiprocessor systems. He has

nic design automation journals and conferences on these topics. He is also a member of

 design automation area like, DAC, DATE, ASPDAC, etc.

nics Engineering from Indian Institute of Technology (Indian School of Mines), Dhanbad,

gies, India for year and half before starting his PhD at School of Computer Engineering,
08. He completed his PhD in 2012. He worked as a post-doctoral researcher at National

iversity of York, UK from 2014 to 2016. Currently, he is working as senior research fellow

include system level design-time and run-time optimizations of 2D and 3D multi-core

 and reliability. He has published over 45 papers in these areas in leading international
est Paper Award, PDP 2015 Best Paper Award, HiPEAC Paper Award, and GL SVL SI 2014

CM conferences like ISED, MES, NoCArc and ESTIMedia.

ngineering from Korea Aerospace University, in 2006. She is currently a Senior Scientist
ch interests include Data Security, Data Center and Network Storage Technologies.
Pham Khanh received the B.Tech. degree in South Russian

his Ph.D. degree at Department of Electrical and Computer
at Data Storage Institute, A ∗STAR, Singapore, under SINGA

Synthesis, Design Space Exploration and Machine Learning

Akash Kumar received the B.E. degree in computer engin

the joint Master of Technological Design degree in embe
The Netherlands, in 2004, and received the joint Ph.D. d

2009. He is currently the Chair for Processor Design at the
research interests include design, analysis and resource m

published over 100 papers in leading international electro

technical program committees of major conferences in the

Amit Kumar Singh received the B.Tech. degree in Electro

India, in 2006. Thereafter, he worked with HCL Technolo
Nanyang Technological University (NTU), Singapore, in 20

University of Singapore (NUS) from 2012 to 2014 and at Un
at University of Southampton, UK. His research interests

systems with focus on performance, energy, temperature,
journals/conferences. He was the receipt of ISORC 2016 B

Best Paper Candidate. He has served on the TPC of IEEE/A

Khin M. M. Aung received a Ph.D. degree of Computer E
with A ∗STAR, Data Storage Institute, Singapore. Her resear

	Leakage aware resource management approach with machine learning optimization framework for partially reconfigurable architectures
	1 Introduction
	2 Related work
	3 System model and problem definition
	4 Proposed leakage-aware resource management approach
	4.1 Scheduling stage
	4.2 Placement stage
	4.3 Post-placement heuristic

	5 Proposed ML optimization framework
	 Phase 1: Building the predictive models
	 Phase 2: Prediction at deployment time

	5.1 Phase 1: Building the predictive models
	5.1.1 Generating Pareto front with GA
	5.1.2 Build linear regression for Pareto’s range

	5.2 Phase 2: applying the ML models for prediction at deployment time

	6 Experimental results
	6.1 Performance of leakage-aware RSA
	6.1.1 Leakage waste and schedule length
	6.1.2 Post-placement leakage waste and algorithm runtime
	6.1.3 Case-study: real-life applications

	6.2 Performance of machine learning optimization framework

	7 Conclusion
	 References

