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Abstract

Heterogeneous multiprocessor systems-on-chip (MPSoCs) are emerging as a promising solution in deep sub-micron technology
nodes to satisfy design performance and power requirements. However, shrinking transistor geometry and aggressive voltage scal-
ing are negatively impacting the dependability of these MPSoCs by increasing the chances of failures. This paper proposes an
offline (design-time) task remapping technique to minimize the communication energy and task migration overhead of an appli-
cation mapped on a heterogeneous multiprocessor system for all processor fault-scenarios. The proposed technique involves two
steps – 1) Communication Energy driven Design Space Exploration (CDSE) to select an initial mapping and 2) Communication
energy and Migration overhead aware Task Mapping (CMTM) for different fault-scenarios. The CDSE is formulated as a Mixed
Integer Quadratic Programming (MIQP) problem and solved using an energy-gradient based heuristic. The CMTM problem is
solved using a fast heuristic with the starting mapping selected using CDSE step. The proposed two steps technique is compared
with state-of-the-art approaches through rigorous simulations with synthetic and real application graphs. Results demonstrate that
the proposed CDSE reduces design space exploration time by 99% with a maximum variation of 5% from the optimal solution
obtained by solving the MIQP problem directly. Further, the proposed CMTM reduces communication energy by an average 35%
and migration overhead by an average 20% for all single and double fault-scenarios as compared to the existing fault-tolerant tech-
niques. The CMTM also achieves over 30x reductions in execution time for large problem sizes with a maximum deviation of 15%
from the minimum communication energy achievable with the given application on a given architecture. For streaming multimedia
applications, the proposed technique delivers 50% higher throughput per unit energy as compared to the existing approaches.

Keywords: Fault-Tolerance, Heterogeneous MPSoCs, Design Space Exploration, Task Mapping, Mixed Integer Quadratic
Programming

1. Introduction

To accommodate the ever increasing demands of applications
and for the ease of scalability, multiprocessor systems-on-chip
(MPSoCs) are becoming the obvious design choice in current
and future technologies [1]. With reducing feature size and
increasing transistor count, MPSoCs are becoming susceptible
to faults [2, 3]. There are three classes of faults studied for
Integrated Circuits (ICs) – permanent, intermittent and tran-
sient. Permanent faults are irrecoverable damages to the cir-
cuit caused by phenomena such as electro-migration, dielectric
breakdowns, broken wires etc. These faults are caused during
manufacturing or during the product lifetime due to component
wear-outs. Behavior of a system under permanent faults is time
invariant. Intermittent faults are also hardware faults occurring
frequently but irregularly over a period of time due process,
voltage and temperature (PVT) variations. Intermittent faults
usually persist for few cycles, if not for a few seconds or more.
Transient faults are single event upsets occurring due to alpha
or neutron particles from cosmic radiations. This paper focuses

on permanent and intermittent faults which are jointly referred
as hardware faults throughout the rest of this paper.

Hardware faults are traditionally tolerated using redundancy-
based designs [4]. However, this is only applicable for
hardware-software co-design methodology [5] where optimiza-
tion results determine MPSoC architecture. Software tech-
niques like task remapping [6, 7, 8] have shown significant
promise to tolerate hardware faults especially for platform-
based MPSoC design [9] where fault-tolerance needs to be in-
corporated on a fixed architecture. Existing platform-based
fault-tolerant task-migration research studies have focused on
minimizing migration overhead [6] and load balancing [7] or
maximizing the reliability of a system [8]. These techniques
provide no guarantee on the application communication energy.

Another research direction for multiprocessor systems is
concerning energy consumption. This is partly due to the
slow growth in battery technology over the past decades. Re-
searchers have shown that carefully selecting an application
task mapping can significantly reduce task communication en-
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ergy [10, 11, 12, 13] which constitutes a large fraction (≈ 60%
according to [11]) of the overall energy consumption. This is
orthogonal to dynamic voltage or frequency scaling capabilities
of an MPSoC which can further reduce the task computation
energy. These works do not target fault-tolerance.

When one or more processors of an MPSoC become faulty,
tasks from these processor(s) are migrated to new locations
(functional processors). Tasks migrated further away from their
dependent tasks consume more communication energy per iter-
ation of the application graph. Recently, there are studies to
integrate fault-tolerance and energy minimization [14, 15, 16].
However, either they are limited to transient faults or they do
not address different processor fault-scenarios. This paper at-
tempts to solve the following problem. Given a heterogeneous
MPSoC architecture and a set of high performance applications
modeled using directed graph.

• Generate a starting mapping of an application on the mul-
tiprocessor platform such that task communication energy
is minimized and

• Generate task mappings for different processor fault-
scenarios with the joint objective of minimization of mi-
gration overhead and task communication energy.

In a recent work [17], these challenges are solved for mul-
timedia applications running on homogeneous MPSoCs. Task
mappings are generated exhaustively and evaluated. The mini-
mum communication energy mappings are retained for the op-
timization of migration overhead for different fault-scenarios.
One limitation of this technique is that the application domain
is restricted to multimedia programs running on homogeneous
processors. Additionally, as the number of tasks and/or proces-
sors increase, there is an exponential growth in the number of
mappings which can lead to longer design cycles.

Contributions: Following are the key contributions.

• A Mixed Integer Quadratic Programming (MIQCP) for-
mulation of the Communication Energy based Design
Space Exploration (CDSE).

• A energy-gradient based heuristic to minimize the design
space exploration time.

• A communication energy and migration overhead aware
fast heuristic for task mapping (CMTM) for different pro-
cessor fault-scenarios.

• Consideration of streaming and non-streaming applica-
tions on heterogeneous MPSoC.

The CDSE is solved at design-time to generate a starting
mapping of a given application on the given platform which
minimizes the task communication energy. Starting from this
mapping, the CMTM generates a set of task mappings for all
fault-scenarios which are Pareto-optimal in terms of commu-
nication energy and migration overhead. These mappings are
stored in a table for use at run-time as and when faults oc-
cur. Experiments are conducted with synthetic and real appli-
cation graphs, both from streaming and non-streaming domain

demonstrate that the proposed energy-gradient heuristic is able
to reduce analysis time by 99% with a maximum of 5% devi-
ation from the communication energy optimum value obtained
by solving the MIQP problem directly. Moreover, the overall
fault-tolerant technique minimizes communication energy by
an average 35% and migration overhead by 20% as compared
to the existing fault-tolerant techniques.

The rest of the paper is organized as follows. A brief
overview of the prior research works is provided in Section 2
followed by a motivational example in Section 3. Next, the pro-
posed fault-tolerant design methodology is highlighted in Sec-
tion 4. Different components of this methodology are discussed
in Sections 5 and 6. Experimental setup and results are dis-
cussed next in Section 7 and the paper is concluded in Section 8
with key future directions.

2. Related Works

Reliability and energy efficiency are the two primary opti-
mization objectives for multiprocessor systems in deep sub-
micron technologies. Research works for both the objectives
are carried independently over decades until recently, when ef-
forts are directed towards joint optimization of energy and fault-
tolerance. This section provides an overview of some key re-
search results for each of these research directions.

2.1. Fault-tolerance related studies

There are two broad categories of hardware fault-tolerance
research – proactive and reactive as shown in Figure 1. The
proactive techniques prevent (or delay) the occurrence of fail-
ures [8, 18, 19]. The reactive techniques deal with task mi-
gration after faults have occurred [6, 7, 20, 21, 22, 23]. Task
remapping decisions can be pre-computed at compile-time an-
alyzing all possible fault-scenarios (static) or can be decided at
run-time as and when faults occur (dynamic).

Static task migration techniques compute task mapping deci-
sions at compile-time for different fault-scenarios [20, 21, 22].
The band and band reconfiguration technique of [20] minimizes
migration overhead while deciding new locations (cores) for the
tasks on faulty cores. Communication energy is not guaranteed
in this technique. The technique of [21] maximizes applica-
tion throughput but provides no guarantee on the task migration
overhead and communication energy. The authors in [22] es-
tablished the importance of migration overhead and throughput
for multimedia applications and proposed a joint optimization
technique for multimedia MPSoCs. Communication energy is
not optimized in this technique either. Moreover, the number of
mappings explored at compile-time grows exponentially with
the number of tasks and/or cores making this technique compu-
tationally in-feasible for large scale computing.

Dynamic approaches monitor system-status and decide to
migrate tasks at run-time to minimize migration overhead [6]
or balance processor load [7]. A limitation of these techniques
is that migration algorithms need to be simple to minimize com-
putation overhead. Optimization for communication energy
and throughput can potentially lead to deadline misses.
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Figure 1: Taxonomy of fault-tolerance research

2.2. Energy-aware task mapping

To accommodate the ever increasing demand of performance
and features in MPSoCs, energy budget is becoming more strin-
gent. Researchers have focused on every aspect of energy re-
duction techniques. These techniques can be classified into
circuit-level approaches (power gating for example) and soft-
ware approaches such as energy-aware task scheduling.

Recently, software approaches have gained lot of interest
among research community. A dynamic voltage scaling tech-
nique is proposed in [10] to minimize the energy consumption.
The slack budgeting technique of [11] distributes execution
time slack of a task among other tasks, to reduce their frequency
of operation. A gradient-based energy minimization technique
is proposed in [12]. However, none of these research works
address task mappings for different processor fault-scenarios.

2.3. Energy-reliability joint optimization

In recent years, some studies have been made to jointly
optimize fault-tolerance and energy. An ILP based approach
is presented in [14]. Energy optimization is performed un-
der the constraint of task-execution time which incorporates
fault-tolerance overhead using check-pointing based recovery
model. This technique is not suitable for permanent failures as
it does not address task migration for different fault-scenarios.
A global scheduling based reliability-aware energy manage-
ment is proposed in [15]. However, this paper also focuses on
transient faults and assumes independent tasks and is therefore
not suitable for permanent fault-tolerance of applications with
dependent task models. A lifetime-reliability aware scheduling
technique is proposed in [16] to minimize energy consumption.
Tasks are scheduled on processors equipped with dynamic volt-
age scaling (DVS) capabilities. However, task migration is not
addressed in this work either. Recently, the authors in [17] pro-
posed a technique to address minimization of throughput degra-
dation, communication energy and migration-overhead jointly
for multimedia applications on homogeneous MPSoCs. An ILP
approach is proposed as an alternative (against dynamic pro-
gramming of [21]) to compute the minimum migration over-
head. However, selection of the fault-tolerant mappings is
based on exhaustive search. Although, dynamic programming
or ILP are computationally feasible for certain problem size,
the bottleneck is in the exhaustive mapping selection process
(which grows exponentially with the number of tasks and/or
processors) limiting its adaptability for large scale computing
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Figure 2: IPC performance for some SPEC2000 benchmarks

and heterogeneous architectures. The work in this paper ad-
dresses this problem by proposing a heuristic algorithm to gen-
erate minimum energy mappings with polynomial complexity.

3. Motivation

3.1. Heterogeneous MPSoC architecture
Modern MPSoCs are designed to execute a wide range

of applications with different characteristics. Figure 2 plots
the instructions per cycle (IPC) performance of some of the
SPEC2000 [24] benchmarks on floating point and integer inten-
sive processors referred in the figure as strong FP and strong
ALU respectively. As can be seen from the figure, for some
applications like PARSER and GZIP, the IPC performance are
same when executed on strong FP and strong ALU respec-
tively. Running integer intensive applications like EQUAKE
on a strong FP processor can result in 75% reduction in IPC.
Similar degradation is observed by running floating point inten-
sive applications like APPLU on strong ALU processor. From
these results it can be concluded that heterogeneous architecture
(with strong FP and strong ALU in this example) can benefit the
wide range of applications supported on modern MPSoCs.

3.2. Importance of hop distance
Figure 3(a) shows a synthetic application with 9 tasks

mapped on an architecture with 6 processors. The no-fault task
mapping is shown in Figure 3(b) with the number in paren-
thesis against each task indicating the size of its state space.
Figure 3(c) and 3(d) show two different task mappings satis-
fying the application throughput requirement with processor c3
as faulty. The migration overhead for Figure 3(c) involves mi-
grating 180 units of state space1 of task F from processor c3
to processor c0 through one hop and 120 units for task I from
processor c3 to processor c1 through two hops. Thus, the total
overhead is 180 + 2 × 120 = 420 units. The migration over-
head for tasks F and I of Figure 3(d) are 180 and 120 units
respectively through one hop each. The total overhead is there-
fore 180 + 120 = 300 units. If only state space is considered
for migration, the two configurations 3(c) and 3(d) are equally
good to be selected (state space are 300 units each). However,
selecting 3(c) results in 40% extra migration overhead in reality
than 3(d) due to extra hops.

1State-space of a task is the size of its program and data memory.

3



A C

B

E D

core0

core1

core2

A

E

D

C B

F

F

A C

B

E

Dcore0

core1

core2

F

timetime

No fault scenario Core 2 FaultyTask Graph

A C

B

E

Dcore0

core1

core2

F

time

Core 2 Faulty

10 20 30 10 20 30 40 50 10 20 30 40

A B

a

D

C0 C1 C2

C3 C4 C5

D

IF E H

G

C

B

A

b

A(100)
G(100) B(150)

C(110)
D(130)

E(160)

H(140)

I(120)
F(180)

C0 C1 C2

C3 C4 C5

c

A(100)
G(100)
F(180)

B(150)
I(120)

C(110)
D(130)

E(160)

H(140)

C0 C1 C2

C3 C4 C5

d

A(100)
G(100) B(150)

C(110)
D(130)
I(120)
F(180)

E(160)

H(140)

a b a a c a

b

bbc

c

Figure 3: Importance of hop-count and communication energy

Table 1: Communication Energy Estimate

Links Hop Distance Token size of Comm. Energy
cfg 3(c) cfg 3(d) source task cfg 3(c) cfg 3(d)

C − F 2 0 32 64Ebit 0

C − I 1 0 32 32Ebit 0

D − I 1 0 64 64Ebit 0

F −G 0 2 64 0 128Ebit

I −G 1 2 64 64Ebit 128Ebit

Total 224Ebit 256Ebit

3.3. Importance of task communication energy
With reference to Figure 3(c, d) five dependency relations are

affected due to task remapping: C − F, C − I, D − I, F −G and
I − G. In Figure 3(c), the two tasks F and I of processor c3
are mapped to processors c0 and c1 respectively. In Figure 3(d)
however, the two tasks F and I are both mapped to processor
c4. Table 1 reports the hop distance, amount of data commu-
nicated and the communication energy for the two mappings.
Thus, after processor c3 becomes faulty, configuration 3(c) and
3(d) consume 224Ebit and 256Ebit units of extra communication
energy at every subsequent iteration of the graph2. Clearly, the
migration destination (processor) for a task on a faulty proces-
sor is crucial for the overall energy consumption.

3.4. Importance of mapping reduction
Table 2 plots the exponential growth in the possible map-

pings as the number of tasks and type of processors (hetero-
geneity) are scaled. Assuming the schedule construction and
energy computation time as fixed (and equal to 50µs on aver-
age obtained from experiments), the total execution time of the
algorithm in [17] for 14 tasks on 14 processors of 3 different
types is 6, 404 hours (equivalent to 266 days). Clearly, efficient
design space pruning is needed to reduce the analysis time.

4. Design methodology

The reliability-aware task mapping methodology consists of
two phases - analysis at compile-time and execution at run-time.
The focus of this research is on the compile-time analysis; how-
ever, for the sake of completeness, a brief overview is provided
on how to use the compile-time analysis result at run-time.

2Ebit is energy required to communicate every bit of information through
the communication fabric (e.g. NoC)

Table 2: Number of mappings in exhaustive search

Tasks
Homogeneous Heterogeneous

1 processor type 2 processor types 3 processor types

2 2 6 12

4 15 94 309

6 203 2,430 12,351

8 4,140 89,918 681,870

10 115,975 4,412,798 48,718,569

14 190,899,322 20,732,504,062 461,101,962,108
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Figure 4: Design methodology

4.1. Compile-time analysis

The compile-time analysis stage is highlighted in Figure 4(a).
The GenInitMap block implements the CDSE algorithm to gen-
erate a starting mapping. The GenFtMap block implements
the CMTM algorithm and generates a set of fault-tolerant map-
pings. These mappings are stored in memory for use at run-
time. Sections 5 and 6 provide details of the two blocks
GenInitMap and GenFtMap respectively.

4.2. Run-time execution

Figure 4(b) represents the run-time execution phase. When
an application is enabled on the platform, the entire set of pro-
cessors is dedicated to the application. The optimum mapping
(in terms of communication energy) is fetched from memory
and applied. When one or more processors fail, the fault-
scenario is identified and the best mapping (in terms of com-
munication energy and migration overhead) for the scenario is
fetched and applied. Thus, as processor fails either for a short
duration (intermittent failures) or permanently (permanent fail-
ures), minimum overhead is incurred in task migration to a new
mapping which minimizes communication energy.

5. Generate initial mapping

Mapping and scheduling of applications on multiprocessor
platform is an NP hard problem [25]. Many heuristics have
been developed over years to schedule dependent tasks on het-
erogeneous platforms [26, 27]. A closely related problem
to this is the optimization criteria directed pruning of design
space. There are different criteria studied in literature such as
minimum energy, throughput and least resource usage. The
GenInitMap block formulates the task mapping problem with
communication energy as the optimization objective.
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Figure 5: Conceptual architecture model

5.1. Application model

An application is a directed graph Gapp = (Vapp, Eapp), where
Vapp is the set of nodes representing tasks of the application and
Eapp is the set of edges {ei j | 1 ≤ i, j ≤ |Vapp|}, representing
data dependency among tasks. Each task vi ∈ Vapp is a tuple
〈Ti, S i,Di〉, where Ti is the execution time of vi, S i is its state
space and Di is the data produced at every execution of vi. Let h
be the types of heterogeneous cores in the platform. The execu-
tion time Ti is a set {tik | 1 ≤ k ≤ h}, representing the execution
time of the task vi on h cores type. For homogeneous system h
= 1 and therefore execution time of a task on all the cores are
the same. Di is the set {di j | 1 ≤ j ≤ |Vapp|}, representing the
data produced on edge ei j.

5.2. Architecture model

The conceptual architecture model for the target platform
is shown in Figure 5(a) with the processing cores intercon-
nected in a mesh-based topology. The scope this paper is
limited to fault-tolerance and energy performance of an appli-
cation on a given architecture. Factors such as deciding the
number of cores required or the placement of the different het-
erogeneous cores in the architecture are not considered. Fig-
ure 5(b) shows the floorplan assumed in this work, where differ-
ent zones represent heterogeneity. The cores within each zone
are homogeneous. An architecture is represented as a graph
Garc = (Varc, Earc), where Varc is the set of nodes representing
processors and Earc is the set of edges representing communi-
cation channels among the processors. Each processor ci ∈ Varc

is associated with a heterogeneity type (hi).

5.3. Mapping representation

For the ease of representation and the algorithm formula-
tion a linearization technique is applied where mapping of an
application on the architecture is represented by a tuple M =

〈M(1),M(2), · · ·M(napp)〉 where napp (= |Vapp|) is the number
of tasks and M(k) is the processor on which task vk is mapped.
An ID is given to the mapping as calculated in Equation 1.

mID =

napp∑
j=1

M( j) × n j
arc (1)

where narc (= |Varc|) is the number of processors in the given ar-
chitecture. Clearly, every mapping can be uniquely represented
using this linearization technique.

5.4. Communication energy modeling

Energy modeling for NoC-based MPSoCs has received sig-
nificant attention in recent years. In [28], bit energy (Ebit) is
defined as the energy consumed when one bit of data is com-
municated through the routers and links of a NoC.

Ebit = ES bit + ELbit (2)

where ES bit and ELbit are the energy consumed by the switch
and the link respectively. The energy per bit consumed in
transferring data between processor p and processor q, situated
nhops(p, q) away is given by Equation 3 according to [11].

Ebit(p, q) =

nhops(p, q)ES bit + (nhops(p, q) − 1)ELbit if p , q
0 otherwise

(3)
where nhops(p, q) is the number of routers between processors
p and q. The total communication energy is therefore given by

CommEnergy =
∑

(i, j)∈Eapp

di j × Ebit(M(i),M( j)) (4)

5.5. Problem formulation for Directed Acyclic Graphs (DAGs)

5.5.1. Variables for MIQP formulation

xik =

1 if task vi is mapped on processor ck

0 otherwise

di j,k =


1 task vi and v j are mapped on processor ck

and vi starts execution before v j

0 otherwise

sik = start time of task vi on core ck

5.5.2. Constraints for MIQP formulation
• Every task must be assigned to a single processor

∀vi ∈ Vapp :
narc∑
k=1

xik = 1 (5)

• Finish time of every leaf task is less than the application
deadline

∀vi ∈ L, ck ∈ Varc : sik + et(i, k) ≤ D + (1 − xik)Γ (6)

where et(i, k) is the execution time of task vi on processor
ck, D is the deadline and Γ is a very large number
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• A task can start only after the finish time of its dependent
tasks

∀(vi, v j) ∈ Eapp and ck, cl ∈ Varc : sik + et(i, k) ≤ s jl (7)

• Independent tasks mapped on the same processor must not
be executed simultaneously

∀(vi, v j) < Eapp and ck ∈ Varc

sik + et(i, k) ≤ s jk + (3 − xik − x jk − di j,k)Γ (8)
s jk + et( j, k) ≤ sik + (2 − xik − x jk + di j,k)Γ

where the first equation constraints the starting time of vi

before v j and the second with v j before vi.

5.5.3. Objective function
The communication energy of Equation 4 can be expressed

in terms of the assignment variables xi j as shown.

∀(vi, v j) ∈ Eapp, and ck, cl ∈ Varc

CommEnergy :=
∑

xik ∗ x jl ∗ Ebit(k, l) (9)

The objective function can be written as

minimize f (x) = CommEnergy

subject to Equations [5 − 8] (10)

5.6. Problem formulation for SDF Graphs
Synchronous Data Flow Graphs (SDFGs, see [29]) are often

used for modeling modern DSP applications and for designing
concurrent multimedia applications implemented on a multi-
processor system-on-chip. The nodes of an SDFG are called
actors; they represent functions that are computed by reading
tokens (data items) from their input ports and writing the results
of the computation as tokens on the output ports. The number
of tokens produced or consumed in one execution of actor is
called port rate, and remains constant. The rates are visualized
as port annotations. Actor execution is also called f iring, and
requires a fixed amount of time, denoted with a number in the
actors. The edges in the graph, called channels, represent data
that is communicated from one actor to another.

Figure 6 shows the SDF Graph of H.263 encoder. There
are eight actors in this graph. In the example, actor

motion estimation has an input rate of 1 and output rate of 99.
An actor is called ready when it has sufficient input tokens on
all its input edges and sufficient buffer space on all its output
channels; an actor can only fire when it is ready. The edges
may also contain initial tokens, indicated by bullets on the
edges, as seen on the edge from actor motion compensation to
motion estimation in Figure 6. A set Ports of ports is assumed,
and with each port p ∈ Ports a finite rate Rate(p) ∈ N \ {0} is
associated. When an actor a starts its firing, it removes Rate(q)
tokens from all (p, q) ∈ InC(a). The execution continues for
τ(a) time units and when it ends, it produces Rate(p) tokens on
every (p, q) ∈ OutC(a)3. The repetation vector of an actor a
(denoted by r(a)) is the number of times the actor is fired in one
iteration of the SDFG. Apart from being cyclic, another differ-
ence of SDFG with Directed Acyclic Graphs (DAGs) is that the
repetition vector of all tasks in DAGs is one.

5.6.1. Changed variable definitions
Let Gapp = (V, E) represents an application SDFG with V ac-

tors and E edges. Changed variables and additional constraints
(with respect to those for DAG) are presented.

sik,u = start time of uth iteration of actor i on core k

duv
i j,k =


1 task i and j are mapped on core k

and uth iteration of i starts execution before
vth iteration of j

0 otherwise

5.6.2. Additional constraints
• Actor iteration assignment (iterations of an actor must be

assigned to the same core)

∀i, j :
r(i)∑
u=1

xik,u = 0 or r(i) (11)

• Auto-concurrency of actors (multiple iterations of an actor
are not enabled simultaneously)

∀i, k and 2 ≤ u ≤ r(i) : sik,u ≥ sik,u−1 + et(i) (12)

• Data-dependency of actors (uth iteration of task i can start
only after its dependent task finishes)

∀k, l ∈ P and ∀( j, i) ∈ E : sik,u ≥ e jl,m (13)

where m is defined as follows

m = b
kp
q

+ init(i, j)c

p = tokens produced by actor i on edge (i, j)
q = tokens consumed by actor j from edge (i, j)

init(i, j) = initial token on edge (i, j)

3InC(a) and OutC(a) are respectively the incoming and outgoing edges of
actor a.
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Algorithm 1 CDSE(): Communication Energy aware DSE
Input: Gapp, Garc, MaxIter
Output: minimum communication energy mapping

1: ∀vi ∈ Vapp, determine rank(i) according to [30]
2: sort tasks according to rank and push to TaskArr
3: for all vi ∈ TaskArr do
4: // Assign the fastest processor to the task
5: M(i) = c j ∈ Varc

6: end for
7: CEbest = CommEnergy(M,Garc)
8: Mbest = M
9: for numIter = 1 to maxIter do

10: [vi ck] = RemapTask(M)
11: if vi , ∅ then
12: M(i) = ck

13: else
14: CE = CommEnergy(M,Garc)
15: S = S Gen(M,Garc)
16: if S ≤ D then
17: if CE < CEbest then
18: Mbest = M and CEbest = CE
19: end if
20: end if
21: numIter + +

22: Randomly assign the tasks to different processors
23: end if
24: end for
25: return M

5.6.3. Objective function
The objective function is same as that for DAGs (Equa-

tion 10).

5.7. Heuristic based simplification technique

The MIQP formulation is NP-hard [31] and therefore an
energy-gradient based heuristic is proposed to simplify the
same. This is shown as a pseudo-code in Algorithm 1. The al-
gorithm has two sections – generation of initial mapping (lines
3-6) and search of global minimum (lines 9-22).

The initial mapping section of the algorithm generates a start-
ing mapping by assigning every task to processors for which
the execution time is least. The second part of the algorithm
searches for a global solution. There are maxIter iterations,
where maxIter is an user defined parameter. For each iteration,
a task is selected to be remapped to another processor to re-
duce the communication energy while satisfying the deadline
requirement using the RemapTask() routine (line 10). If such
a task can be found, the mapping is updated (line 12). This
process is continued until there is no task remapping possible
without violating the deadline. When this happens, the energy
consumption cannot be reduced further. If the current schedule
is feasible (the completion time of the leaf tasks are less than the
application deadline, D) and the mapping produces lower com-
munication energy than the best mapping obtained so far, the
best mapping is updated with the current mapping (line 18-21).
However, this best mapping may not be the global optimum in

Algorithm 2 RemapTask(M,Garc): Communication energy
gradient based tasks remapping
Input: Mapping M and Garc

Output: Determine a task to be remapped
1: Ts = ∅; Cs = ∅

2: CEr = CommEnergy(M,Garc); S r = S Gen(M,Garc)
3: Ps = −∞

4: for all vi ∈ Vapp do
5: for all c j ∈ Varc do
6: M̂ = M
7: M̂(i) = c j

8: S = S Gen(M̂,Garc)
9: if S ≤ D then

10: CE = CommEnergy(M̂,Garc)
11: Calculate Pr according to Equation 14
12: if Pr > Ps && Pr > 0 then
13: Ps = Pr

14: Ts = vi

15: Ps = c j

16: end if
17: end if
18: end for
19: end for
20: return [Ts Ps]

terms of communication energy. In order to obtain a better so-
lution, tasks in the current mapping are randomly reassigned to
other processors (line 23) and the whole process of task remap-
ping is then repeated. The CommEnergy() routine computes the
communication energy of a mapping according to Equation 4.
The S Gen() is the schedule generator engine. For DAGs, the
S Gen() is same as CPTO() algorithm of [12], whereas for SD-
FGs, this is same as the S DF3 tool [32].

The RemapTask() routine selects a task and a processor
where the selected task is to be remapped. Algorithm 2 pro-
vides the pseudo-code for the same. Every task of the applica-
tion is moved to every processor and an energy-gradient based
priority is calculated for the move. The one move which sat-
isfies the application deadline and has the highest priority is
selected and returned (line 20). Equation 14 is used to calculate
the energy-gradient based priority.

Pr =

CEr−CE
S−S r

if S > S r

(CEr −CE) otherwise
(14)

Here, two cases are considered. In the first case, if the
makespan (maximum finish time of all leaf tasks) of the current
move is higher than the original makespan, the energy gradi-
ent is considered to calculate the priority i.e. the moves with
the largest reduction in communication energy with the least
increase in makespan are assigned higher priorities. In the sec-
ond case, if the makespan of the new mapping is less than the
original makespan, higher priorities are assigned to moves pro-
ducing larger reduction of communication energy consumption.
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Algorithm 3 CMTM(): Communication and migration energy
aware mapping
Input: Initial mapping M, Gapp, Garc, fault-tolerance level F
Output: Minimum energy mappings for all fault scenarios

with f = 1 to F faults
1: for f = 1 to F do
2: S f = genFaultS cenarios( f )
3: for s f ∈ S f do
4: s f = (ci1 , ci2 , · · · , ci f )
5: s f−1 = (ci1 , ci2 , · · · , ci f−1 )
6: starting map = m f−1 = HashMap[s f−1].getMap()
7: m f = CMDS E(m f−1, Gapp, {Garc \ s f })
8: HashMap[s f ].setMap(m f )
9: end for

10: end for

6. Generate fault-tolerant mapping

The next step in the design methodology is to generate map-
pings for different processor fault-scenarios such that commu-
nication energy and migration overhead are jointly minimized.

6.1. Modeling migration overhead

Migration overhead associated with moving from one map-
ping to another is governed by two quantities – the state space
of the task(s) participating in the migration process and the dis-
tance (hops) through which the state space is migrated. To bet-
ter couple with the communication energy, the migration over-
head is represented as energy and is termed as migration en-
ergy. Let T (k) denotes the set of tasks mapped to processor ck.
The migration energy (MigEnergy(k)) incurred in moving the
task(s) from processor ck (equivalently, the tasks from the set
T (k)) is given by

MigEnergy(k) =
∑
∀vi∈T (k)

S i × Ebit(k, ki) (15)

where cki is the new location (processor) for vi ∈ T (k).

6.2. CMTM methodology

Communication and migration energy minimum fault-
tolerant mappings are generated using Algorithm 3. There are
F stages of the algorithm, where F is a user-defined parameter
denoting the maximum number of faults to be tolerated in the
device. At every stage f (1 ≤ f ≤ F), mappings are generated,
one for each fault-scenario with f faulty cores.

The first step at every stage of the algorithm is the genera-
tion of a set (S f ) of fault-scenarios (line 2). The cardinality
of this set (denoting the number of fault-scenarios) is narc P f ,
where narc is the initial number of cores in Garc. An exam-
ple set with 2 out of 3 cores as faulty ( f = 2, narc = 3)
is the set S f = {〈0, 1〉, 〈1, 0〉, 〈0, 2〉, 〈2, 0〉, 〈1, 2〉, 〈2, 1〉}4. For
every scenario of the set S f , the last core (ci f ) of the tuple

4A fault-scenario (0,1) implies fault occurring first at core c0 and then at core
c1. Thus, fault-scenario (0,1) is different from fault-scenario (1,0) implying a
permutation in the fault-scenario computation.

Algorithm 4 FTRemapTask(Ms,M,Garc): Communication and
migration energy based tasks remapping
Input: Mapping M, Ms and Garc

Output: Determine a task to be remapped
1: Ts = ∅; Cs = ∅

2: CMEr = ∞

3: for all vi ∈ Vapp do
4: for all c j ∈ Varc do
5: M̂ = M
6: M̂(i) = c j

7: S = S Gen(M̂,Garc)
8: if S ≤ D then
9: CE = CommEnergy(M̂,Garc)

10: ME = solveILP(Ms, M̂,Garc)
11: CME = CE + ME
12: if CME < CMEr then
13: CMEr = CME
14: Ts = vi

15: Ps = c j

16: end if
17: end if
18: end for
19: end for
20: return [Ts Ps]

〈ci1 , ci2 , · · · , ci f 〉 is considered as the current faulty core and a
lower order tuple is generated by omitting ci f (line 5). This
gives fault-scenario s f−1 with f − 1 faulty cores for which the
optimal mapping is already computed (and stored in HashMap)
in the previous stage (i.e. at stage f − 1). As an example, the
fault-scenario 〈3, 1, 5〉 implies that faults occurred first on core
c3 followed by on core c1 and finally on core c5. Thus, to reach
this fault-scenario, the system needs to encounter fault-scenario
〈3, 1〉 first. Mapping for 〈3, 1〉 is therefore considered as the
starting mapping for 〈3, 1, 5〉 with core c5 as currently failing
core. Similarly, mapping for 〈3〉 is the starting mapping for sce-
nario 〈3, 1〉with core c1 failing next. A point to note here is that,
the scenario 〈3〉 is a single fault scenario and to reach this, the
starting mapping is the no fault initial mapping M (i.e. output
of Algorithm 1). Once the starting mapping is determined, the
next step is to generate a task mapping for the fault-scenario
which minimizes the communication energy and incurs mini-
mum overhead in migrating from the starting mapping. This is
realized in the CMDSE() routine which takes the starting map-
ping, the application graph and the architecture graph excluding
the faulty processors. The pseudo-code for CMDSE() is similar
to Algorithm 1 with two differences.

• The routine FTRemapTask is called internally instead of
RemapTask (line 10).

• Inputs a starting mapping which is used only in the
FTRemapTask routine.

The pseudo-code for the FTRemapTask routine is shown in
Algorithm 4. Each tasks of the application is moved to each
processor and the communication energy of the move is com-
puted in a similar manner. The migration overhead for the new
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Table 3: Energy Table
EM(oi,nj) n1 n2 n3 · · · nk

o1 50 205 180 · · · 175
o2 200 100 180 · · · 200
o3 200 175 130 · · · 125
...

...
...

...
. . .

...
ol 165 110 120 · · · 135

mapping is computed using integer linear programming. This is
discussed in Subsection 6.3. The two energy components (com-
munication and migration) are combined and the task-processor
combination with minimum total energy is returned.

6.3. ILP-based task migration energy computation
The minimum overhead in migrating from one mapping to

another is formulated as a binary integer linear programming.
Given:

• Application graph Gapp

• Architecture graph Ĝarc (note that Ĝarc is Garc without the
faulty processors)

• Starting mapping Ms

• New mapping Mn

Objective:
Minimize migration overhead in moving from Ms to Mn.
Simplification:
In order to simplify this objective, an energy matrix (Table 3) is
formed with processors from mapping Ms forming the rows (in-
dicated by oi) and the processors from Mn forming the columns
(indicated by n j). The rows (and columns) corresponding to the
faulty processors(s) are filled with zeroes. The non-zero entries
(oi, n j) of the energy matrix (referred hereafter as EM) corre-
spond to the migration energy associated with the extra tasks(s)
on tile n j of Mn which is (are) not present on processor oi of
Ms. This is computed according to Equation 15.
ILP Formulation:
Binary Variables: Xi j, i ∈ [1, k], j ∈ [1, k − 1]
Objective: Minimize z =

∑
i j Xi j × EM(oi, n j)

Constraints:
One element from each row and column is to be selected

k−1∑
j=1

Xi j = 1, ∀i ∈ [1, k],
k∑

i=1

Xi j = 1, ∀ j ∈ [1, k − 1] (16)

7. Results and discussions

Experiments are conducted on synthetic and real application
graphs on Intel Xeon 2.4 GHz server running Linux. Fifty syn-
thetic applications are generated with number of tasks in each
application selected randomly from the range 8 to 32. Addition-
ally, 10 real applications are considered with 5 from streaming
and the remaining 5 from non-streaming domain. The stream-
ing applications are obtained from the benchmarks provided in

the S DF3 tool [32]. These applications are executed on MPSoC
architectures consisting of 4 to 16 processors of three different
types (h = 3) arranged in a mesh-based topology.

All algorithms developed in this work are coded in C++ and
Matlab. As established in Section 2, there are three categories
of research related to this work – throughput maximization, en-
ergy minimization and migration overhead minimization. The
results of this work are compared with the representative of
each of these categories i.e. the throughput maximization tech-
nique of [21] (referred as TMax, the migration overhead mini-
mization technique of [20] (referred as OMin), the energy min-
imization technique of [11] (referred as EMin) and the joint
throughput constrained migration overhead minimization tech-
nique of [22] (referred as TConOMin). Although EMin does
not address fault-tolerance, results are compared with it to de-
termine how far the proposed approach is from the minimum
energy possible with application on the given architecture.

The rest of this section is organized as follows. Subsec-
tion 7.1 provides the time complexity, reduction in design space
exploration time and the communication energy performance
of the proposed CDSE algorithm. Subsection 7.2 provides the
time complexity, space complexity, execution time, migration
overhead and communication energy performance of the pro-
posed CMTM() algorithm. Finally, to signify the importance of
this works for streaming applications, throughput performances
of the proposed algorithms are presented in Subsection 7.3.

7.1. Performance of the CDSE
7.1.1. Complexity analysis

The complexity of Algorithm 1 is governed by two factors –
user defined parameter maxIter and the routine RemapTask().
Processor assignments for tasks can be accomplished in con-
stant time. The complexity of lines 3-6 is therefore O(napp).
Assuming the RemapTask() routine to be executed η times on
average for each value of numIter, the overall complexity of
Algorithm 1 is given by Equation 17.

O(C1) = napp + maxIter ∗ η ∗ O(RemapTask) (17)

The RemapTask() routine remaps each task on each functional
processor to determine if the makespan of the new mapping is
less than the application deadline and the priority is higher than
the highest priority obtained so far. If the processor assignment
operation takes unit time and the complexity of the schedule
generation engine (SGen) is denoted by O(S Gen), the overall
complexity of Algorithm 2 is given by Equation 18.

O(RemapTask) = O(C2) = napp ∗ narc ∗ O(S Gen) (18)

Combining the two equations, the complexity of Algorithm 1
is given by Equation 19.

O(C1) = napp + maxIter ∗ η ∗ napp ∗ narc ∗ O(S Gen)
= maxIter ∗ η ∗ napp ∗ narc ∗ O(S Gen) (19)

The worst-case complexity of S Gen (= CPTO) is

O(S Gen) = O(napp(log napp + nsucc)) (20)

where nsucc is the average number of successors for a task.
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Table 4: Execution time (in secs) of existing and proposed technique

Tasks
Heterogeneous architecture (2 types)

2 × 2 3 × 3 4 × 4 5 × 5

TMax Proposed TMax Proposed TMax Proposed TMax Proposed

8 30 24.5 6.8 × 103 55.1 2.5 × 105 98.3 6.1 × 106 166.1

16 1.3 × 105 50.1 − 113.8 − 242.3 − 401.3

32 − 71.8 − 167.4 − 312.8 − 526.6

64 − 282.9 − 628.6 − 767.6 − 1322.4

96 − 303.2 − 721.2 − 1370.8 − 2410.6

7.1.2. Design space exploration time
Table 4 reports the execution time of the proposed Algo-

rithm 1 in comparison with TMax. The execution time of other
existing fault-tolerant techniques (OMin and TConOMin) are
similar to that of TMax and are not included in the table.

The time reported for the exhaustive search based existing
techniques includes three components –

• time to generate the mappings

• time to compute communication energy of these mappings

• time to search for the minimum energy mappings (sorting)

The time reported for the proposed technique is the execution
time of Algorithm 1 with the design parameter maxIter set to
100. As can be seen from the table, the execution time of the
proposed technique is comparable to that of the existing tech-
niques for small problem sizes (8 tasks mapped on 4 processors)
because of the fewer number of exhaustive mappings. However
as the number of tasks and/or processors increases, there is an
exponential growth in the number of mappings (task-processor
combinations). The existing techniques ([17][21][22]) fail to
provide a solution beyond 16 tasks mapped on 9 processors.
The proposed technique can provide results within satisfactory
time even for 96 tasks mapped on 25 processors with hetero-
geneity of 2. On average for different task-processor combina-
tions (those for which the existing techniques are able to solve),
the proposed technique reduces execution time by 99%.

7.1.3. Communication energy performance
Figure 7 plots the communication energy of the proposed

technique in comparison with the communication energy
achieved using the EMin technique to determine the variations
of the heuristic from the energy optimality. Additionally, results
are compared with TMax ([21]), OMin ([20]) and TConOMin
([22]) to signify the fact that the existing techniques when ap-
plied to generate the starting mapping of an application on an
architecture can lead to sub-optimal results in terms of com-
munication energy. Experiments are conducted on 50 synthetic
application task graphs with number of tasks varying from 8
to 24 on an MPSoC architecture with 9 processors. The num-
ber of tasks is limited to 24 as the existing exhaustive search
based reactive fault-tolerant techniques fail to provide a solu-
tion beyond 24 processors. The heterogeneity of the processors
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Figure 7: Communication energy performance of the proposed CDSE()

is fixed at two. For clarity of representation, results for 5 appli-
cations are plotted and the number of tasks in these applications
is represented in the name of the application.

There are a few trends to follow from this figure. First, the
computation energy for most applications constitutes ≈ 40% of
the total energy consumption. Second, the proposed CDSE()
minimizes the communication energy significantly. On average
for all 50 applications considered (including those not shown
in the figure), the proposed technique achieves a communica-
tion energy savings of 60% and 50% with respect to TMax and
TConOMin respectively. Although not explicitly shown here,
these savings constitute 31% and 22.5% respectively of the to-
tal application energy. Further, the energy obtained using the
proposed CDSE() is only within 10% of the minimum commu-
nication energy achieved using EMin.

An important parameter of the CDSE() algorithm is the user
specified maxIter. This determines the execution time of the
algorithm and the solution quality. Figure 8 plots the normal-
ized energy of the CDSE() for five synthetic applications as the
value of maxIter is varied from 10 to 100. The communication
energy values obtained using the CDSE() for different values
of maxIter are normalized with respect to the minimum com-
munication energy obtained by solving the MIQP problem in
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Figure 8: Solution quality and execution time trade-off for different values of
maxIter

Equation 10 using standard MIQP solvers e.g. CPLEX [33].
As can be seen from Figure 8, for all five applications, the

variation of the communication energy from the minimum en-
ergy point decreases with an increase in the value of maxIter.
This is due to the increase in the search effort. A point to note
here is that the value of maxIter is determined by the maximum
energy variation allowed for the given set of applications. For
all five applications considered, the proposed CDSE() achieves
a maximum of 5% variation from the global optimum point for
maxIter = 100. Setting maxIter equal to 80 results in 15% vari-
ation from the optimum point.

7.2. Performance of CMTM
7.2.1. Time complexity

The complexity of Algorithm 3 is determined as follows. The
number of iterations of the algorithm is determined by the num-
ber of fault scenarios with F faults. This is given by

nFS =

F∑
f =1

narc P f (21)

At each iteration, the CMDS E() algorithm is invoked. The
overall complexity of Algorithm 3 is given by Equation 22
where O(CMDS E) is the complexity of CMDS E().

O(C3) = O(nFS × O(CMDS E)) (22)

The CMDSE() is similar to Algorithm 1 with the exception
of FTRemapTask. The complexity is given by Equation 23.

O(CMDS E) = napp + maxIter ∗ η ∗ O(FTRemapTask) (23)

The complexity of FTRemapTask() is determined by two
quantities – SGen and solveILP. The overall complexity is com-
puted similar to Equation 18 as given by Equation 24.

Table 5: Execution time (in sec) of finding minimum migration overhead

Processors Brute Force TMax ILP Solver

8 0.5 0.065 0.0178

12 8.13 0.1579 0.0402

16 – – 0.0707

32 – – 0.2388

Table 6: Storage requirement with increasing processors for a 3-fault-tolerant
system with 100 tasks

Processors
Number of Bits per Storage

fault-scenarios mapping (KB)

8 112 300 32.8

16 480 400 187.5

24 1104 500 494.3

32 1984 500 968.7

O(C4) = napp ∗ narc ∗ (O(S Gen) + O(solveILP)) (24)

The ILP proposed in this paper is solved using Matlab op-
timization toolbox. Table 5 compares the execution time of
the ILP solver against the brute force technique of finding the
minimum migration overhead and the dynamic programming
based approach of TMax. As can be seen from the table, the
brute-force and the TMax techniques fail beyond 12 tiles due to
the high memory requirement. The ILP approach continues to
provide an optimal solution even for 32 tasks. Moreover, the
computation time of the ILP is 4 times lower than the TMax
technique.

7.2.2. Storage complexity
The storage associated with a 3-fault-tolerant system with

100 tasks is summarized in Table 6. The number of fault-
scenarios (column 2) corresponding to a tile count is computed
using Equation 21. The number of bits required to store a map-
ping mi is given by bits = log2 mIDi, where mIDi is computed
using Equation 1. Finally, the total storage is obtained by multi-
plying the bits per mapping with the total number of mappings.

7.2.3. Algorithm execution time
Table 7 reports the execution time of the proposed technique

in comparison with the TMax technique of [21] as the num-
ber of tasks is varied on an architecture with 4 processors with
heterogeneity of 2. The execution time of the other existing
techniques such as OMin and TConOMin are similar to the
TMax and therefore not shown in the table. All execution times
reported in the table are average of single and double fault-
scenarios of five different applications. As an example, the time
for 16 tasks is the average of 5 synthetic applications each with
16 tasks considering all single and double-fault scenarios pos-
sible with four processors.

The execution-time for TMax includes the time for following
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Table 7: Execution time (in sec) performance of the proposed technique

Tasks
TMax Proposed

Start Map FT Map Total CDS E() CMT M() Total

8 30 13 43 24.5 1,015 1,039

16 1.3 × 105 6 × 102 1.3 × 105 50.1 2,534 2,584

20 9.0 × 106 5.0 × 103 9.0 × 106 56.5 3,170 3,226

24 1.8 × 108 1.2 × 105 1.8 × 108 61.8 4,055 4,117

• Exhaustive search for generating the starting mapping (re-
fer column 2 of Table 4)

• Dynamic programming based technique to generate map-
pings for the fault-scenarios (refer [21])

The execution time of the proposed technique includes the time
for the following

• CDS E() to generate the minimum communication energy
starting mapping

• CMT M() to generate the fault-tolerant mappings for dif-
ferent fault-scenarios

As can be seen from the table (and also established previ-
ously) the bottleneck of the existing techniques is the exhaus-
tive search based starting mapping generation step (column 2).
Another point to note from this table is that the execution time
of the fault-tolerant mapping generation step of the existing
techniques (column 3) grows exponentially with the number of
tasks (and/or processors). Finally, the execution time of the
proposed CMT M technique grows linearly with the number
of tasks (refer Equation 22). The proposed CMT M technique
achieves 30x reductions in execution time with 24 tasks mapped
on 4 processors. This execution time savings increases as the
number of tasks and/or number of processors are scaled further.

7.2.4. Communication Energy performance
Figure 9 plots the average communication energy of the pro-

posed CMTM for single and double faults of 3 synthetic ap-
plications and 3 real-life applications on an architecture with
12 processors. The synthetic applications are represented by
App j, where j is the number of tasks. The proposed technique
is compared with TMax and EMin approaches. Further, to sig-
nify the potential energy savings possible, TMax technique is
split into two categories – one resulting in maximum commu-
nication energy (TMax EMax) and one resulting in minimum
communication energy (TMax EMin). The communication en-
ergy of all three techniques is normalized with respect to the
minimum communication energy for an application obtained
using EMin. The percentage change of TMax EMin and CMTM
with respect to TMax EMax and TMax EMin respectively are
indicated on the bars. Although not explicitly captured in the
figure, the communication energy for the applications constitute
on average 55% of the total energy.

As can be seen from the figure, considering communication
energy in the fault-tolerant mapping generation using TMax can
result in significant communication energy savings (second and
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Figure 9: Communication energy performance of CMTM

third bar for each application). On average for all applications
considered (including those not shown in the figure), commu-
nication energy aware throughput maximization technique re-
sults in 40% savings in communication energy. This is close
to 18% savings of the total energy of an application (i.e. the
sum of computation and communication energy). The proposed
CMT M technique minimizes this further (refer third and fourth
bar for each application). For some applications such as App 24
and VOPD, the throughput maximum mapping and the com-
munication energy minimum mapping results in comparable
data communication over the networks-on-chip. For these ap-
plications, the energy saving using CMT M are less (5.0% and
13.9% respectively). On the other end for application such as
MPEG the two mappings are significantly different and there-
fore CMT M is able to achieve the minimum energy resulting
in 70% reduction in communication energy. On average for all
the applications considered, CMT M minimizes communication
energy by 35% as compared to TMax EMin.

Finally, CMT M achieves an average deviation of 15% from
the minimum energy mappings obtained using EMin signifying
that the heuristic (CMT M) is able to achieve satisfactory result
quality with significant reduction in execution time.

7.2.5. Migration overhead performance
Migration overhead is incurred once fault occurs. This is

a onetime overhead for permanent faults. However, for fre-
quently occurring intermittent faults, this can lead to significant
energy penalty as established in this section.

Table 8 reports the migration overhead (measured as energy)
and communication energy of the existing techniques (OMin
and TMax) in comparison with the proposed CMTM technique
for two different applications (Romberg Integration and VOPD)
with 10 and 12 tasks respectively on an MPSoC with 6 proces-
sors arranged in 2 × 3. The core heterogeneity is assumed to be
2. Similar to previous section, the existing techniques can be
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Table 8: Migration overhead performance

Migration Communication Migration Overhead Extra Energy Iterations

Energy (nJ) Energy (nJ) Savings (nJ) Per Iteration (nJ) to recover

Romberg Integration
OMin EMin 1.1 × 109 2.1 × 105 2.0 × 108 3.0 × 104 6, 667

TMax EMin 1.2 × 109 3.2 × 105 1.0 × 108 1.4 × 105 7, 143

CMTM 1.3 × 109 1.8 × 105 – – –

VOPD
OMin EMin 2.8 × 109 4.3 × 105 5.0 × 108 2.0 × 104 25, 000

TMax EMin 3.0 × 109 4.7 × 105 3.0 × 108 6.0 × 104 5, 000

CMTM 3.3 × 109 4.1 × 105 – – –

split into two categories – one resulting in maximum commu-
nication energy and the other resulting in minimum communi-
cation energy. Results for the minimum communication energy
are only included for comparison. Columns 3 and 4 report the
migration overhead incurred when faults occur and the average
communication energy consumption per iteration of the appli-
cation graph respectively. These numbers are average of sin-
gle and double faults values. Column 5 reports the savings in
migration overhead achieved by OMin EMin and TMax EMin
with respect to the proposed CMTM. Column 6 reports the ex-
tra communication energy incurred in selecting the same two
techniques with respect to CMTM.
Considering permanent faults: As can be seen from the ta-
ble, significant savings in migration overhead are possible with
OMin EMin technique. However, this technique is associated
with energy penalty (column 6). For application Romberg
Integration for example, the migration overhead savings in
OMin EMin is 2 × 108nJ while the energy penalty is 3 × 104nJ
per iteration. As established previously, migration is one time
overhead for permanent faults while communication energy is
consumed both pre- and post-fault occurrence. The savings
in migration overhead is compensated in 2×108

3×104 = 6667 itera-
tions. This is shown in column 7 of the table. Interpreting
this in reverse manner, selecting CMTM as the fault-tolerant
technique results in an extra migration overhead of 2 × 108nJ
which is amortized in the following (post-fault) 6667 iterations
of the application graph. Typically, applications mapped on a
multiprocessor system are executed countably infinite times in
the entire lifetime of the device. If N denotes the total itera-
tions of a device post-fault occurrence, then the first 6667 itera-
tions will be used to recover the migration overhead loss while
the remaining (N − 6667) iterations will fetch energy savings
(3 × 104nJ per iteration). As N → ∞, the energy savings ob-
tained = (N −6667)×3×104 ≈ N ×3×104nJ. This substantial
energy gain clearly justifies the non-consideration of migration
overhead in the permanent fault-tolerant mapping selection.
Considering intermittent faults: For this class of defects, the
migration energy is incurred every time fault occurs. Figure 10
plots the normalized migration overhead performance of the
proposed and the existing techniques for application MPEG
as the fault-rate is varied. The migration overhead values
are normalized with respect to that obtained from OMin EMin
technique. As can be seen from the figure, the proposed
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Figure 10: Migration energy performance of CMTM

CMTM technique minimizes the migration overhead signifi-
cantly achieving 20% lower migration overhead as compared
to the existing TMax EMin. Further, the proposed technique
incurs an average 12% variation from the minimum migration
overhead technique (OMin EMin) for all the applications.
7.3. Throughput performance of CMTM

Streaming multimedia applications can be broadly classified
into two categories – applications, those benefiting from scal-
able QoS and those requiring a fixed throughput. Majority
of the streaming applications such as video encoding/decoding
falls in the latter category. Figure 11 (a) plots the throughput
performance of proposed technique for six streaming applica-
tions – three synthetic (indicated by s( j), where j is the num-
ber of actors of the application) and three real-life (H263 En-
coder, MP3 Decoder and MPEG Decoder) applications. These
applications are executed on a platform with 6 processors and
the results are average of all single and double fault-scenarios.
The throughput obtained using the proposed technique for an
application is normalized with respect to the highest through-
put obtained for the application using TMax technique. The
throughput obtained using OMin and EMin are also included
for comparison. The throughput constraint for the applica-
tions is indicated using the dashed line. As can be seen from
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Figure 11: Throughput performance of CMTM

the figure and expected, the throughput constraint is violated
for most applications for OMin and EMin techniques. This is
due to the non-consideration of throughput degradation in the
fault-tolerant mappings generation process. The proposed tech-
nique satisfies the throughput requirement for all applications
as throughput degradation is explicitly considered in the flow
(in the S DF3 tool). This result signifies the importance of the
proposed technique for throughput constrained streaming appli-
cations. Finally, the communication energy of the same appli-
cations achieved using the proposed and the existing techniques
are plotted in Figure 11 (b). Although not shown explicitly, the
proposed technique delivers an average 60% and 45% better
throughput per unit energy as compared to TMax and EMax
techniques respectively, clearly demonstrating the advantage of
the proposed technique for scalable throughput applications.

8. Conclusions

This paper presents a communication and migration over-
head aware offline analysis technique to generate fault-tolerant
mappings for applications mapped on heterogeneous multipro-
cessor systems. Two heuristics are proposed to reduce the de-
sign space exploration time. Experiments conducted with syn-
thetic and real application graphs demonstrate that the proposed
technique is able to minimize the communication energy by
35% and the migration overhead by 20% as compared to the ex-
isting fault-tolerant techniques. The analysis time is reduced by
30x with a maximum deviation of 15% from the energy optimal
solution. These results signify the adaptability of the proposed
technique for large scale problems. Finally, the proposed tech-
nique is also shown to deliver an average 50% better throughput
per unit energy for streaming multimedia applications. Consid-
eration of task computation energy and minimization of map-
ping storage overhead are left as future works.
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