
Thermal-Aware Mapping of Streaming Applications
on 3D Multi-Processor Systems

Marco Cox∗, Amit Kumar Singh†, Akash Kumar† and Henk Corporaal∗

∗Department of Electrical Engineering
Eindhoven University of Technology, The Netherlands
Email: m.g.h.cox@student.tue.nl, h.corporaal@tue.nl

†Department of Electrical & Computer Engineering
National University of Singapore, Singapore

Email: {amit.singh, akash}@nus.edu.sg

Abstract—Implementing Multi-Processor-Systems-on-Chip
(MPSoCs) in 3-Dimensional (3D) ICs has many benefits, but the
increased power density can cause significant thermal problems,
resulting in decreased reliability, lifetime and performance. This
paper presents a fast thermal-aware approach for mapping
throughput constrained streaming applications on a 3D MPSoC.
While there are some published works on thermal-aware
mapping of real-time applications, throughput constraints
and data dependencies are mostly not considered. Further,
conventional approaches have long running times due to
slow iterative thermal simulations. In our approach, to avoid
slow thermal simulations for every candidate mapping, a
thermal model of the 3D IC is used to derive an on-chip
power distribution that minimizes the temperature before the
actual mapping is done. Next, this distribution is used in a
resource allocation algorithm to derive a mapping that meets
the throughput constraint while approaching the target power
distribution and minimizing energy consumption. This way, in
contrast to most existing approaches, a mapping can be derived
in the order of minutes. Experiments show a 7% reduction
in peak temperature and a 47% reduction in communication
energy compared to mappings based on load balancing.

I. INTRODUCTION

Three-dimensional (3D) integrated circuits provide inter-
esting possibilities for implementing Multi-Processor-Systems-
on-Chip (MPSoCs). In a 3D IC, multiple layers of logic
are stacked vertically, and Through Silicon Vias (TSVs) are
generally used for connecting the layers, as illustrated in Figure
1. Stacking multiple layers of processing and/or memory
elements into a 3D IC can significantly reduce the die size
and average interconnect wire length. This in turn can re-
duce production costs, communication delays and interconnect
energy, while increasing the interconnect flexibility [1], [2].
However, stacking active layers increases the power density,
which can cause serious thermal problems, affecting both the
performance and reliability of the system. Higher temperatures
increase power consumption due to leakage and decrease
the system reliability and lifetime, even below the thermal
emergency threshold. Thermal problems are regarded as one of
the main limiting factors for future high performance systems
[3], indicating the importance of minimizing them throughout

the design process. When the temperature rises above the
acceptable limit, protection mechanisms based on Dynamic
Voltage/Frequency Scaling (DVFS), clock gating or task mi-
gration are required to protect the hardware [4]. These dynamic
mechanisms can however have an unpredictable impact on the
software execution, causing for example, missed deadlines.
Therefore, especially for time-constrained applications, it is
important to consider temperature when mapping applications
in order to avoid unpredictable emergencies.

In this work, an integrated thermal-aware approach for
mapping streaming applications on a 3D MPSoC is introduced.
A streaming application, for example a video decoder, typically
has a throughput requirement, which possibly cannot be guar-
anteed in combination with unexpected thermal emergencies
in a (3D) IC. The goal of the proposed approach is to map
and schedule multiple applications at design time, satisfying
all throughput, communication and storage constraints, while
minimizing the peak-temperature and temperature gradients
across the chip. Since simulating the thermal process with a
high spatial and temporal resolution is very time consuming,
the approach described in this work is split into two main
steps. In the first step, thermal characteristics of the 3D
IC are extracted from a simple but flexible model of the
physical chip. Then, the extracted profile is passed to the actual
resource allocation algorithm, which doesn’t require iterative
temperature simulations. This causes the running time of the
total flow to be in the order of minutes, in contrast to most
existing thermal-aware mapping approaches.

The MPSoC is assumed to contain a 3D mesh of (homo-
geneous or heterogeneous) processing tiles. Since Networks-
on-Chip (NoCs) are widely regarded as the most promising
communication architecture for many-core 3D architectures
[2], a 3D NoC is assumed to provide the communication
between the tiles. The streaming applications are modeled as
Synchronous Dataflow Graphs (SDFGs) [5]. Since there are
multiple trade-offs involved, for example between optimizing
for energy consumption or peak temperature in the 3D IC [6],
a set of cost function weights is used to steer the optimization
process by weighting the different optimization criteria. This
results in a flexible thermal-aware mapping flow. The thermal

978-1-4799-1284-1/13/ $31.00 c�2013 IEEE 11



Fig. 1. Two stacked layers connected by TSVs

process resulting from the mapping is simulated using a
modified version of the HotSpot thermal simulator [7], which
also takes the thermal effect of TSVs into account.

The main contributions presented in this work are:

1) A fast algorithm is proposed to find a static power
distribution within a 3D IC that minimizes the peak
temperature. The effect of TSVs on the temperature
distribution is taken into account.

2) A thermal-aware approach for mapping streaming
applications on a 3D MPSoC is developed, taking
both throughput constraints and data-dependencies
into account.

To evaluate performance, the proposed flow is used to map
and schedule a set of synthetic benchmark applications as
well as real-life multimedia streaming applications on a NoC-
based 3D MPSoC. The performance evaluations show that
compared to the load balancing strategy, the peak temperature
and communication energy are reduced by 7% and 47%
respectively, while meeting all timing and storage constraints.

To the best of our knowledge, this is the first thermal-aware
approach for mapping throughput-constrained applications on
3D MPSoCs.

Overview: In section II, related work regarding the
mapping of (streaming) applications onto 2D and 3D MPSoCs
is discussed. The architecture, application and thermal models
are introduced in section III. The proposed thermal-aware
mapping flow is discussed in section IV. Experimental results
are presented in section V. Section VI concludes the paper.

II. RELATED WORK

Thermal-aware mapping and scheduling on 3D multipro-
cessor systems is a well-studied topic. Multiple approaches
have been proposed, which can be split into dynamic (run-
time) and static (design-time) thermal-aware mapping tech-
niques. Dynamic approaches generally try to measure or
estimate the current temperature distribution in the chip, and

take actions based on that in order to minimize hotspots and
thermal gradients (spatial, temporal or both). In [4], several
dynamic mechanisms such as temperature-triggered Dynamic
Voltage/Frequency Scaling (DVFS), clock gating and hot task
migration are reviewed, and a run-time task assignment al-
gorithm is proposed that takes the thermal history of cores
into account. A thermal-aware OS-level scheduler for 3D
MPSoCs is proposed in [8]. These methods share the goal
of minimizing the peak temperature and thermal gradients
without sacrificing performance too much. Constraints such
as deadlines or memory requirements are however not taken
into account, as well as the effect of inter-task communication.
Interconnect utilization should be taken into account since a
NoC can dissipate a substantial part of the power budget,
and the dissipation depends on the traffic [9]. For 2D ICs,
a thermal-aware MPSoC assignment and scheduling technique
for real-time applications is proposed in [10], which is based
on mixed integer linear programming. However, the techniques
for 2D ICs cannot simply be applied to 3D ICs due to the
significantly different thermal behaviour of 3D ICs. Skadron
et al. [7] developed the HotSpot thermal simulator to evaluate
the steady state and dynamic temperature distribution in ICs.

Static mapping approaches aim at finding a thermal-aware
mapping at design time, by using a model of the physical chip,
or by using general knowledge about the thermal behaviour of
3D ICs. In [9], both temperature and communication load are
considered, and a genetic algorithm is used to generate static
mappings. Cheng et al. [6] show that a trade-off exists when
minimizing power consumption as well as peak temperature,
and use a combination of heuristics, simulated annealing and
a greedy algorithm to find optimal static mappings. However,
application constraints such as throughput requirements are not
taken into account. The authors of [11] propose a technique
to find optimal mappings in a thermal sense for applications
with deadlines. First, a power balancing algorithm is used
to find an initial mapping. The initial mapping is then iter-
atively improved by simulating the temperature distribution
and migrating tasks. Communication between tasks as well
as memory constraints are not taken into account. Thiele et al.
[12] argue that being able to guarantee a bound on the peak
temperature in a MPSoC is important, since it removes the
need for unpredictable run-time mechanisms. Towards this, the
authors use formal methods to find optimal static mappings of
SDFG-modeled applications on heterogeneous 2D MPSoCs,
while guaranteeing performance and peak temperature. The
communication overhead is taken into account, but the power
dissipation of the NoC has not been considered. Since vertical
communication in a 3D NoC can be considerably faster and
more energy efficient than horizontal communication [6], a
straightforward extension of their methods to 3D MPSoCs will
not provide optimal mapping solutions. In contrast to the above
mentioned strategies, our approach performs thermal-aware
mapping of throughput-constraint applications on 3D MPSoCs
while taking memory as well as communication constraints
into account. Further, our approach considers the effect of
TSVs on the temperature distribution and power dissipation,
and minimizes the communication energy.

Next to thermal-aware mapping, thermal-aware floorplan-
ning can also help to reduce thermal problems. Thermal-aware

12



floorplanning techniques have been developed for 2D ICs [13]
as well as for 3D ICs [14], [15]. In this work, the floorplan is
assumed to be known and fixed, for example generated by a
thermal-aware floorplanner.

III. PRELIMINARIES

This section covers the application model, multiprocessor
platform model and the 3D IC model.

A. Application Model

To model streaming applications with a throughput con-
straint, Synchronous Dataflow Graphs (SDFGs) [5] are used.
In an SDFG, an application is modeled as a set of tasks,
called actors, that communicate chunks of data with a pre-
defined size, called tokens. An example SDFG that models an
H.263 decoder is depicted in Figure 2. The nodes correspond to
the actors and the edges represent data dependencies, referred
to as connections, between the actors. The H.263 decoder
is modeled with four actors (vld, iq, idct & mc) and four
edges (d1, d2, d3 & d4). An actor has fixed input and output
rates on every connection. The input rate corresponds to the
number of tokens that the actor consumes from the incoming
connection when executed (fired) once. Similarly, the output
rate defines the number of tokens that are produced on the
outbound connection during one execution of the actor. An
initial number of tokens might be available on the connection.
An actor is executed as soon as sufficient tokens are available
at all its incoming connections, and enough buffer space is
available to store the produced tokens. The size of a token
may be different for every connection.

The input and output rates of the actors in an SDFG
determine the relative frequencies with which the actors can
execute, which can be represented by a unique repetition
vector. In the application model, the worst-case execution
times (in time-units) and memory requirements (in bits) of
all actors on all possible processing elements are specified. For
example, an actor performing encoding may have a worst-case
execution time of 10000 time-units on an ARM7 or 2000 time-
units on dedicated encoder hardware. Specifying requirements
for all possible mappings enables the use of heterogeneous
architectures. For all connections, the size of the tokens (in
bits) is specified, as well as the memory required when
mapping the connection to memory, or the bandwidth required
when mapping the connection to interconnect. If actors are
fired as soon as they are ready to fire (self-timed execution),
the execution pattern of a consistent, strongly connected SDFG
is always periodic after an initial start up period [16]. The
time between two recurring states in the execution of an
SDFG defines the throughput of the application. An application
may have a throughput requirement, fixing the maximum time
between two recurring states. The throughput of an SDFG may
be calculated by simulating the execution until a recurrent state
is found [16].

B. Multiprocessor Platform Model

In this work, a regular 3D mesh of tiles connected by a
Network-on-Chip (NoC) is considered, as depicted in Figure 3.

mc

idct

iq

vld
2376

2376

11

1

1

1

1

d1 d2

d3d4

actor
edge

initial tokens 2

input rate
(input token)

output rate
(output token)

[26018]
[559]

[486]

[10958]
execution time 

of actor

Fig. 2. SDFG of an H.263 decoder

Fig. 3. Example 3D mesh of tiles.

Every tile contains at least a network interface (NI), connecting
the tile to the interconnect network. Furthermore, a tile may
contain a processing element (P ) of some type PT (processor
type), for example an ARM core, and a memory. Different
types of processors are possible, allowing the modeling of het-
erogeneous architectures. Such an architecture can be modeled
by an architecture graph consisting of tiles and connections as
defined below.

Definition 1 (Tile): A tile t is a 9-tuple (pt, w, m, c, i, o,
pa, pi, pm) with pt ∈ PT the processor type, w ∈ N0 the
TDMA time wheel size, m ∈ N0 the available memory (in
bits), c ∈ N0 the maximum number of supported connections,
i, o ∈ N0 the maximum i/o bandwidth (in bits), pa, pi ∈ R the
active and idle power (in W) and pm ∈ N3

0 the position of the
tile in the mesh.

Tiles are connected by a NoC. In the architecture graph,
the NoC is abstracted to a set of point-to-point connections
between tiles.

Definition 2 (Connection): A connection c is a 5-tuple
(u, v, l, hh, hv) with u ∈ T the source tile, v ∈ T the
destination tile, l ∈ N0 the latency (in time-units) and
hh, hv ∈ N0 respectively the number of horizontal and vertical
hops between u and v.

The set of tiles T and the set of connections C together
define the architecture graph. A tile is assumed to consume pa
W of power when active, and pi W when idle.

Vertical links between tiles are generally implemented
using TSVs. As reported in [6], TSVs can often provide
faster and more energy efficient communication compared
to horizontal links, mainly because of their short length.
The differences in delay and energy per bit depend on the
technology and the NoC topology. For example, the NoC

13



switches can simply be extended with 2 extra ports for up/down
communication, or the vertical links can be implemented as
a shared bus. This work does not treat all these options in
detail, but the latency (l) and horizontal and vertical hop count
(hh, hv) properties of a connection do provide some room for
modeling different 3D NoC implementations in the architecture
graph. For example, the latency of a connection can be defined
such that it depends on the direction of the communication.

C. 3D IC model

To be able to simulate the on-chip temperature for a given
execution trace, a model describing the thermal characteristics
of the 3D IC is required. This model is also used to extract
information about the thermal behaviour of the chip, which
can be used by the mapping algorithm. The model used in this
work is based on the 3D grid model available in the HotSpot
thermal simulator [7]. The model contains all relevant physical
properties of the IC and the heat sink, as well as a set of active
and inactive layer specifications. Active layers correspond to
layers that actually dissipate power, while inactive layers are
used to model the bonds (glue, thermal interface material)
between the active layers. Figure 4 illustrates the floorplan
of an active layer. For every layer, the thickness, material
properties and a floorplan are specified. Floorplans of the active
layers consist of tiles, all of which contain one or more blocks
(e.g. processor, memory, router), specified by the floorplan of
the specific tile type. Execution of the application models is
tracked at the tile level. The power that is dissipated in a
tile, is assumed to be distributed over the blocks of that tile.
For example, 80% may be dissipated in the processor block,
10% in the router block and 10% in the memory. Blocks
can correspond to function blocks of the processor, but the
processor can also be modeled as one block. This enables the
use of both fine (detailed) and course grained models.

TSVs are generally made of copper, which has significantly
different thermal properties than silicon. To take the thermal
effect of TSVs into account, the size, position and material
properties of the TSVs are also specified in the 3D IC model.
To be able to simulate the thermal impact of the TSVs, the
HotSpot simulator is extended to take TSVs into account.
This is done by changing the thermal properties (conductance
and heat capacity) of grid cells in the internal HotSpot model
that contain TSV material, based on the ratio of the grid cell
volume that is occupied by TSV material.

IV. THERMAL-AWARE MAPPING

This section introduces the proposed mapping flow. The
general structure of the flow is depicted in Figure 5. The
flow consists of two main steps: a “thermal profiling” step
and the actual mapping algorithm. In the “thermal profiling”
step, the physical model of the 3D IC is used to derive a
power distribution among the tiles that minimizes the peak
temperature and spatial temperature gradients. For example,
in the power distribution that minimizes the peak temperature,
tiles that are on the layer closest to the heat sink are likely to
dissipate more power than tiles far away from the heat sink.
This is because the layers close to heat sink are able to get
rid of the heat faster, therefore they are able to handle more

Fig. 4. Active layer floorplan illustration.

Fig. 5. Overview of the thermal-aware mapping flow.

load/power without overheating. Thus, they get a higher target
power ratio. The power density, the floorplan and the absolute
position of a tile in the horizontal plane will also influence its
target power ratio. The resulting “target power distribution”
assigns a power ratio to every tile, and is passed to the mapping
algorithm. The mapping algorithm tries to find a mapping
that approaches this power distribution while minimizing the
energy and meeting all timing and storage constraints.

The two step structure is based on the observation that
(high resolution) thermal simulations have a long running time,
making it impossible to simulate the temperature for every
candidate mapping within a limited running time. A lot of
existing approaches avoid iterative thermal simulations by just
applying heuristics to optimize for temperature. However, these
heuristics are often not very accurate in a quantitative sense,
requiring the designer to tune the heuristics by hand in order
to match the actual chip properties and find good mappings. In
our approach, this tuning is done automatically in the first step
of the flow. In the mapping step, no thermal simulations are
required, which drastically reduces the running time compared
to methods that simulate the temperature for a lot of candidate
mappings.

The remainder of this section discusses the steps of the
flow in more detail.

A. Thermal profiling

The structure of the thermal profiling step is depicted in
Figure 6. The update algorithm adjusts the power ratios Rt

of the tiles based on the steady state temperature distribution
resulting from the previous power distribution. The power
ratio Rt of a tile corresponds to the ratio between the total
chip power P and the power dissipated in tile t. The power

14



Fig. 6. Structure of the “thermal profiling” algorithm.

dissipated in tile t, Pt = Rt∗P , is distributed among the blocks
in that tile based on an intra-tile power distribution, which
may be constant in simple models. This way, a power trace is
generated for every block in the chip. To limit the number of
thermal simulations, a heuristic is used for updating the power
distribution. The power ratios of tiles with a peak temperature
above the average are decreased, while the power ratios of tiles
with a peak temperature below the average are increased in the
update step. This way, temperature differences among tiles are
decreased, resulting in a lower peak temperature and smaller
temperature gradients. The adaptation rate of the power ratios
is defined by constant α. The update algorithm is summarized
in Algorithm 1.

In agreement with observations described in related litera-
ture [4] [8], some general observations can be made regarding
the power distribution after convergence of the algorithm:

1) Tiles on layers farther away from the heat sink get
hotter than tiles closer to the heat sink with the
same power dissipation. Hence, the algorithm will
in general assign smaller power ratios to tiles farther
away from the heat sink.

2) The thermal conductance in the vertical direction is
generally high compared to the horizontal direction,
because the layers are thin (typically 20-100 µm).
As a result, blocks with a high power density that
are stacked on top of each other generate high
temperatures. Because of this, the combined power
dissipation of horizontally aligned blocks in different
layers will be limited.

3) TSVs increase the thermal conductance between lay-
ers. As a result, temperature differences between
layers get decreased. The magnitude of this effect
depends on the TSV material, size and density.

4) Blocks that are near the edges/corners of the die tend
to get hotter than blocks farther away from the edges,
since there is less material for the heat to spread to.

The above observations are used to develop heuristics
in some thermal-aware mapping approaches, for example by
assigning higher costs to mappings that use tiles that are further
away from the heat sink, or by balancing computational load
over “stacks” of vertically adjacent tiles [8]. However, these
heuristics are generally not tuned to the specific IC that is
considered, possibly resulting in suboptimal solutions. In our
approach, the temperature-related observations are modeled
implicitly in the target power distribution, which is derived
directly from a model of the 3D IC. This results in assumptions

ALGORITHM 1: Thermal Profiling Algorithm
Input: 3D IC model, stopping criterion δ ∈ R, max. # of iterations

Imax ∈ N, adaptation constant α ∈ R, total chip power
P ∈ R.

Output: Target power ratios Rt, t ∈ [0, Ntiles − 1].
Initialize power ratios ∀t ∈ [0, Ntiles − 1] : Rt = 1/Ntiles;
Tavg = 0, Tprev.max =∞, Tmax = 1000;
i = 0;
while (Tprev.max − Tmax) ≥ δ and i ≤ Imax do

Generate power traces for all blocks based on P , Rt and the
intra-tile power distribution;
Simulate steady state temperature dist.;
Tavg ← average chip temperature;
∀t ∈ [0, Ntiles − 1] : Tpeak,t ← max. temp. in tile t;
Tmax ← max(Tpeak) ;
if (Tprev.max − Tmax) < δ then

break
end
if Tprev.max < Tmax then

α = α/2;
Restart algorithm;

end
for all tiles t ∈ [0, Ntiles − 1] do

d = (Tpeak,t − Tavg)/Tavg;
Rt = max(0, Rt ∗ (1.0− (α ∗ d)));

end
Renormalize power ratios Rt;
Tprev.max = Tmax;
i++;

end
return power ratios Rt

that are more representative for the specific 3D IC that is
considered.

Running time: The steady state temperature is itera-
tively simulated by the modified HotSpot thermal simulator,
which determines the running time of the algorithm. The
simulation time depends on the spatial resolution and the
number of layers. For an IC with 3 active layers and a grid
resolution of 32×32, one simulation takes 117s on a 2.3GHz
Intel i7 CPU (single threaded). With a well chosen value
for the adaptation constant α, the algorithm converges to a
static power distribution in 6-10 iterations, resulting in a total
running time of up to 1170s. Note that the running time is
independent from the number of tiles on a layer, since the
thermal simulator internally uses a grid with a fixed resolution.

B. Application Mapping Flow

An overview of the mapping flow is depicted in Figure 7.
The application graphs, the architecture specification and the
target power distribution serve as inputs to the flow. For the
memory dimensioning, constraint refinement and communica-
tion scheduling steps, existing implementations available in the
SDF3 tool set [17] are applied. The other steps are described
subsequently.

Application merging: In practical situations, use cases
consisting of multiple applications running simultaneously are
common. To support the mapping of multiple applications, in
the first step of the flow, all application graphs are merged
into one application graph using the rate control principle. In

15



Fig. 7. Overview of the mapping flow.

this approach, a rateControl actor is inserted to control the
relative execution rates of the different applications that are
merged into one graph. Connections between the rateControl
actor and one actor in every application are added, with
input and output rates that force the execution rates of the
applications to synchronize in a desired ratio. For example,
application A might have a throughput requirement twice as
high as that of application B. In that case, the rate controller
will force the execution of application B to stall until A has
executed twice, and vice versa. The throughput constraint of
the merged application is the minimum of the original individ-
ual throughput constraints, and the individual applications can
have throughput constraints that are a multiple of the overall
throughput constraint.

Resource Allocation: In the resource allocation step, every
actor of the merged application is bound to a tile in the
architecture graph. As a result of binding the actors, the
connections between the actors will be bound to either memory
(in case both connected actors are bound to the same tile) or
to a set of NoC links (in case the actors are bound to different
tiles). Since the tile binding defines the computational load
distribution and thus the power distribution within the MPSoC,
it is the most important step in the thermal-aware mapping
flow. A feasible tile binding binds all actors to a tile and all
connections to a memory or interconnect link such that no
storage, connection count or bandwidth limitation is violated.
After a feasible tile binding is found, a static-order schedule

is generated for each tile, defining the order of execution of
the actors mapped on that tile. Note that the resulting resource
allocation is not guaranteed to be able to meet the throughput
constraint.

An extension of the heuristic-based resource allocation
strategy introduced in [18] is used to find a feasible mapping
that results in a power distribution close to the target power
distribution. The binding algorithm is summarized in Algo-
rithm 2. First, all actors are sorted on criticality in descending
order. The criticality is calculated as a measure for the worst
case. Next to approaching the target power distribution, there
might also be other optimization targets, such as computational
load balancing among the tiles, memory usage balancing or
communication balancing/minimization. Function cost(t, a),
defined in Eqn. (1), assigns a cost to binding actor a to tile
t, which is used in the binding algorithm. Constants c1, ..., c6
weight the costs of the different optimization criteria:

cost(t, a) = c1 ∗ P (t, a) + c2 ∗M(t, a)

+ c3 ∗ C(t, a) + c4 ∗ L(t, a)
+ c5 ∗ PDT (t, a) + c6 ∗ PDS(t, a)

(1)

• P (t, a) ∈ [0, 1]: the normalized processor load when
binding actor a to tile t;

• M(t, a) ∈ [0, 1]: the ratio of allocated memory when
a is bound to t;

• C(t, a) ∈ [0, 1]: the ratio of allocated connections on
tile t when a is bound to t;

• L(t, a) ∈ [0, 1]: the normalized average latency of all
connections from/to a when a is bound to t;

• PRT (t, a) ∈ [0, 1]: a normalized cost for the power
ratio of tile t when a is bound to t

PRT (t, a) = c · (rt/Rt)

where rt is the estimated power ratio of tile t when
binding a to t and Rt is the target power ratio of tile
t. c is a normalizing constant to scale the cost to [0, 1]
for all tiles.

• PRS(t, a) ∈ [0, 1]: a normalized cost for the power
ratio of the tile stack s containing tile t when mapping
a to t.

PRS(t, a) = c · (rs/Rs)

where rs is the estimated power ratio of stack s when
binding a to t and Rs is the target power ratio of stack
s. c is a normalizing constant to scale the cost to [0, 1]
for all stacks. A tile stack is a set containing all tiles
that are in the same horizontal position at different
layers. The target power ratio of a stack is defined by
the sum of the ratios of the tiles it contains.

Note that there are two terms related to the power distribu-
tion: PRT (t, a) and PRS(t, a). PRT represents the deviation
from the original target power ratios of the individual tiles.
Since we observed that there is a large thermal correlation

16



ALGORITHM 2: Tile binding algorithm
Input: tiles T , actors A, connections C.
Output: Feasible resource allocation.
// Find an initial binding
Sort all actors a ∈ A on criticality, descending;
for all sorted actors a ∈ A do

Sort all tiles t ∈ T on cost(t, a), ascending (see Eqn. (1));
for all sorted tiles t ∈ T do

if binding actor a to tile t is feasible then
Bind actor a to tile t;
Bind connections to/from a;
break;

end
end
if actor a not bound then

return “Unable to find feasible binding”;
end

end

// Try to improve the binding
Sort all actors a ∈ A on criticality, ascending;
for all sorted actors a ∈ A do

Unbind actor a;
Unbind connections to/from a;
Sort all tiles t ∈ T on cost(t, a), ascending (see (1));
for all sorted tiles t ∈ T do

if binding actor a to tile t is feasible then
Bind actor a to tile t;
Bind all related connections;
break;

end
end

end

between vertically adjacent tiles, it makes sense to also take
the target power ratios of stacks of tiles into account to, which
is captured by the PRS term. If the power distribution among
stacks would not be included, deviations from the target power
distribution in the vertical direction would result in the same
cost as deviations in the horizontal direction, leading to worse
results in a thermal sense. The tile power ratios resulting from
a candidate binding can be calculated since the active and idle
powers of all tiles are known, along with the execution time
of every actor on every possible tile.

Throughput Computation: When a feasible resource al-
location has been found, the maximum throughput of the
mapped application has to be calculated in order to validate the
throughput constraint. This is done by modeling the mapped
application as a binding-aware SDFG, and performing a state-
space exploration by simulating the self-timed execution of the
graph [16]. The throughput is calculated as soon as a recurrent
state is found during the execution.

Utilisation Minimization: It is possible that the maxi-
mum throughput of the mapped application is higher than
the throughput constraint. From an energy and temperature
perspective, it makes sense to slow down the execution as
long as the throughput constraint is satisfied. This is done
in the utilisation minimization step. It is assumed that every
processor contains a TDMA system, in which a time slice
can be reserved during which the processor is idle. To slow

down execution, an idle time slice is inserted in the TDMA
schedule of every active processor. The appropriate sizes of the
idle time slices are determined by performing a binary search
and recalculating the throughput after every step. The search
is terminated once the actual throughput is not more than 10%
above the throughput constraint.

V. EXPERIMENTAL RESULTS

The performance of the proposed approach is tested by
applying it to a set of synthetic benchmark applications as
well as a set of real-life multimedia applications.

A. Experimental Setup

Benchmark applications: To evaluate the performance of
the thermal-aware mapping approach, a set consisting of 4
application graphs is generated. Every application consists of 8
actors with random (Gaussian distributed) execution times and
storage requirements. To evaluate the effect of the weights in
the tile binding cost function, multiple mappings are generated
for each set of applications, based on different cost function
weights. To eliminate effects of the random generator, 3 sets
of applications are generated. Next to the synthetic benchmark
application set, a real-life application set consisting of four
independent H.263 encoders (5 actors each) with a throughput
constraint of 60 frames per second is constructed.

Target 3D MPSoC: The sets of benchmark applications are
mapped on a tile-based 3D MPSoC consisting of 3 layers of
2×2 identical tiles. Each tile consists of a processor, memory
and network interface, all modeled as a single block as depicted
in Figure 4. The active power of each tile is set to 1.5W , the
idle power is set to 10% of the active power. For the placement
of blocks in a tile, two different tile floorplans are used, such
that the processor blocks do not overlap. Tile floorplan 1 is
used on the bottom and top layer, while floorplan 2 is used on
the middle layer to avoid stacking all processor blocks exactly
on top of each other, since the power density is highest in that
block. The heatsink is connected (via a heat spreader) to the
bottom layer. The other active (power dissipating) layers are
thinned down to 50µm. Between two active layers, a 10µm thin
layer containing thermal interface material (TIM) is modeled.
The most important physical properties of the 3D IC model
are listed in Table I. In the center of the NI block of every
tile, a bundle of 8×9 TSVs is placed. For the interconnect,
a hybrid NoC-Bus design is assumed, consisting of a regular
NoC in the horizontal plane and a multi-drop shared bus for
vertical communication [6]. In this setup, every tile is assumed
to have its own NoC switch, and every stack of tiles contains
a shared bus. In the architecture graph, communication links
are modeled as point-to-point connections. The latencies of all
possible tile-to-tile connections are calculated based on the
delay of the shortest path between the tiles. A hop in the
horizontal plane is modeled as a delay of 2 time-units, a hop
in the vertical direction as 1 time-unit.

Temperature simulation: For every mapping, an execution
trace of 0.5s is generated. The execution patterns are periodic
with a period much shorter than 0.5s, making longer simula-
tions obsolete. From the execution trace and the architecture

17



TABLE I. PHYSICAL PROPERTIES & HOTSPOT PARAMETERS

Parameter Value
Tile size [mm] 2 × 2
Silicon thermal conductance [W/(m · K)] 150
Silicon specific heat [J/(m3 · K)] 1.75 · 106
TIM thermal conductance [W/(m ·K)] 4
TIM specific heat [J/(m3 · K)] 4 · 106
TSV thermal conductance [W/(m · K)] 300
TSV specific heat [J/(m3 · K)] 3.5 · 106
TSV diameter [µm] 10
TSV pitch [µm] 20
Bottom layer thickness [µm] 200
Non-bottom layer thickness [µm] 50
TIM layer thickness [µm] 10
Convection resistance to ambient [K/W ] 3.0
Heatsink side/thickness [mm] 14 × 14 × 10
Heatsink th. conductance [W/(m · K)] 400
Heatsink specific heat [J/(m3 · K)] 3.55 · 106
Ambient temperature[K] 300

specification, power traces are derived for every block. The
power traces are used in the modified HotSpot 5.02 thermal
simulator to simulate the temperature with a grid resolution
of 32×32 and a temporal resolution of 10µs. First, a steady
state simulation is performed to find a representative initial
temperature distribution. Next, the transient temperature sim-
ulation is performed. Table I lists the most important HotSpot
parameters.

Interconnect energy computation: Since the interconnect
energy consumption can be a significant part of the total
energy consumption [19], it is also interesting to investigate the
communication intensity and interconnect energy consumption
resulting from different mappings. Note that the computational
energy consumption will be close to identical for all mappings,
since a homogeneous architecture is considered and every
application is slowed down to match the throughput constraint.

The interconnect consumes energy to facilitate communica-
tion between the titles and consumed energy is also referred to
as communication energy. Between two tiles, communication
has to take place when actors (tasks) mapped on them need
to communicate with each other. The communication energy
depends on the data volume and the relative locations of the
communicating task (actor) pair. For each communicating task
pair mapped to tile i & tile j and connected by edge e,
the communication energy is estimated by the product of the
number of transferred bits (nrTokens[e]× tokenSize[e]) and
the energy required to transfer one bit between tiles i & j
(Ebit(i, j)), as defined in Equation 2. The value of Ebit(i, j)
is calculated based on the energy required for horizontal link
traversals, vertical link traversals and the energy consumed
in routers between tiles i & j, as shown in Equation 3.
Vertical interconnects are implemented as shared buses, so
no intermediate routers are involved when traversing multiple
layers. Therefore, hops in the vertical direction will increase
the total number of routings by just 1, independent of the
number of vertical hops. The total communication energy
is estimated by summing over all communicating task pairs
(edges).

Ecomm(e) = (nrTokens[e] × tokenSize[e]) × Ebit(i, j) (2)

Ebit(i, j) = (Ehorizontal
bit × hopshorizontal(i, j))

+(Evertical
bit × hopsvertical(i, j))

+(Erouter
bit × numOfRouters(i, j))

(3)

TABLE II. TARGET POWER DISTRIBUTION FOR THE CONSIDERED 3D
IC

Tile position in the horizontal plane
(0,0) (0,1) (1,0) (1,1)

Top layer 2.8% 2.8% 2.7% 2.4%
Middle layer 7.5% 7.6% 7.4% 6.9%
Bottom layer 15.0% 15.3% 15.0% 14.7%

In our 3D IC model, the horizontal link energy per bit,
Ehorizontal

bit , is taken as 0.127 pJ, which is estimated from
[6]. The vertical link energy per bit, Evertical

bit , is determined
by the used TSVs, and is therefore referred to as ETSV

bit .
ETSV

bit is estimated to be 9.56× 10−3 pJ [20]. For a horizontal
link length of 2mm, the per bit router energy Erouter

bit is
approximately 70% of Ehorizontal

bit [21]. ETSV
bit is only 7.5%

of Ehorizontal
bit , providing substantial space for communication

energy optimization by exploiting the low link energy in the
vertical direction. However, using more vertical links may
result in a higher peak temperature due to increased power
density because of mapping communicating tasks on stacked
tiles.

B. Thermal Profiling Results

The target power distribution obtained by running the
thermal profiling algorithm on the considered 3D IC is given
in Table II. It is observed that the power is almost completely
balanced in the horizontal plane, indicating that the power
dissipated in a stack of tiles is minimized. In the static
power distribution that minimizes the peak temperature on
this specific 3D IC, about 60% of the total chip power is
dissipated in the bottom layer. About 29% is dissipated in
the middle layer, and the remaining 11% is dissipated in
the top layer. Further experiments show that this distribution
mainly depends on the power distribution within the tiles,
the layer thickness and the inter-layer bonds. Although the
thermal properties of the heatsink have a large impact on the
average chip temperature, the optimal power distribution is
almost independent from it.

C. Benchmark Application Results

To evaluate the performance of the resource allocation
strategy, 5 different combinations of tile binding cost function
weights are evaluated, corresponding to different optimization
objectives:

1) Load balancing (LB):
(c1, c2, c3, c4, c5, c6) = (1, 0, 0, 0, 0, 0). Balance the
computational load as much as possible.

2) Communication latency minimization (CLM):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 1, 0, 0). Minimize the
interconnect latency.

3) Load balancing + latency minimization
(LB+CLM):
(c1, c2, c3, c4, c5, c6) = (1, 0, 0, 1, 0, 0). Combine
computational load balancing and latency
minimization with equal weights.

4) Power balancing by stack (PBS):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 0, 0, 1). The power

18



308

310

312

314

316

318

320

322

324

Te
m
pe

ra
tu
re
�[K

]

Mapping�Strategy

Min.�temperature

Peak�temperature

Fig. 8. Minimum and peak temperature resulting from mappings with
different optimization objectives.

ratios of all tile stacks are set equal, causing power
balancing in the horizontal plane.

5) Optimize power distribution (PD):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 0, 1, 1). Optimize for
a power distribution close to the target distribution.

6) Optimize power distribution + latency minimiza-
tion (PD+CLM):
(c1, c2, c3, c4, c5, c6) = (0, 0, 0, 1, 1, 1). Combine
power distribution optimization with latency mini-
mization.

The optimal combination of weights depends on the spe-
cific optimization objective for the considered system. Here,
our goal is to evaluate the performance of the approach for
some typical optimization objectives.

Temperature: Figure 8 shows the lowest and highest ob-
served temperatures resulting from mapping the benchmark
application set using the different optimization objectives.
All mappings result in a throughput within 10% above the
constraint. The results are averaged over the 3 application sets
to remove effects of the random generator.

It is clear that trying to minimize the communication la-
tency alone (scenario 2) results in the highest peak temperature.
This is due to the fact that vertically adjacent tiles have smaller
communication delays, which results in communicating actors
being mapped on vertically adjacent tiles. This can cause
a power imbalance in the horizontal plane, explaining the
increased temperature. Including the target power ratio terms
leads to a peak temperature decrease of 5.3K compared to the
latency minimization case, and 3.4K compared to the compu-
tational load balancing case. It is clear that only balancing the
load in the horizontal plane (scenario 4) does not result in the
minimum temperature.

Interconnect usage and energy consumption: Figure 9
depicts the average normalized number of bit hops, as well
as the average interconnect power consumption for different
optimization criteria. A bit hop is defined as 1 bit of data that
is transferred 1 hop through the NoC. The interconnect power
is estimated as the average communication energy per second.

0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

1.2

In
te
rc
on

ne
ct
�P
ow

er
��(
ђW

)

In
te
rc
on

ne
ct
�U
til
iza

tio
n

Mapping�Strategy

Vertical�hops�(normalized)
Horizontal�hops�(normalized)
Interconnect�power

Fig. 9. Average normalized horizontal/vertical interconnect utilization and
interconnect power.

It can be observed that including the latency cost term results
in a significant decrease in interconnect utilization. This can be
explained by the observation that the latency cost term assigns
high costs to mappings in which communicating actors are
mapped on tiles that are far apart in the 3D NoC. In scenario
6, the interconnect utilization is roughly halved compared to
scenario 5, with almost no increase in peak temperature (Figure
8).

The average interconnect power depends on the usage of
the horizontal and vertical interconnect links, as can be seen in
Figure 9. A couple of observations can be made from Figure 9.
First, the total power consumption is mainly governed by the
usage of horizontal links, as they consume much more power
than the vertical links. Second, the power consumption for the
CLM and LB+CLM strategies are low due to more usage of
vertical links than horizontal links, but they show high peak
temperatures (Figure 8). This indicates that using more vertical
links instead of horizontal links facilitates lower interconnect
power consumption at the cost of a higher peak temperature
due to more power stacking within the chip. Thus, a trade-off
exists between minimizing interconnect energy consumption
and peak temperature. Third, the PD+CLM strategy shows
almost the same power consumption as the CLM and LB+CLM
strategies, along with lower interconnect utilization and peak
temperature. This indicates that the PD+CLM strategy results
in a good balance between peak temperature, interconnect
utilization and interconnect energy consumption. The absolute
interconnect energy reduction highly depends on the commu-
nication intensity of the applications as well as the NoC type
and technology.

D. Case-study for real-life applications

To test the applicability of our approach for real-life appli-
cations, 4 independent H.263 encoder applications are mapped
on the 3D MPSoC using our mapping flow. Two different
mapping strategies are applied: LB+CLM and PD+CLM, as
introduced earlier. The LB+CLM strategy tries to balance the
computational load while minimizing the interconnect latency,

19



TABLE III. AVERAGE INTERCONNECT POWER CONSUMPTION,
MINIMUM AND MAXIMUM TEMPERATURE FOR 4 INDEPENDENT H.263

ENCODER APPLICATIONS.

LB+CLM PD+CLM
Interconnect power consumption (µW) 166.62 85.10

Minimum temperature (K) 310.75 310.15
Maximum temperature (K) 317.05 314.25

whereas the PD+CLM strategy aims at optimizing the power
distribution while also minimizing interconnect latency.

Table III shows the average interconnect power consump-
tion, minimum and maximum temperature when the mapping
strategies LB+CLM and PD+CLM are employed. Strategy
PD+CLM outperforms strategy LB+CLM for all the perfor-
mance figures, i.e. it results in a lower interconnect power
consumption, minimum temperature and maximum tempera-
ture. Minimizing the communication latency (CLM) results in
a significant reduction in interconnect utilization and intercon-
nect power consumption (Figure 9), making it an important
optimization criterion to be considered. The results in Table
III indicate that in addition to minimizing the communication
latency, optimizing the power distribution (PD) is a better
choice than balancing the computational load (LB).

VI. CONCLUSIONS AND FUTURE WORK

We proposed a flexible and fast approach for thermal-aware
mapping of throughput-constrained streaming applications on
3D MPSoCs. As compared to the load balancing case, the
proposed approach reduces the peak temperature by 7% (in
◦C) and interconnect energy consumption by 47% for a set
of benchmark applications on a 3-layer IC, while meeting
all storage and throughput constraints. We showed that the
approach can also be used in combination with other optimiza-
tion criteria, such as interconnect utilization minimization. The
average running time of the total flow is 20 minutes, with about
90% being spent in the thermal profiling step. The running time
of the resource allocation & throughput validation step highly
depends on the size and complexity of the application graph.

In future work, we plan to use more fine grained power
models to increase the modeling accuracy. We also plan to
develop a smarter utilization minimization method to take
more advantage of slack, for example by minimizing the
instantaneous power dissipation in the entire MPSoC. Finally,
we want to implement a mechanism to automatically alter the
cost function weights if the combination of weights results in
a mapping that cannot meet the performance requirements.

REFERENCES

[1] J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P.
Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L.
Wright et al., “3-d silicon integration and silicon packaging technology
using silicon through-vias,” Solid-State Circuits, IEEE Journal of,
vol. 41, no. 8, pp. 1718–1725, 2006.

[2] B. S. Feero and P. P. Pande, “Networks-on-chip in a three-dimensional
environment: A performance evaluation,” Computers, IEEE Transac-
tions on, vol. 58, no. 1, pp. 32–45, 2009.

[3] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” Micro, IEEE, vol. 31, no. 4, pp. 6–15, 2011.

[4] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici,
“Dynamic thermal management in 3d multicore architectures,” in De-
sign, Automation & Test in Europe Conference & Exhibition, 2009.
DATE’09. IEEE, 2009, pp. 1410–1415.

[5] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” Computers, IEEE
Transactions on, vol. 100, no. 1, pp. 24–35, 1987.

[6] Y. Cheng, L. Zhang, Y. Han, and X. Li, “Thermal-constrained task allo-
cation for interconnect energy reduction in 3-d homogeneous mpsocs,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 21, no. 2, pp. 239–249, 2013.

[7] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 1, no. 1, pp. 94–125, 2004.

[8] X. Zhou, J. Yang, Y. Xu, Y. Zhang, and J. Zhao, “Thermal-aware
task scheduling for 3d multicore processors,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 21, no. 1, pp. 60–71, 2010.

[9] C. Addo-Quaye, “Thermal-aware mapping and placement for 3-d noc
designs,” in SOC Conference, 2005. Proceedings. IEEE International.
IEEE, 2005, pp. 25–28.

[10] T. Chantem, X. Hu, and R. P. Dick, “Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 19, no. 10,
pp. 1884–1897, 2011.

[11] C. Sun, L. Shang, and R. P. Dick, “Three-dimensional multiprocessor
system-on-chip thermal optimization,” in Hardware/Software Codesign
and System Synthesis (CODES+ ISSS), 2007 5th IEEE/ACM/IFIP
International Conference on. IEEE, 2007, pp. 117–122.

[12] L. Thiele, L. Schor, I. Bacivarov, and H. Yang, “Predictability for
timing and temperature in multiprocessor system-on-chip platforms,”
ACM Trans. Embed. Comput. Syst., vol. 12, no. 1s, pp. 48:1–48:25, Mar.
2013. [Online]. Available: http://doi.acm.org/10.1145/2435227.2435244

[13] V. Nookala, D. J. Lilja, and S. S. Sapatnekar, “Temperature-aware
floorplanning of microarchitecture blocks with ipc-power dependence
modeling and transient analysis,” in Proceedings of the 2006 interna-
tional symposium on Low power electronics and design. ACM, 2006,
pp. 298–303.

[14] P. Zhou, Y. Ma, Z. Li, R. P. Dick, L. Shang, H. Zhou, X. Hong, and
Q. Zhou, “3d-staf: scalable temperature and leakage aware floorplanning
for three-dimensional integrated circuits,” in Computer-Aided Design,
2007. ICCAD 2007. IEEE/ACM International Conference on. IEEE,
2007, pp. 590–597.

[15] M. Pathak and S. K. Lim, “Thermal-aware steiner routing for 3d stacked
ics,” in Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM Inter-
national Conference on. IEEE, 2007, pp. 205–211.

[16] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen,
M. Bekooij, B. Theelen, and M. R. Mousavi, “Throughput analysis
of synchronous data flow graphs,” in Application of Concurrency to
System Design, 2006. ACSD 2006. Sixth International Conference on.
IEEE, 2006, pp. 25–36.

[17] S. Stuijk, M. Geilen, and T. Basten, “Sdfˆ3: Sdf for free,” in Application
of Concurrency to System Design, 2006. ACSD 2006. Sixth International
Conference on. IEEE, 2006, pp. 276–278.

[18] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs,” in Design Automation Conference, 2007. DAC’07. 44th
ACM/IEEE. IEEE, 2007, pp. 777–782.

[19] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” Micro, IEEE, vol. 27, no. 5,
pp. 51–61, 2007.

[20] (2010) International technology roadmap for semiconductors. [Online].
Available: http://www.itrs.net/reports.html

[21] S. Bhat, “Energy models for network-on-chip components,” MSc. thesis,
Eindhoven University of Technology, 2005.

20


