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Abstract—Homogeneous multiprocessor systems with recon-
figurable area (also known as Reconfigurable Multiprocessor
Systems) are emerging as a popular design choice in current and
future technology nodes to meet the heterogeneous computing
demand of a multitude of applications enabled on these platforms.
Application specific mapping decisions on such a platform involve
partitioning a given application into software tasks (executed
on one or more of the general purpose processors, GPPs) and
the hardware tasks (realized as dedicated hardware on the
reconfigurable area) to optimize and/or satisfy design constraints
such as reliability, performance and design cost. Improving the
reliability considering transient faults by increasing the number
of checkpoints negatively impacts the reliability considering per-
manent faults. This trade-off is ignored in all prior studies on task
mapping and scheduling. This paper proposes an optimization
technique to decide the optimal number of checkpoints for
the software tasks which minimizes aging of the GPPs while
maximizing the transient fault-tolerance of the overall platform
(GPPs and the reconfigurable area) and satisfying design cost and
performance. Experiments conducted with synthetic and real-life
application task graphs (cyclic and acyclic) demonstrate that the
proposed technique minimizes aging and improves the platform
lifetime by an average 60% as compared to the existing transient
fault-aware techniques. Further, a gradient-based heuristic is
proposed to minimize the design space exploration time by upto
500× with less than 5% deviation from optimal solution.

I. INTRODUCTION

Multiprocessor systems are becoming the obvious design
choice in current and future technology nodes [1] to accommo-
date the ever increasing demands of applications and to address
scalability. A growing trend in multiprocessor research is the
integration of reconfigurable area (such as field programmable
gate arrays, FPGAs and programmable logic devices, PLDs)
with general purpose processors (GPPs) and digital signal
processors (DSPs). Such architectures (commonly referred
to as reconfigurable multiprocessor systems) offer significant
power and performance benefits due to heterogeneity achieved
in executing an application. Although several variants of
reconfigurable architecture exist in literature, this research
considers multiprocessor system with homogeneous GPPs and
FPGA as shown in Figure 2. However, the techniques proposed
here are generic and applicable to other architectures.

Recently, significant research attention is directed to run-
time reconfigurable processors by implementing custom in-
structions [2], [3] or custom logic [4] on the reconfigurable
area. Application mapping decisions on a reconfigurable ar-
chitecture consist of hardware-software partitioning of the
application to decide on the tasks that need to be executed on
one or more GPPs and those that require dedicated hardware
realized on the reconfigurable area (RA). Prior research studies
on these architectures have mostly focused on improving
application performance measured as throughput or makespan
and/or minimizing the energy consumption of the platform
while satisfying the design cost and area requirements [5],

[6]. An area of growing concern in multiprocessor design
is concerning error free execution of an application on the
platform. Shrinking transistor geometries, growing transistor
density and aggressive voltage scaling is negatively impacting
the dependability of semiconductor devices by increasing the
probability of transient, intermittent and permanent faults [7],
[8]. The existing studies on reliability-aware application map-
ping suffer from the following limitations.

First of all, the existing checkpointing-based design method-
ologies consider transient faults in the GPPs alone. The
solutions from these approaches guarantee or maximize fault-
free task execution on the GPPs while exploiting the execution
slack arising from the hardware execution of certain tasks.
The area/performance penalty of adding redundant hardware
(duplicating/triplicating) for the reconfigurable area are not
accounted in these techniques. Further, the extent of fault-
tolerance achieved within an allocated reconfigurable area in
a co-design framework is not addressed. A complete solution
to fault-tolerance needs to incorporate the transient fault-
tolerance overhead for both the software and hardware tasks
while satisfying the design performance constraints and re-
configurable area availability. Secondly, none of the existing
hardware-software co-design techniques consider aging of the
GPPs and transient faults simultaneously in the application
task mapping and scheduling. As shown in Section III, im-
proving transient fault-tolerance by increasing the number of
checkpoints negatively impacts aging of the GPPs. A balance
of the two is essential to tolerate transient and permanent
faults jointly for multiprocessor systems. Finally, most mul-
timedia applications such as H.264 encoder/decoder, JPEG
decoder, etc. are characterized by cyclic dependency of tasks
and require a fixed throughput to be satisfied to guarantee
quality-of-service to end users. Existing fault-tolerant research
studies for reconfigurable multiprocessor systems are based on
acyclic graph modeling of applications with no consideration
of throughput degradation. These techniques require signifi-
cant modification (if not entirely in-applicable) for streaming
multimedia applications represented as cyclic graphs.

This paper presents a design-time technique to decide the
hardware/software partitioning of an application i.e. deciding
on the tasks to be executed on the GPPs and those on
reconfigurable area. The overall objective of the approach is to
improve fault-tolerance of the platform which considers three
effects – transient faults in the GPPs, single event upsets in
the logic configuration bits of the reconfigurable area and
the aging of the GPPs. The transient faults in the GPPs
are mitigated using checkpointing technique. Single event
upsets in the logic configuration bits of a reconfigurable area
(like Xiling FPGA) manifest as permanent faults and render
the affected logic useless, unless reprogrammed. The current
approach does not consider reprogramming the reconfigurable



area within an application execution and therefore redundancy-
based techniques such as duplication (for tasks requiring fault-
detection only) and triplications (tasks requiring correction)
are assumed for the single event upsets. The corresponding
area overhead is incorporated in the problem formulation.
Finally, aging of the GPPs is mitigated using intelligent task
mapping and scheduling.

Contributions: Following are the key contributions.
• Application task mapping and scheduling with joint con-

sideration of permanent and transient faults for reconfig-
urable multiprocessor systems.

• Formulation of aging of GPPs and checkpointing based
transient error recovery problem in the hardware-software
task partitioning framework with reconfigurable area as
a constraint.

• A gradient-based fast design space exploration for task
mapping considering aging and transient faults simulta-
neously.

• Use of cyclic and acyclic graphs for hardware-software
task partitioning.

The mapping flow proposed in this paper generates the fol-
lowing decisions for each application (represented as directed
graph) enabled on the reconfigurable multiprocessor platform.

1. Tasks to be mapped on GPPs (software tasks) and tasks to
be implemented on reconfigurable area (hardware tasks).

2. Number of checkpoints for each software tasks
3. Mapping and scheduling of software tasks to maximize

transient fault-tolerance while minimizing GPP aging.
These decisions are used at run-time as and when an

application is enabled. Experiments conducted on synthetic
and real-life applications represented as directed acyclic graphs
(DAGs) and synchronous data flow graphs (SDFGs) demon-
strate that the proposed methodology minimizes the aging of
GPPs by an average 60% for a low transient fault-tolerant
system and average 10% for high transient fault-tolerant
system. Further, the proposed gradient-based heuristic reduces
design space exploration time by upto 500× with less than
5% deviation from the optimal solution.

To the best of our knowledge, this is the first work on
hardware-software application task partitioning that considers
transient fault-tolerance of GPPs and reconfigurable area si-
multaneously with aging of GPPs.

The rest of this paper is organized as follows. A brief
introduction on the related research is provided in Section II
followed by mathematical foundation on transient and per-
manent fault-tolerance in Section III highlighting the trade-
off missing in earlier works. The reliability-aware hardware-
software co-design problem is formulated in Sections IV and
V. The mapping flow is introduced in Section VI and the
experimental results in Section VII. Finally, Section VIII
concludes this paper with discussion on future directions.

II. RELATED WORKS

Since its introduction, hardware-software co-design has
received significant attention among researchers starting from
the classical optimization metric such as performance, power
and cost to the recent ones such as reliability. Details of the
performance, cost and power driven co-design techniques is
beyond the scope of the current paper. Interested readers are
urged to refer to [9]. Some of the key studies on reliability-
aware co-design are presented here.

The first category of research studies is focused on ap-
plication mapping on static multiprocessor architectures with

GPPs only. An ant-colony optimization technique is proposed
in [10] to generate a task mapping on static multiprocessor
systems which satisfies the useful life requirement. This tech-
nique incorporates aging in the application mapping but is
limited to permanent faults only. A design optimization with
task duplication and processor hardening for intermittent and
transient faults is proposed in [11]. Aging of GPPs is not con-
sidered. A checkpointing-based technique is proposed in [12]
for transient fault-tolerance of hard/soft real-time tasks on a
static multiprocessor system. A genetic algorithm is proposed
in [13] to optimize for cost, time and dependability. Tasks are
replicated to improve transient fault-tolerance and task graphs
with replicated tasks are scheduled on a multiprocessor system.
A multi-objective evolutionary algorithm is proposed in [14]
to determine the mapping of tasks to processing elements
considering the occurrence of permanent and transient faults.
However, wear-outs of GPPs are not considered. A fault-
aware resource management is proposed in [15] to determine
spare core placement while dealing with transient, intermit-
tent and permanent faults explicitly incorporating processor
aging. A common limitation of these techniques is the non-
consideration of platform re-programmability and the associ-
ated reliability trade-offs in terms of aging and transient fault
tolerance. Further, throughput degradation is not considered.

The next class of research focuses on mapping of applica-
tions on GPPs with one or more custom modules. A system-
level synthesis flow is proposed in [16] to mitigate the impact
of transient faults. Fault management requirements (e.g. fault
detection/tolerance) of different tasks of an application are
incorporated in the task graph representation and a scheduling
technique is proposed to map the application graph on a
multiprocessor system (consisting of GPPs and/or dedicated
hardware modules) satisfying the performance requirement.
However, the proposed methodology does not consider con-
straints on the reconfigurable area availability and the cor-
responding fault-tolerance trade-off. Further, aging of GPPs
and the use of cyclic graphs are lacking. A multi-objective
evolutionary algorithm is proposed in [17] to jointly optimize
reliability, area and latency while deciding on application map-
ping on GPPs and custom modules. The proposed technique
optimizes for permanent faults on the processors only and
limited details are provided on the consideration of aging.
Moreover, this research considers static multiprocessor sys-
tems with no transient fault prevention. A hardware-software
co-design approach is presented in [18], [19]. Every task
of an application is specified by different implementation
alternatives such as GPP or ASIC. Each implementation differs
by area, cost and reliability values. Both these techniques
suffer from the four limitations discussed in Section I.

The third category of research is application mapping on
GPPs and FPGAs. In a recent study [20], fault-tolerance of
hardware-software hybrid tasks is proposed. Fault-tolerance
is incorporated as rollback and recovery for software tasks
(running on GPP) and triple modulo redundancy (TMR) for
hardware tasks. However, this technique is not focused on
hardware-software partitioning i.e. this technique is built on
the pre-computed decisions of tasks that need to be run on
GPPs and those requiring hardware implementation. Further,
aging of processors, transient and permanent fault-tolerance
trade-off and throughput degradation are not addressed. A
task partitioning technique is proposed in [21] to tolerate
transient faults in GPPs. This technique suffers from the same
limitations.

The last category of research is related to reliability-aware
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application mapping on FPGA-based systems [22]. Transient
faults are dominating threats for such system as GPPs are
incorporated as soft cores in the FPGA fabric and can be
easily reconfigured using spare lookup tables on the detection
of permanent faults. Thus, the impact of permanent faults (and
hence aging) is insignificant.

III. BACKGROUND ON RELIABILITY

Transient and/or permanent faults on a processor degrade
the reliability of an application/thread/task running on the
processor. Transient faults are single event upsets and the
impacted processor can be recovered, while permanent faults
are non-recoverable defects rendering a processor unusable.
One of the primary reasons for permanent faults is processor
aging. This section introduces the mathematical foundation to
model the trade-off involved in reliability of execution under
the impact of transient faults and aging.

A. Transient fault-tolerance
Transient faults have received significant attention in recent

years due to the growing rate at deep sub-micron nodes. Some
of the commonly used transient fault-tolerance technique are
Checkpointing [12], [23]–[25], Rollback-Recovery [27] and
Duplication with Comparison and Re-execution. For the cur-
rent analysis, checkpointing based technique is assumed.

Checkpoint refers to the state of the system at a particular
instance of time. The process of checkpointing involves peri-
odically storing the checkpoint (in local or remote memory)
during the execution of a task. In the event of a transient fault,
execution is continued from the last valid checkpoint. One
important parameter of checkpointing is checkpoint overhead
which is defined as the increase in the execution time. This
overhead is dependent on

1. number of checkpoints, N
2. time for checkpoint capture and storage, To
3. time for recovery from a checkpoint, Tr
4. fault arrival rate, λ
Following are the assumptions regarding checkpointing-

based transient fault-tolerance similar to the works in [12]–
[14], [17], [23].
• Transient faults follow Poisson distribution with a rate of
λ failures per unit time.

• Transient faults are point failures i.e. these faults induce
an error in the system and disappear.

• The probability of multiple transient faults in each check-
point segment is negligible.

• Checkpoints can be inserted anywhere in the execution
time. This assumption although difficult to accomplish in
practice, gives a first order approximation on the problem
at hand.

Figure 1 shows an example task execution with N check-
points. Let T denote the total execution time of the task and
Tc, the execution time of the task in each checkpoint segment.
Clearly, Tc = T

N+1 . The probability of atleast one fault in
inter checkpoint interval (Tc + To) is Pe = 1 − e−λ(Tc+To).
Assuming fault arrival follows Poisson process, the probability

of more than one fault in the inter checkpoint interval is
negligible as λTc � 1. Using first order approximation, the
expected length of checkpoint segment E[Tc] is calculated as
E[Tc] = P{no error in segment} ∗ normal checkpoint interval +

P{error in segment} ∗ modified checkpoint interval (1)

When there are no errors in checkpoint segment, the check-
point interval (normal) is Tc + To where To is the time for
checkpoint computation and storage (refer Figure 1). Let τ
denote the time of the first fault from the start of a checkpoint
segment. Since a fault can occur at any time in the checkpoint
segment, τ is uniform random variable in the range 0 to Tc+To
with an average value of Tc+To

2 . Hence, under the assumption
of single failure, modified checkpoint interval is given by

modified checkpoint interval = τ + Tr + (Tc + To) (2)

where the first component is the time lost since the fault
occurrence, the second component is the time for recovery
from the last valid checkpoint and the last component is the
re-execution time of the checkpoint segment starting from the
last valid checkpoint. The recovery time includes the overhead
for fetching the checkpoint from the local/remote memory and
applying to the processor. Thus, Equation 1 can be written as

E[Tc] = (1− Pe) ∗ (Tc + To) + Pe ∗ (τ + Tr + Tc + To)

= (Tc + To)e
−λ(Tc+To) + (3)(

3(Tc + To)

2
+ Tr

)(
1− e−λ(Tc+To)

)
=

3(Tc + To)

2
+ Tr −

(
Tc + To + 2Tr

2

)
e−λ(Tc+To)

The expected length of the last checkpoint segment (E[TLc ])
is computed from Equation 3 by replacing (Tc +To) with Tc.
This is because there is no checkpointing overhead for the last
segment. The expected execution time of the task is given by

E[T ] = N ∗ E[Tc] + E[TLc ] (4)

Reliability of a task with checkpointing-based fault-
tolerance increases with an increase in the number of check-
points upto a saturation point, beyond which the reliability
drops-off [24], [25]. This point of negative returns (in terms
of reliability of checkpointing) is dependent on the workload
execution time and the checkpointing overhead (To). All
discussions in this paper are limited to the region where
reliability improves with checkpoints. The reliability of a task
i (in this region) with checkpointing is given by

Ri(t) = (1− Pe)N+1 +
(N + 1

1

)
Pe(1− Pe)N+1 (5)

+
(N + 2

2

)
P 2
e (1− Pe)N+1 + · · ·

where the first term on the right hand side is the reliability
with no faults; the second term is the reliability with one
transient fault in any of the N+1 checkpoint segment; the third
term is the reliability with two faults in N+2 segments (N+1
original segments and 1 re-execution segment of the segment
where the first fault occurs) and so on. Assuming infinite faults
in the task execution, the above expression reduces to1

Ri(t) =
∞∑
ω=0

(N + ω

ω

)
Pωe (1− Pe)N+1 = 1 (6)

1Proof ommitted for space limitation.
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Fig. 2. Architecture and application model (DAG)

This is intuitive because if segment re-execution is allowed
every time a fault is detected, the task will eventually be
executed successfully. However, for real time systems with
task deadlines, infinite faults will lead to deadline violation.
Therefore, for real time systems, the sum in Equation 6 is
evaluated till ζi, where ζi is the maximum number of faults
for the task i such that its deadline is satisfied. The reliability
of task i is

Ri(t) =

ζi∑
ω=0

(N + ω

ω

)
Pωe (1− Pe)N+1 (7)

For an application consisting of multiple interconnected
tasks, the overall reliability and the mean time between failures
(MTBF) are given by

R(t) =

Na∏
i=1

Ri(t)

MTBF =

∫ ∞
t=0

R(t)dt (8)

where Na is the number of tasks and Ri(t) is the reliability
of task i. The above equation is derived based on the assump-
tion that transient fault occurrences are independent of each
other and an application is successful when all tasks of the
application executes successfully.

B. Permanent fault-tolerance

There are four dominant wear-out effects for ICs: electromi-
gration (EM), time-dependent dielectric breakdown (TDDB),
stress migration (SM) and thermal cycling (TC). For the
current research, EM related wear-out failures are assumed,
however, any other effects can be easily incorporated either
standalone or using Sum-of-Failure Rate (SOFR) model for
any combination of the above failure effects. The lifetime
reliability of a processor at the end of the first period of
an application graph is calculated according to the following
equations (ref. [28]–[30]).

R(tp) = e−(A)β where
tp = period of the application

A = Aging effect of processor =
∑ ∆ti

α(Ti)
(9)

∆ti = time intervals within period tp

α(Ti) =
A0(J − Jcrit)−ne

Ea
KTi

Γ
(

1 + 1
β

)
where β is the slope parameter of the Weibull distribution.

The reliability after m periods of the application graph and
the closed form expression for the mean time to permanent
fault (MTTF) are given by the following equations.
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Fig. 3. Trade-off

R(tmp) = e−(m×A)β (10)

MTTF =
∞∑
i=0

e−(i×A)β × tp (11)

For the remainder of the paper MTBF is used to denote
mean time between transient faults and MTTF or lifetime is
used to denote the mean time to permanent faults.

C. Transient and permanent fault-tolerance trade-off
Figure 3 (a) plots the expected execution time of a task as

the number of checkpoints are increased. The expected execu-
tion time is computed according to Equation 4. The parameters
used for simulation are execution time with no-checkpoints,
T = 150nS, the checkpoint computation and storage overhead
To = 15nS, the recovery time Tr = 0.5nS and fault rate
λ = 10−6 i.e. one fault every 106 seconds. As can be seen
from the figure, the expected execution time increases with an
increase in the number of checkpoints. Figure 3 (b) plots the
reliability trade-off as the number of checkpoints is increased.
The reliability considering transient faults (shown in the figure
by blue dotted line) increases with an increase in the number of
checkpoints. This is in line with that predicted by Equation 7.
On the other hand, the reliability considering permanent faults
(shown by green solid line) decreases due to an increase in
the expected execution time (Figure 3 (a)) which increases
processor aging (ref. Equation 9). Analysis are also conducted
on multitask applications and a similar trend is observed. The
results for the same are omitted here for space limitation.

IV. PROBLEM FORMULATION FOR DAGS

A. Architecture model
Figure 2 (a) represents an architecture model assumed for

this research. The architecture consists of Np homogeneous
processors connected to a shared reconfigurable area. The pro-
cessor cores have private L1 data and instruction caches while
the L2 cache is shared among all the cores. The reconfigurable
area assumed in this work is a one dimensional (1D) model
and is divided into Nc equal sized columns. A column is a
basic unit for reconfiguration (e.g. Xilinx Virtex 6 FPGA). The
architecture is represented as Garc = (Varc, Earc), where Varc
is the set of processors 〈p1, p2, · · · pNp〉 and Earc is the set of
links connecting the processors. Thus, Np = |Varc|. For the
ease of problem formulation, the reconfigurable area is con-
sidered as a virtual processor (different from the homogeneous
ones) and is indexed by the subscript Np + 1. The following
restrictions/relaxations apply for the virtual processor pNp+1.



1. Tasks mapped to this processor have associated area cost.
This is because a task mapped on the virtual processor
implies dedicated hardware for the task (in reality) which
consumes few columns of the reconfigurable area.

2. Multiple tasks can be executed at the same time on the
virtual processor. This is because, one or more hardware
tasks implemented on the different regions of the recon-
figurable area can run independently.

3. Execution time of a task on the virtual processor is
usually less than the execution time of the task on a GPP

4. A task mapped on the virtual processor does not need
software-based protection technique such as check point-
ing/rollback and replication. Instead, the protection is
provided by replicating the hardware implementation.

B. Application model
Figure 2 (b) plots the application model represented as

directed acyclic graphs (DAGs). Later in Section V, model
for cyclic graphs is presented. Mathematically, an application
DAG is represented as Gapp = (Vapp, Eapp), where Vapp is the
set of nodes representing tasks of the application and Eapp is
the set of directed edges representing data dependency among
various tasks. Let Na (= |Vapp|) denote the number of tasks
and L the set of leaf nodes for the application.

Every task vi ∈ Vapp is a tuple 〈ai, ni, Ti〉, where ai is
the area required to implement vi on the reconfigurable area
and ni is the time taken by vi to execute on the dedicated
hardware. If a task does not support hardware implementation,
the value of these parameters are set to infinite. The overhead
for hardware-based transient fault-tolerance for the task is
incorporated into ai. For tasks requiring fault-detection only,
ai is the area of duplicating the logic in hardware and the area
of a checker circuit. For those tasks requiring fault-mitigation,
ai includes the area for triple-modulo redundancy (TMR) and
the voter circuit. Ti is the set of execution time of vi with
different number of checkpoints. Specifically, ti,f ∈ Ti is the
expected execution time with f checkpoints.

C. Mapping representation
The mapping of Gapp on Garc is an Na× (Np + 1) matrix

given by

M = 〈m〉 =


m1,1 m1,2 · · · m1,(Np+1)

m2,1 m2,2 · · · m2,(Np+1)

...
...

. . .
...

mNa,1 mNa,2 · · · mNa,(Np+1)


where the binary variable mi,j is given by

mi,k =

{
1 if task vi is mapped on processor pk
0 otherwise (12)

A task is mapped to a single processor only. Therefore

∀i ∈ [1, 2, · · ·Na],

Np+1∑
k=1

mi,k = 1 (13)

D. Variables for problem formulation
Following variables are defined for ease of problem formu-

lation.

xi,k,f =

{
1 if task vi is mapped on processor pk with f checkpoints
0 otherwise

di,j,k =

{
1 task vi and vj are mapped on processor pk

and vi starts execution before vj
0 otherwise

si = start time of task vi
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A task can have only a fixed number of checkpoints i.e.

∀i, k
∑
f

xi,k,f = 1 (14)

The variable x is related to m according to

mi,k =
∑
f

xi,k,f (15)

E. Constraints of the problem formulation
1. Every task must be assigned to a single processor with a

single fault-tolerant technique. Combining Equations 13,
14 and 15,

∀i ∈ [1, 2, · · ·Na],

Np+1∑
k=1

∑
f

xi,k,f = 1 (16)

2. Finish time of the leaf tasks is less than the application
deadline (D).
∀vi ∈ L, pk ∈ Varc, si + et(i, k, f) ≤ D+ (1− xi,k,f )W (17)
where W is a very large number and et(i, k, f) is given

by

et(i, k, f) =

{
ti,f for 1 ≤ k ≤ Np
ni for k = Np + 1 (18)

3. All tasks must satisfy the dependency constraints.
∀(i, j) ∈ Eapp, ∀k, si + et(i, k, f) ≤ sj + (1− xi,k,f )W (19)

4. Independent tasks mapped on the same processor (exclud-
ing the virtual one) must not be executed simultaneously.

∀(i, j) /∈ Eapp, ∀k ∈ [1, 2, · · · , Np], ∀f, f ′

si + et(i, k, f) ≤ sj + (3− xi,k,f − xj,k,f ′ − di,j,k)W (20)

sj + et(j, k, f ′) ≤ si + (2− xi,k,f − xj,k,f ′ + di,j,k)W

where the first equation constraint the starting time of vi
before vj and the second one with vj before vi.

5. Area consumed by tasks mapped to virtual processor
should satisfy the reconfigurable area constraint.∑

i

ai × xi,Np+1,f ≤ RA (21)

where RA is the total columns of the reconfigurable area.

F. Objective function
The objective of the optimization problem is to determine

the number of checkpoints for each task which is balanced
in terms of transient and permanent fault-tolerance. A cost
function is defined

MTTFJ = a×MTTFP + b×MTBFT (22)

where MTTFP and MTTFT are the MTTF due to perma-
nent and transient fault-tolerance respectively, a and b are two
user-defined weights assigned to these metrics respectively.
Clearly, setting a = 0, optimizes for transient fault-tolerance
only, setting b = 0 optimizes for permanent fault-tolerance.



V. PROBLEM FORMULATION FOR SDFGS

Synchronous Data Flow Graphs (SDFGs, see [31]) are often
used for modeling modern DSP applications and for designing
concurrent multimedia applications implemented on a multi-
processor system-on-chip. The nodes of an SDFG are called
actors; they represent functions that are computed by reading
tokens (data items) from their input ports and writing the
results of the computation as tokens on the output ports. The
number of tokens produced or consumed in one execution of
an actor is called port rate, and remains constant. The rates are
visualized as port annotations. Actor execution is also called
firing, and requires a fixed amount of time, denoted with a
number in the actors. The edges in the graph, called channels,
represent data communicated from one actor to another.

Figure 4 shows the SDF Graph of H.263 encoder. There
are eight actors in this graph. In the example, actor
motion estimation has an input rate of 1 and output rate
of 99. An actor is called ready when it has sufficient input
tokens on all its input edges and sufficient buffer space on
all its output channels; an actor can only fire when it is
ready. The edges may also contain initial tokens, indicated
by bullets on the edges, as seen on the edge from actor
motion compensation to motion estimation in Figure 4. A
set Ports of ports is assumed, and with each port p ∈ Ports
a finite rate Rate(p) ∈ N \ {0} is associated.

A. Changed variable definitions and additional constraints

Let Gapp = (Vapp, Eapp) represent an application SDFG
with Vapp actors and Eapp edges. The following are defined.

sik,u = start time of uth iteration of actor i on core k

duvij,k =


1 task i and j are mapped on core k

and uth iteration of i starts execution before
vth iteration of j

0 otherwise

• Actor iteration assignment (all iterations of an actor must
be assigned to the same core)

∀i, j :

r(i)∑
u=1

xik,u = 0 or r(i) (23)

where r(i) is the repetition vector of task i.
• Auto-concurrency of actors (multiple iterations of an

actor are not enabled simultaneously)
∀i, k and 2 ≤ u ≤ r(i) : sik,u ≥ sik,u−1 + et(i) (24)

• Data-dependency of actors (uth iteration of task i can
start only after its parent task finishes)

∀k, l ∈ P and ∀(j, i) ∈ E : sik,u ≥ ejl,m (25)

where m is defined as follows

m = b
kp

q
+ init(i, j)c

p = tokens produced by actor i on edge (i, j)

q = tokens consumed by actor j from edge (i, j)

init(i, j) = initial token on edge (i, j)

B. Objective function

The objective function is same as that for the acyclic graph
derived in Section IV.

Algorithm 1 GDSE(): Gradient based mapping generation
Input: Gapp, # of processors (N), RA
Output: Mapping of Gapp on N processors, MN

1: Initialize HList = ∅
2: while

∑
∀vk∈HList ak ≤ RA do

3: for all vi ∈ Vapp \HList do
4: HList.push(vi)
5: [M Πi

T ] = SGen(Vapp, N,HList)
6: HList.pop(vi)
7: end for
8: Find vj ∈ Vapp \HList such that Πj

T is maximum
9: HList.push(vj)

10: end while
11: [MN ΠT ] = SGen(Vapp, N,HList)

VI. APPLICATION MAPPING FLOW

The objective function for the joint optimization is non-
linear and therefore the execution time increases exponentially
with an increase in the number of tasks and/or processors. A
gradient-based design space exploration (GDSE) technique
is proposed to reduce the exploration time. A joint metric
(Reliability Gradient, RG) is defined as follows.

RG =
∆RP (t)

∆RT (t)
(26)

where RP (t) and RT (t) are the reliability due to permanent
faults (aging) and transient faults respectively. The reliability
gradient is interpreted as ratio of the change (decrease) in
reliability due to permanent faults per unit change (increase)
in reliability due to transient faults. The objective of the
GDSE is to minimize the reliability gradient. This is shown
as pseudo-code in Algorithm 1.

A list (HList) is defined to store the list of tasks which
are mapped on the reconfigurable area i.e. tasks which are
implemented as hardware logic (these tasks are referred as
hard tasks). The algorithm iterates (lines 2-10) as long as the
available reconfigurable area constraint is satisfied (line 2). In
every iteration, the algorithm selects one of the tasks from the
set Vapp \ HList (i.e. selects one of those tasks which are
not marked as hard tasks) and assigns it to the reconfigurable
area (line 4). The mean time between transient failures for this
assignment is determined (line 5). The one assignment with the
highest mean time between transient failures is selected and
permanently marked as hard task and pushed in the HList
(line 9). An important component of this algorithm is the
generation of a mapping (and schedule) along with the mean
time between transient failures. This is performed in the SGen
subroutine whose pseudo-code is shown in Algorithm 2.

The first step of Algorithm 2 is the generation of an
initial mapping (line 1). The choice of initial mapping is
crucial in determining the overall quality of the proposed
GDSE algorithm. For this work, the task mapping with
the highest mean time to permanent fault is selected. This
choice is justified in Section VII. The algorithm continues to
remap each task to a processor with different checkpoints to
determine the reliability gradient (lines 5-10). If the reliability
gradient obtained for an assignment is lower than the best
value obtained thus far, the best values are updated (lines
11-13). After iterating for all tasks, the mapping is changed
with the best value of task, processor and checkpoints. This
process is continued (starting with this changed mapping) as
long as no further remapping is possible without violating
the performance requirement. When this happens, the best



Algorithm 2 SGen(): Gradient-Based Task Re-Mapping
Input: Vapp, N, HList
Output: Mapping, M and mean time between transient faults,

ΠT

1: M̂ = 〈m̂〉 = initial mapping; xi,k,0 = m̂i,k, ∀i, k
2: ∀vj ∈ HList, mj,Np+1 = 1; runIter = 1
3: while runIter > 0 do
4: tb = 0; pb = 0; fb = 0; rb =∞
5: for all vi ∈ Vapp \HList do
6: for k = 1 to Np do
7: for f = 1 to Nf do
8: M = M̂ ; Determine 〈x〉 from 〈m〉
9: xi,k,f = 1

10: s = SCE(Gapp, 〈x〉); r = calcRG(s, rb)
11: if r < rb then
12: pb = Vapp(i); tb = k; fb = f ; rb = r
13: end if
14: xi,k,f = 0
15: end for
16: end for
17: end for
18: if tb > 0 then
19: Change mapping M̂ with task tb assigned to proces-

sor pb with fb checkpoints
20: else
21: runIter = 0
22: end if
23: end while
24: M = M̂ ; ΠT = calcMTBF (M̂)

value of task, processor and checkpoints are all empty. The
algorithm proceeds to the else section (lines 20-22) where the
terminating condition is asserted. Finally, the new mapping is
returned together with the mean time between transient faults
which is calculated in the calcMTBF routine. The SCE()
subroutine computes the schedule for a given mapping and
implements the performance requirement. This is the same as
the scheduling technique proposed in [32] for DAG and SDFG.

There are two points to note from these two algorithms. First
of all, for multiprocessor systems with no reconfigurable area,
it is sufficient to execute SGen only with HList = ∅. Thus,
the technique proposed here is generic and can be applicable
to both static and reconfigurable multiprocessor architecture.
Secondly, the schedule of actors (or tasks) on a processor for
SDFG may consist of multiple firings of mapped actors. If
the actor firing orders at run-time differ from those at design-
time, the throughput obtained at run-time can be significantly
different than those analyzed/guaranteed from design-time.
Thus, the analyzed schedule needs to be stored and used
at run-time. However, multiple such schedules are required
based on the availability of GPPs (due to multiple applications
running concurrently) and the reconfigurable area size. This
poses significant storage overhead. Further, constructing a new
schedule at run-time which guarantees throughput requirement
can lead to deadline misses for large number of tasks and/or
processors. This makes the existing techniques for reliability-
aware hardware-software task partitioning infeasible especially
for SDFGs. The self-timed execution based scheduling pro-
posed in [32] solves both problems by generating a master
schedule at design-time which can be reused at run-time.

VII. RESULTS

Experiments are conducted on a quad-core Intel Xeon
2.4GHz server running Linux with fifty synthetic application
task graphs generated using TGFF tool [33]. The number of
tasks range from 4 to 32 and the targeted MPSoCs consist of
2 to 8 homogeneous cores with 100 columns of reconfigurable
area. Additionally, a set of real-life applications are considered
both from streaming and non-streaming domain [34] [35]. The
following parameters are used for computing MTTF [28]–
[30]: current density J = 1.5× 106A/cm2, activation energy
Ea = 0.48eV , slope parameter β = 2 and n = 1.1. The scale
parameter of each core is normalized so that its MTTF is 10
years for the characterization temperature of 300K.

A. Algorithm complexity
The complexity of Algorithm 1 is computed as follows. Let

η be the average number of tasks that can be accommodated in
the given reconfigurable area constraint. There are therefore η
iterations of the outer while loop (lines 2-10). At each iteration,
lines 4-6 are executed for all tasks in Vapp \HList. This can
be upper bounded by Na, the total number of tasks in the
application graph. Line 8 finds the minimum from a list of
Na elements. Assuming the complexity of push and pop from
a list as constant, the complexity of Algorithm 1 is given by

C1 = η × (Na ×O(SGen) +Na) +O(SGen) (27)

where O(SGen) = C2 is the complexity of the SGen
routine. This complexity is computed as follows. The SCE
engine computes the schedule starting from a given mapping.
This can be performed in O (Na logNa +Na ∗£) (ref. [32])
where £ is the average number of successors of a task.
The reliability gradient can be computed in O (Na +Np).
Assuming the outer while loop executes for χ times on
average, the complexity of Algorithm 2 is

C2 = χNaNpNf (O(SCE) +O(calcRG))

= χNaNpNf (Na logNa +Na ∗£ +Na +Np)

= O
(
χN2

aNpNf (logNa + £) + χNaN
2
pNf

)
(28)

Combining Equations 27 and 28, the overall complexity of
Algorithm 1 is given by

C1 = O (η ×Na × C2)

= O
(
χηN2

aNpNf (Na logNa +Na£ +Np)
)

(29)

B. Transient and permanent fault reliability trade-offs
Figure 5 plots the mean time to permanent failures and

mean time between transient failures for different design
solutions (application mapping) obtained from the proposed
design space exploration for H.263 Decoder application. The
transient fault rate assumed for this work is 300 faults every
106 sec [36]–[38]. The mean time to failure requirements for
both faults are shown in the figure by solid lines.

Point A in this figure corresponds to task mapping obtained
using the permanent fault preventive technique of [10] incorpo-
rating transient fault-tolerance in the form of task duplication.
As can be seen, the permanent fault aware task mapping leads
to a low transient fault reliability (no checkpoints) implying
a low mean time between transient faults. On the other hand,
the transient fault aware solution from [12] selects point B
in the figure. Although mapping corresponding to point B
satisfies the performance requirement (throughput/makespan),
the platform lifetime resulting from same mapping is lower,
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leading to violation of mean time to permanent faults require-
ment. The proposed GDSE selects the point marked C in the
figure. This mapping satisfies the permanent and transient fault
requirements and results in minimum reliability gradient i.e.
the minimum degradation of reliability considering permanent
faults for a maximum increase in the reliability considering
transient faults. Further, this mapping improves the mean time
to permanent faults by more than 100% (2x improvements)
and satisfies the mean time to failure requirement for both
transient and permanent faults. Although not shown explicitly,
this trend is observed for 90% (45 out of 50) applications
considered. For two of the remaining five applications, the
mapping corresponding to points B and C both violate useful
life requirement while satisfying the mean time between tran-
sient fault requirements. For the three remaining applications,
the points B and C both satisfy the mean time to transient
and permanent fault requirement. The important conclusion
to draw from this figure is that if aging is not considered
to determine the number of checkpoints for transient fault
tolerance, some processors can age faster than others leading
to a significant reduction in platform lifetime.
C. Mean time to permanent fault performance

Figure 6 plots the mean time to permanent faults of ten
(out of fifty considered) different applications for two of the
existing category of research in comparison to the proposed
solution. The permanent fault preventive technique of [29]
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Fig. 7. Normalized mean time to permanent fault with varying transient
fault-tolerance constraint

and the transient fault preventive technique of [12] are used
for comparison. The transient fault tolerance requirement for
the application is set as at most one fault every ten hours of
execution and the fault arrival rate is set to one fault every two
hours. The platform lifetime requirement is set as 3 years and
is shown as the dark solid line. There are five synthetic and five
real-life applications considered. The synthetic applications are
labeled as synth(n) where n denotes the number of tasks of
the application; the five real life applications are fft, H.263
Encoder, MPEG, Romberg Integration and Sample Rate Con-
verter. These ten applications are executed on a homogeneous
multiprocessor systems consisting of four cores with a fixed
reconfigurable area of 100 columns.

There are a few trends to observe from this figure. First of
all, both the proposed and the transient fault-tolerant technique
lead to a reduction in mean time to failure (permanent) as
compared to the permanent fault preventive technique. This is
expected due to the conflicting nature of the two fault types as
established in Section III. Secondly, for applications synth(20),
synth(24) and mpeg, both the proposed and the transient fault
aware techniques satisfy the useful life requirement whereas
for the remaining eight applications, the transient technique
violates the useful life requirement. It is important to note
that for the synthetic application synth(12) both the proposed
and the existing technique violate the useful life requirement.
However, the lifetime from the proposed technique is 41%
better than the existing technique. Thirdly, the mean time to
failure obtained using the proposed technique is higher than
the transient technique by 20% to 228% for all applications
considered with an average improvement of 60%. Finally,
the lifetime of the proposed technique is within an average
15% of the maximum lifetime obtained using the permanent
fault aware technique. For some of the applications such as
romberg integration, the proposed and the permanent fault
aware mapping technique yield similar result. Another impor-
tant point to note for this application is that, the lifetime using
the proposed technique is 228% better than the transient fault
tolerant technique. There are two factors contributing to this
effect. First of all, the transient fault-tolerant technique selects
a higher number of checkpoints which results in an increase in
the expected length of each task of the application. Secondly,
the aging unaware mapping obtained from this technique
consists of more cycles where all the processors of the system
are operational resulting in an increase in temperature. Both
these factors negatively impact processor aging.
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D. Permanent fault-tolerance with varying constraint for tran-
sient fault-tolerance

Figure 7 plots the normalized mean time to permanent
faults obtained using the proposed technique with varying
transient fault-tolerance constraint for all the ten applications
considered. The mean time to permanent fault obtained using
the proposed technique is normalized with respect to that
obtained using the transient fault-tolerant technique. The tran-
sient fault tolerance constraint is measured as the mean time
between two transient faults and is varied from 1 fault every
10 hours to 1 fault every 100 hours. This range represents the
varying reliability requirement of safety and non-safety critical
applications. The trend to observe from these figures is that as
the transient fault tolerance becomes more and more stringent
(higher fault tolerance constraint), the normalized mean time
to permanent fault drops. This is expected due to conflicting
nature of the requirement for permanent and transient faults.
For critical applications where high reliability is desired (e.g.
1 fault in every 100 hours of operation), the mean time to
permanent fault obtained using the proposed technique is close
to that obtained using the transient fault-tolerant technique.
For some of the applications such as synth(12), synth(16),
synth(24) and src the proposed and the existing technique
yields similar result in terms of mean time to permanent
faults. For all the remaining six applications, the proposed
technique performs better. On average for all fifty applications
considered, the proposed technique outperforms (in terms of
platform lifetime) the existing technique by 10% even at a high
transient fault rate requirement of 1 fault every 100 hours.
On the other end, for less reliability requirement of 1 fault
every 10 hours, the proposed technique provides an average
60% lifetime improvement. These results clearly suggest the
importance of considering processor aging in the checkpoint
selection for transient fault-tolerance.

E. Reliability and reconfigurable area trade-off
Figure 8 plots the normalized mean time to permanent

fault of the ten previous applications as the size of the
reconfigurable area is increased. The mean time to perma-
nent fault obtained using the proposed GDSE algorithm for
an application with reconfigurable area is normalized with
respect to the mean time to permanent fault obtained when
no reconfigurable area is available in the system. As can be
seen from the figure, the mean time to failure or in other
words the system reliability improves with increase in the
size of reconfigurable area. This is expected as higher the

TABLE I
EXECUTION TIME (IN SEC) OF THE PROPOSED GDSE

Tasks RA size = 100 RA size = 300
cores = 2 cores = 4 cores = 6 cores = 8 cores = 2 cores = 4 cores = 6 cores = 8

8 50 75 100 125 90 145 150 160
16 150 670 720 775 500 1,140 2,140 3,000
24 785 1,860 3,300 5,575 2,580 7,100 12,150 13,560
32 1,140 3,020 5,130 6,790 2,850 7,500 12,700 14,180

availability of reconfigurable area, more the number of tasks
that can be mapped to the same with an overall reduction
of time spent on the GPPs. This has positive impact on the
temperature and hence on reliability. The second point to note
from the figure is that the improvement saturates beyond a
certain size. This is due to the limited lifetime improvement
possible after remapping most of the tasks of an application.
For some of the applications such as src and h263enc, the
saturation point is at lower size of reconfigurable area. These
applications are marked in the figure by black solid lines. For
other applications, the saturation point is beyond 500 columns.
The third key point is that for some of the applications such
as synth(16), synth(20) and fft, the improvement of lifetime
is less upto a reconfigurable area size of 300 columns. The
improvement is observed as the reconfigurable area size is
increased beyond 300 columns. For other applications such as
synth(8), synth(12) and src, lifetime improvement is possible
even with small reconfigurable area. The important conclusion
to derive from these results is that different applications
exhibit different trade-off with respect to reconfigurable area
and lifetime performance. It is essential to characterize each
application during design phase to explore such trade-off.
Such knowledge can be applied at run-time during application
mapping and reconfigurable area distribution among multiple
simultaneous applications. As an example, if the reconfig-
urable area available at a given time during operation is 100
columns and application fft and src needs to be mapped, it is
better to reserve the reconfigurable area for src which provides
significant improvement to lifetime than fft.

F. Execution time performance

Table I reports the execution time of the proposed GDSE
algorithm as the number of tasks and processors are scaled
for reconfigurable area of 100 and 300 columns. As can be
seen, the execution time increases with increase in the number
of tasks and processors. However, the time growth can be
accommodated as the analysis are performed at design time.
Moreover, with increase in the size of the reconfigurable area,
the run-time also increases. Here, two factors are coming into
effect. First of all, with increase in the reconfigurable area size,
the number of iterations of the outer while loop (lines 2-10) of
Algorithm 1 increases. However at each iteration, the number
of tasks to be analyzed i.e. the iterations of Algorithm 2
reduces as more and more tasks are marked as hard tasks.

A point to note is that the optimization problem formulated
in Sections IV and V can be solved using standard solver
e.g. CPLEX. However, the execution time grows exponentially
with the number of tasks and processors. The solver fails to
provide results beyond 8 tasks mapped on 6 processors even
after running for more than five hours. For applications for
which the optimization terminates within the given time frame
of five hours, the proposed GDSE algorithm provides upto
500× reduction in execution time (average of 200× for all
applications considered).
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G. Distance from optimality
For determining the closeness of the proposed technique to

the optimal solution, execution time is restricted to five hours.
A separate set of fifty synthetic applications are generated
with the number of tasks varying from four to eight (so that
the solver terminates within five hours). The mean time to
permanent fault obtained using the proposed GDSE algorithm
is compared with that obtained from the solver. Figure 9
plots the distance (measured as percentage deviation) of the
proposed algorithm from the optimal solution. As can be seen,
only thirteen out of fifty applications deviate from optimality
with the maximum deviation of 4.5%. For the remaining thirty
seven applications, the mean time to fault obtained from the
solver and the proposed technique are same or comparable.

VIII. CONCLUSIONS

In this paper, a gradient-based technique is proposed to
improve the lifetime of a homogeneous reconfigurable multi-
processor system while optimizing for transient fault tolerance.
Experiments conducted with variable fault-tolerance require-
ment demonstrate that the proposed solution improves lifetime
by 10% to 60% as compared to the state-of-art transient fault-
tolerant technique. The gradient-based technique provides upto
500× reduction in design space exploration time with less
than 5% distance from optimality. Exploring run-time dynamic
reconfiguration feature of modern FPGA devices and consid-
eration of heterogeneous processors are left as future works.
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