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Abstract—Soft-errors in LUT configuration bits of FPGAs can
alter the functionality of an implemented design, rendering it
useless, unless re-programmed. This paper proposes a technique
to improve autonomous fault-masking capabilities of a design
by maximizing the number of zeros or ones in LUTs. The
technique utilizes spare resources (XOR gates and carry chain)
of FPGA devices to selectively manipulate LUT contents using
two operations – LUT restructuring and LUT decomposition.
Experiments conducted with a wide set of benchmarks from
MCNC, IWLS 2005 and ITC99 benchmark suite on Xilinx Virtex
6 FPGA board demonstrate that the proposed methodology
maximizes logic 0/1 of LUTs by an average 20% achieving
80% fault-masking with no area overhead. The fault-rate of the
entire design is reduced by 60% on average as compared to the
existing techniques. Further, an additional 5% fault-masking can
be achieved with a 7% increase in slice usage.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are emerging
as an attractive alternative to Application Specific Integrated
Circuits (ASICs) due to faster turnaround time, low cost
and programming flexibility. Static Random-Access Memory
(SRAM) is the most prevalent memory technology used in
FPGAs (e.g. Xiling, Altera). For most of the modern SRAM-
based FPGAs, SRAM cells constitute 90% of all the logic
elements on the device. An inadvertent change in value of
one or more of these SRAM cells due to single event upsets
(SEUs)1 can potentially alter the functionality of an imple-
mented design. Such errors manifest as permanent faults until
the SEU affected bit(s) are re-written. The increasing concern
of SEUs in FPGAs has attracted significant attention in recent
years. Two popular solutions to this problem are hardware
redundancy e.g. Triple Modular Redundancy (TMR) [1] and
configuration scrubbing [2] [3]. However, both these tech-
niques are associated with high overhead (area and power for
the former and reconfigurable delay for the latter). Some of the
low overhead solutions to the aforementioned problem include
fault masking [4]–[9] and information redundancy [10].

The technique proposed in this paper involves logic ma-
nipulation for autonomous fault-tolerance and therefore tech-
niques [5]–[9] are discussed in more detail. A technique is
proposed in [5] where dual outputs of modern FPGAs are
ANDed/ORed depending on the logic masking effectiveness
(ANDing for LUT with more zeros and ORing for LUTs
with more ones). The logic implemented in the LUTs are
not modified to maximize the number of zeros or ones
in the LUTs. The proposed technique is shown to achieve

1SEUs are caused by alpha and neutron particles striking the device.

high fault-masking with small area overhead. As shown in
Section IV, the technique proposed in this paper modifies the
LUT implemented logic and improves fault-masking by 20%
using the spare resources on FPGA devices.

Another technique proposed in [7] maximizes the identical
configuration bits for complementary inputs of a LUT, thereby
reducing the propagation of faults seen at a pair of comple-
mentary inputs. The technique preserves the functionality and
the topology of the LUT network (in-place) while maximizing
the fault masking. This technique reduces the relative fault rate
by 48% and increases the Mean Time To Failure (MTTF) by
1.94 times with no area overhead. An in-place decomposition
technique is proposed in [6] where faults in SRAM bits are
masked by decomposing a LUT logic into 2 smaller LUT logic
functions using the dual output feature of modern FPGAs. The
decomposed functions are then combined back to the initial
logic using unused carry-chains within a logic block. This
technique improves MTTF of Xilinx Virtex 5 FPGAs by 1.43
times. One limitation of these two techniques is that they are
limited to combinatorial circuits only.

Contributions: This paper proposes a fault-masking tech-
nique for autonomous fault-tolerance of the LUTs of SRAM-
based FPGAs. Key contributions in this respect are the fol-
lowing.
• Maximization of zeros and ones of LUT configuration

bits through LUT restructuring
• Controlled decomposition of LUTs for higher granularity

of fault-tolerance
• A generic technique for combinatorial and sequential

circuits
Experiments conducted with a diverse set of benchmarks

from MCNC, IWLS and ITC99 benchmark suite on Virtex
6 FPGA board from Xilinx demonstrate that the proposed
technique maximizes the number of zeros or ones in LUT
by an average 20%. Fault-masking of 80% is achieved for the
entire set of benchmarks which is 22% better as compared
to the state-of-art techniques. Further, fault-masking can be
increased by another 5% with 7% increase in the number
of slices. Monte Carlo simulations with randomly injected
faults show that the proposed technique tolerates 60% more
faults on average for the entire design for all the benchmarks
considered.

The rest of the paper is organized as follows. A brief
overview of the FPGA architecture and the fault masking of
LUT is provided in Section II. The design flow is introduced in
Section III with a brief overview of the two key components
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Fig. 1. Dual output feature of modern FPGA LUT

– LUT decomposition and LUT restructuring. Experimental
setup and results are discussed next in Section IV. Finally,
conclusions are drawn in Section V along with scope for future
enhancements.

II. AUTONOMOUS FAULT MASKING OF LUT

Xilinx Virtex 6 FPGA devices consist of 6-input LUTs.
Each 6-LUT internally consists of two 5-LUTs as shown in
Figure 1. LUTs of FPGAs from other vendors such as Altera
also resembles this structure. The two outputs (o5 and o6) of
a 6-LUT can be used individually to implement two different
5-input functions in the two component LUTs. The block can
also implement one 6-input function in which case the o5
output is unusable. If not all inputs of the LUT are used to
implement a function, one of the component LUTs remains
unused. Specifically, if the used inputs of an n-LUT is less
than n, the number of unused entries in the LUT is at least
2n−1. This has motivated researchers to focus on free LUT
entries to provide autonomous fault-tolerance. A LUT is said
to be autonomous fault-tolerant if it is able to tolerate faults
without system or user intervention.

Let the number of used inputs of a LUT be r, where r < n.
If the same content is duplicated in the two component LUTs
of an n-LUT and the two outputs are ANDed, any 0 → 1
faults in the 2r used entries can be tolerated. In a similar
manner, if the two outputs are ORed, any 1 → 0 faults can
be tolerated. If n0 and n1 denotes the number of zeros and
ones respectively in the used entries then n0 + n1 = 2r. The
total number of faults possible in the entries is 2 ∗ 2r = 2r+1

(every entry can have a stuck-at 0 (SA0) and stuck-at 1 (SA1)
fault and therefore total number of SA0 faults and SA1 faults
are same and equal to 2r). The SA0 (and respectively SA1)
faults for logic-0 (and logic-1) entries are benign. The total
number of faults which can impact the circuit behaviour is
therefore 2r. If the two outputs of the component LUTs are
ANDed (respectively ORed), all SA1 faults of logic-0 entries
(respectively SA0 faults of logic-1 entries) can be tolerated.
The total faults tolerated is therefore n0 (ANDing) or n1

(ORing). Assuming the possibility of ANDing or ORing, the
maximum fault masking possible for the LUT is given by

FM =
max(n0, n1)

2r
(1)

III. DESIGN FLOW

Figure 2 shows the FPGA-based design implementation
flow. The conventional flow adopted by most FPGA vendors
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Fig. 2. Autonomous fault-tolerance design flow

are marked with the white boxes in the figure. The boxes in
gray are the steps introduced for autonomous fault-tolerance.
The first step towards this is the extraction of the LUT and
its contents from the place and route netlist. For Xilinx based
design flow, this information is available in the netlist circuit
description (ncd) file generated in the LUT mapping part
of the Placement and Routing step. The LUT extraction is
performed in the LUTXtract block of the proposed design flow.
Following this step, are the two operations – logic restructuring
(LR) and logic decomposition (LD). The effectiveness of
the two operations are evaluated in Section IV. Finally, the
Resynth block modifies the gate netlist by making necessary
connections with the carry chain and spare xor gates and
prepares it for bitstream generation. The components of the
design flow are introduced next.

A. LUT extraction

The LUT extraction step is provided as pseudo-code in
Algorithm 1. The algorithm takes a placed and routed ncd file
and generates a database of LUTs consisting of the following
information – support and composition. These are defined as
follows.

Definition 1: (SUPPORT OF A LUT) The support of a
LUT is the set of used inputs of the LUT.

As an example, if a 6-LUT (with inputs A[5 : 0]) is used
to implement a function y = (A[0] ⊕ A[1])A[2], the support
is the set {A[0], A[1], A[2]}.

The support of a logic function is the same as the support
of the LUT used to implement the function.

Definition 2: (COMPOSITION OF A LUT) The composi-
tion of a LUT is a tuple consisting of the indexed content of
a LUT.

The composition of an n-LUT is represented as 〈a0, a1, · · ·
am−1〉, where m = 2n and ai ∈ [0, 1]. If the input to the LUT
is denoted by A[(n−1) downto 0], then ai is the content of the
LUT2 at location bin2dec(A), where bin2dec routine converts

2Content of a LUT is determined by the logic function it implements.



Algorithm 1 LUT extraction
Input: Netlist circuit description (ncd) file
Output: LUTDB

1: xdl = ncd2xdl(ncd)
2: [support composition] = RapidSmith(xdl)
3: LUTDB = [support composition]

a binary number to its equivalent decimal.
The first step in Algorithm 1 is the conversion of the ncd file

to Xilinx Description Language (xdl) [11]. This is a proprietary
format of Xilinx consisting of clear-text representation of the
implemented design allowing designers to get access to a
very low-level description of the FPGA’s internal state. The
ncd2xdl() routine provided in the Virtex 6 tool chain is used to
convert the same. The xdl file is then input to RapidSmith [12]
tool to generate the support and composition. These are then
stored in the LUTDB database for use in the subsequent
steps.

B. Restructuring of LUT

The restructuring of a LUT involves selective inversion of
some entries of the LUT to maximize the number of zeros or
ones. The following definitions are provided for the problem
formulation.

Definition 3: (0-SENSITIVITY OF A SUPPORT) The 0-
sensitivity of a support of a LUT is defined as the set of indices
in the LUT for which the value of the support is logic 0.

If the positions (indices) of a 3-LUT with inputs A[2 : 0]
is the set {0, 1, 2, · · · , 7}, then 0-sensitivity of A(0) is the set
{0, 2, 4, 6}, that for A(1) and A(2) are the sets {0, 1, 4, 5}
and {0, 1, 2, 3} respectively. It is not difficult to see that the
cardinality of the 0-sensitivity of any support of a LUT is
2n−1, where n is the total number of supports of the LUT.

Similarly, the 1-sensitivity of a LUT support can also be
defined. The 0,1 sensitivity of a support i is denoted by S0

i

and S1
i respectively.

The proposed logic restructuring technique involves deter-
mining a support of a LUT and the corresponding sensitivity
such that, logic inversion of the content of the LUT at the
positions specified in the sensitivity list maximizes the number
of zeros or ones in the LUT. Continuing with the same example
as above, the 1-sensitivity of the three inputs A(0), A(1) and
A(2) are respectively {1, 3, 5, 7}, {2, 3, 6, 7} and {4, 5, 6, 7}.
The content of LUT at positions specified by each of the 6 sets
(0-sensitivity and 1-sensitivity of the three inputs) are inverted
one at a time and the fault-masking is determined. The set that
gives the highest fault-masking is recorded for the LUT.

Clearly, selectively inverting the LUT content leads to a
different implemented functionality than original. However, by
using XOR or a XNOR gate, the original function can be easily
recovered. Specifically, if f be the original output of a LUT
(i.e. implemented by the tool) and f ′ be the output of the
LUT after inverting the LUT content of S1

i , then, f = f ′ ⊕ i.
Instead, if S0

i is used, then f = f ′ ⊕ i.
Algorithm 2 provides the pseudo-code for the logic re-

structuring technique. For each support of the LUT, the 0/1
sensitivity are determined and the fault-masking is calculated.

Algorithm 2 LUT restructuring
Input: LUTDB, T
Output: LUTDBn

1: for all lut ∈ LUTDB do
2: compute FM of lut according to Equation 1
3: FMbest = FM , supbest = ∅, senbest = ∅, lutbest =

lut
4: for all i ∈ support(lut) do
5: for all j ∈ [0, 1] do
6: generate Sj

i

7: ∀k ∈ Sj
i , lut(k) = lut(k)

8: compute FM of lut
9: if FM > FMbest then

10: FMbest = FM , supbest = i, senbest = j
11: lutbest = lut
12: end if
13: end for
14: end for
15: LUTDBn.push(lutbest)
16: end for

At the output of the algorithm, a support is determined along
with its sensitivity type.

C. Decomposition of LUT

Synthesis of optimal boolean logic is a well studied research
topic for FPGA technology mapping [13]–[15]. One of the
fundamental operations in logic synthesis is to minimize cir-
cuit routing complexity by logic decomposition. This involves
breaking down a large boolean function into smaller com-
ponents, keeping the functionality unchanged. The following
definitions are provided.
Definitions and lemmas

Definition 4: (DECOMPOSABILITY OF LUT) Let f(X)
be a function implemented in a LUT. The LUT can be
decomposed and represented as f(X) = h(g(X1, X2), X2)
where X = X1 ∪X2.

Figure 3 shows the decomposition of the logic function f .
Definition 5: (MIN SET OF A LUT) The min set of a

LUT is the set of indices for which the LUT contents are
logic 1.

The min set of a LUT is given by

ms = {i|ai = 1, ∀1 ≤ i ≤ m} (2)

where m is the number of LUT entries.
Definition 6: (CUT OF A MIN SET) The cut of a min set

is defined as the decomposition of the min set into s smaller
sets (ci, ∀1 ≤ i ≤ s) sharing the minterms.

Mathematically, this can be expressed as

ms = ∪s
i=1ci (3)

The cut can be overlapping (common elements in cut sets)
or non-overlapping (otherwise).

Definition 7: (ORDER OF A CUT) The order of a cut is
defined as the maximum number of cut sets formed from the
decomposition of the corresponding min set.
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Clearly, cut of order 1 is same as the min set. For this
research, the order of a cut is restricted to 2 (i.e. s = 2).

With the above definitions, the following lemma can be
stated. The proof is omitted for space limitations.

Lemma 1: The decomposition of a LUT is equivalent to
a cut of order 2 of the corresponding min set.

Notations used in problem formulation
The following notations are defined.

f n-input function implemented in a LUT
l total number of minterms of f
ms(f) 〈t1, t2, · · · , tl〉 = min set of f
c1, c2 cut sets of ms(f) with a cut of order 2
ϕi logic function represented by ci
ni support of ϕi

Problem formulation
With the notations defined, it can be concluded that f = ϕ1+
ϕ2 and n1, n2 ≤ n. Three LUTs are required to implement f
(one LUT each to implement ϕ1 and ϕ2 respectively and one
LUT to implement the OR-operation). However, with a simple
modification, the same can be represented using two LUTs (as
shown in Figure 3). Here, the first LUT implements ϕ1 while
the second implements ϕ2 and the OR-functionality. Denoting
ϕ′2 as the functionality of the second LUT, the following
Equation holds trivially.

f1 = LUT (ϕ1)

f = LUT (ϕ′
2) (4)

where ϕ′
2 = f1 + ϕ2

Since the second LUT requires one additional input (output
of the LUT implementing ϕ1), the support of the second LUT
is n2 + 1 where n2 is the support of ϕ2.

The min set of LUT(ϕ1) is the set c1. The min set of
LUT(ϕ′2) is calculated as follows. The total entries of the truth
table of ϕ′2 is 2n2+1. Half of these entries have f1 = 1 (since
f1 is an input to the function ϕ′2). Further, for f1 = 1, the
function ϕ′2(= f1 +ϕ2) assumes logic-1. Thus the min set of
ϕ′2 is c′2 = {(2n2 + 1), (2n2 + 2), · · · , 2(n2+1)} ∪ c2

Assuming the LUT faults are independent and identically
distributed, the joint fault masking of the two LUTs is calcu-
lated according to Equation 1 as shown below.

FM =
max(|c1|, 2n1 − |c1|)

2n1
+ (5)

max(|c′2|, 2n2+1 − |c′2|)
2n2+1

Algorithm 3 LUT decomposition
Input: LUTDBn, T
Output: LUTDBf

1: for all lut ∈ LUTDBn do
2: compute FMlut

3: if FMlut < T then
4: Vassign(i) = 1, ∀1 ≤ i ≤ 2l
5: fmbest = calculateFaultMasking(Vassign)
6: Vbest = Vassign

7: while numIter < maxIter do
8: for i = 1 to 2l do
9: [fm1 ϕ1 ϕ′2] = calculateFaultMasking(Vassign)

10: Vassign(i) = [Vassign(i) (+) 1]
11: [fm ϕ1 ϕ′2] = calculateFaultMasking(Vassign)
12: if fm < fm1 then
13: Vassign(i) = [Vassign(i) (−) 1]
14: fm = fm1

15: end if
16: end for
17: numIter ++
18: if fm > fmbest then
19: fmbest = fm; Vbest = Vassign

20: end if
21: /* randomly assign the minterms to a set
22: end while
23: [fm ϕ1 ϕ′2] = calculateFaultMasking(Vbest)
24: [lut1lut2] = convertToLUT (ϕ1, ϕ

′
2)

25: LUTDBf .push(lut1, lut2)
26: else
27: LUTDBf .push(lut)
28: end if
29: end for

The optimization problem is formulated as follows:

maximize FM

subject to n1 ≤ n (6)
n2 < n

ms(f) = c1 ∪ c2

Solution approach
The optimization problem defined in Equation 6 is quasi-
convex. A heuristic is proposed here to solve the same. A
vector (Vmin) is defined to hold the minterms of the function
f . Each minterm in entered twice in the vector (Vmin) to
allow overlapping of the min sets c1 and c2. A second vector
(Vassign) is defined of the same size as Vmin. Each element,
Vassign(i) denotes the min sets (c1 or c2) to which the minterm
Vmin(i) is assigned.

Vmin = 〈t1, t2, · · · , tl, t1, t2, · · · , tl〉
Vassign = 〈u1, u2, · · · , u2l〉 (7)

where ui ∈ [1, 2]

The pseudo-code for the proposed heuristic is shown in
Algorithm 3. The algorithm takes LUTDB (generated using



Algorithm 4 calculateFaultMasking(): calculate the fault
masking
Input: Minterm vector Vmin and assignment vector Vassign

Output: Fault masking FM , logic functions ϕ1, ϕ′2
1: c1 = {Vmin(i)| such that Vassign(i) = 1, 1 ≤ i ≤ 2l}
2: c2 = Vmin \ c1; Determine n2

3: c′2 = {(2n2 + 1), (2n2 + 2), · · · , 2(n2+1)} ∪ c2
4: tt1 = formTruthTabl(c1); tt2 = formTruthTabl(c′2)
5: [n1 ϕ1] = QuineMcCluskey(tt1)
6: [n′2 ϕ′2] = QuineMcCluskey(tt2)
7: if n1 ≤ n and n′2 ≤ n then
8: compute FM according to Equation 5
9: else

10: FM = 0
11: end if
12: Return [FM ϕ1 ϕ′2]

Algorithm 1) and a user defined parameter (T ) signifying the
fault masking threshold. For every LUT of the LUTDB,
the fault masking is computed using Equation 1 (line 2).
If this is higher than the threshold (T ), no decomposition
is performed on the LUT. If the fault masking is less than
the threshold, LUT decomposition is performed to maximize
FM according to Equation 6 (lines 4-15). The first step
towards this is the assignment of a set for all the minterms
in Vmin (line 4). For each of the minterms, the fault masking
is computed using the calculateFaultMasking() routine (line
9). The set assignment is changed (line 10) and the value
is recalculated (line 11). The assignment is retained if this
value is greater than the previously calculated one, otherwise
the move is discarded (lines 12-15). The (+) and (−) are
modulo-2 addition and subtraction respectively. If the fault
masking obtained is greater than the best value obtained so far,
the best values are updated (line 19). To enable the algorithm
search for the global maxima, minterms are randomly assigned
to different sets and the steps are repeated. This is continued
for maxIter number of iterations, where maxIter is a user
defined parameter governing the algorithm execution time and
solution quality.

An essential component of Algorithm 3 is the calculate-
FaultMasking() routine, which is provided as pseudo-code
in Algorithm 4. The algorithm takes the minterm vector
Vmin and the assignment vector Vassign. The minterms are
partitioned into two sets c1, c2 according to the assignment.
The corresponding truth tables are generated with minterms
in c1 and c2 respectively. The next step is the minimization of
each of the truth tables according to the Quine McCluskey
algorithm (lines 4-5). if the number of inputs satisfy the
constraints in Equation 6, the fault masking is calculated and
returned, else 0 is returned.

An example is provided to better understanding of the
proposed LUT decomposition algorithm. Figure 4(a) plots
the truth table of the function f = (A + B)C + C ′D. The
corresponding min set (ms) is indicated. Figure 4(b) plots the
one possible cut of ms. Here ms = c1 ∪ c2 and c1 ∩ c2 = ∅.
Figure 4(c) represents the implementation of Figure 3 where
the f1 output of the first LUT (implementing the function ϕ1)

  CD
AB

  CD
AB

f = (A+B)C + C’D

00
01
11
10

00 01 11 10

0 1 0 0
0 1 1 1
0 1 1 1
0 1 1 1

Truth table of f

ms(f) = {1,5,6,7,9,10,11,13,14,15}

00
01
11
10

00 01 11 10

0 1 0 0
0 1 1 1
0 0 0 0
0 0 0 0

Truth table of ϕ1 

00
01
11
10

00 01 11 10

0 0 0 0
0 0 0 0
0 1 1 1
0 1 1 1

00
01
11
10

00 01 11 10

0 1 0 0
0 1 1 1
0 0 0 0
0 0 0 0

Truth table of ϕ1 

100
101
111
110

00 01 11 10

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Truth table of ϕ’2

Truth table of ϕ2 

c1 = {1,5,6,7}
c2 = {9,10,11,13,14,15}

f1 = LUT(ϕ1) 
f2 = LUT(ϕ2)

f = f1 + f2

0 0 0 0
0 0 0 0
0 1 1 1
0 1 1 1

000
001
011
010

f1 = LUT(ϕ1) 
f = LUT(ϕ’2)

c1 = {1,5,6,7}
c’2 = {9,10,11,13,14,15,16,17,…,31}

00
01
11
10

00 01 11 10

0 1 0 0
0 1 1 1
0 0 0 0
0 0 0 0

Truth table of ϕ1 

f1 = LUT(ϕ1) 
f = LUT(ϕ’2)

c1 = {1,5,6,7}
c’2 = {5,6,…,15}

00
01
11
10

00 01 11 10

0 0 0 0
0 1 1 1
1 1 1 1
1 1 1 1

Truth table of ϕ’2 

  CD
AB

  CD
AB

       CD
f1AB

  CD
AB

  CD
f1A

(a) (b) (c) (d)

Fig. 4. Example of LUT decomposition
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Fig. 5. LUT optimization using Quine McClusky algorithm

serves as one of the inputs of the second LUT. The second
LUT of Figure 4(c) indicates this. Finally, Figure 5 plots the
result after optimization of the second LUT of Figure 4(c)
using Quine McClusky algorithm.

D. LUT re-synthesis

The LUT restructuring step of the flow involves imple-
menting the AND and OR masking for each LUT of the
implemented design. In [5], the authors proposed to merge
the masking logic for a LUT in the LUT of its fanout. This
can lead to a reduction of the number of usable inputs of the
fanout LUT. To avoid this problem, this paper proposes to
use the carry chain logic of the Virtex 6 FPGA. If o5 and
o6 are the dual-outputs of a LUT, then the carry chain logic
implemented is given by the equation

Cout = Cin.O5 + Cin.O6 + O5.O6 (8)

Clearly, setting Cin = 1, results in ORing of O5 and O6,
while setting it to 0, results in ANDing.

The objective of the LUT re-synthesis step is to determine
the value of cin to maximize the logic masking effectiveness.
In other words, for each LUT, if the number of zeros is more
than the number of ones, cin is set to 0 to mask 0→ 1 faults.
Similarly, for LUTs with more number of ones, cin is set to
1 to mask 1→ 0 faults.



TABLE I
SLICE AND LUT USAGE OF BENCHMARKS CONSIDERED

Suites Benchmarks Used slices Used LUTs % Free LUTs Suites Benchmarks Used slices Used LUTs % Free LUTs

MCNC

alu4 178 512 28

Opencores

aes 184 573 22
apex2 252 706 30 ethernet 1168 3179 32
apex4 198 618 22 i2c 80 200 37.5
bigkey 374 605 60 mem ctrl 503 1171 42
clma 4 7 56 pci 755 1695 44
des 366 564 61.5 spi 202 564 30.2

diffeq 227 526 42 tv80 577 1724 25.3
disp 555 683 69.2 usb phy 78 102 67.3

elliptic 61 133 45.5 vga lcd 132 251 52.5
exp5p 68 107 60.7 wb dma 386 779 49.5

ex1010 205 612 25.3

ITC99

b5 61 155 36.5
frisc 550 1905 13.4 b15 647 1877 27.4

misex3 236 500 47.03 b20 588 2049 13
pdc 138 276 50 b22 896 3165 11.7
s298 9 23 36.1 UMass RCG ava 1035 2611 37

s38417 1235 2168 56.1 dct 8 15 53
s38584 1259 1944 61.4

VPR

mkSMAdapter 415 1064 36
seq 220 739 16 sha 400 1457 9
spla 199 449 43.6 steriovision0 1990 3099 61

tseng 208 539 35.2 or1200 855 2333 31.7

IV. RESULTS

The proposed algorithms are implemented in Matlab run-
ning on 2.1 GHz Intel Core i5 PC with 8GB memory run-
ning Windows. The benchmarks used for analysis and the
slice usage of each benchmark are reported in Table I. All
benchmarks are synthesized, placed and routed using Xilinx
ISE 13.1 with area minimization as the optimization strategy.
The target FPGA used for all experiments is Xilinx Virtex 6
where each configuration logic block (CLB) consists of two
slices with each slice consisting of four 6-LUTs.

As can be seen from the Table I, on average 40% of LUTs
in the used slices are unoccupied. This clearly motivates to
exploit the unused resources for fault-tolerance.

A. Complexity analysis of proposed algorithms
There are three algorithms proposed in this work. However,

Algorithm 1 is tool dependent and not much insight is available
on the exact complexity. This section therefore estimates the
complexity of Algorithms 2, 3 and 4.

Let N denote the number of LUTs used in a given design.
The complexity of Algorithm 2 is computed as follows. For
each LUT, the 0/1 sensitivity is generated for all the support.
Fault masking is then computed after inversion of the LUT
bits corresponding to the sensitivity list. Assuming, n-LUT,
the worst case complexity of Algorithm 2 is given by

O(C2) = O(N ∗ 2 ∗ n) = O(N ∗ n) (9)

The complexity of Algorithm 3 is computed as follows.
For each LUT with fault masking less than T , lines 7-25 are
executed. The complexity of this section is dependent on the
complexity of the calculateFaultMasking() routine. Denot-
ing this as O(C4), the worst-case complexity of Algorithm 3
is given by

O(C3) = N ∗maxIter ∗ 2l ∗O(C4) (10)
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Fig. 6. Maximizing of logic 0 of LUTs

The complexity of Algorithm 4 is dependent on the com-
plexity of Quine-McClusky algorithm. This is known to be
NP-complete hard and a greedy heuristic is proposed to solve
the same [16].

B. Maximization of logic 0 in LUTs

Figure 6 plots the average distribution of logic 0’s in
the LUTs of some of the benchmarks after applying the
proposed technique (indicated by the bars titled Proposed).
For comparison, the distribution of 0’s in the LUTs after place
and route (in the original flow) is indicated with the bars titled
Original. Results in the figure can be interpreted as follows.
The LUTs in the benchmark spi have on average 57% logic
0 (and 43% of logic 1) after place and route stage. Post logic
restructuring and decomposition, the LUTs have on average
80% logic 0 i.e. 40% increase in the number of 0’s per LUT
for spi. Similarly, the results for other benchmarks can be
interpreted. The numbers quoted on the bars titled Proposed
indicates the percentage increase as compared to the original
content. Although not explicitly shown here, on average for all
40 benchmarks considered, the proposed technique improves
number of 0’s by 20%.
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Fig. 7. Fault masking of different techniques

C. Fault-masking of LUT

Figure 7 plots the percentage fault masking of LUTs
achieved using the proposed technique in comparison with the
TMR based technique of [1] (referred to as TMR in the figure),
the AND-OR masking based fault-tolerance technique of [5]
(referred as FMD) and the restructuring-based variant of the
same (referred as FMD-R). The technique proposed in this
paper is referred as LR+LD (based on logic restructuring and
decomposition). Additionally, results after logic restructuring
LR is also reported in this figure. Since the techniques in [6]
and [7] are based on fault-masking of entire circuit instead of
individual LUT, they are not included for comparison here.
These techniques are compared with the proposed technique
in terms of circuit-wise fault-masking in Subsection IV-E.

As can be seen from the figure, TMR-based technique
achieves the highest fault masking of all the techniques. This
is due to the triplication of LUT contents. A point to note here
is that, the fault-masking achieved by TMR is computed based
on LUT contents only. The voting logic is not included in the
computation. Although, TMR achieves 100% fault-masking,
this is associated with high area and power penalties. The
proposed LR+LD achieves highest fault masking of all the
techniques. On average for all the benchmarks considered,
LR+LD achieves fault-masking of 85% which is 60% and
22% better with respect to FMD and FMD-R respectively.
The fault-masking achieved using LR is average 80% for all
benchmarks. However, for some circuits such as aes, the fault
masking of LR is not significantly high (≈ 57%). Performing
logic decomposition (LD3) on the same improves LUT fault-
masking to 82%. From these results, it can be concluded that
while LR achieves good fault-masking for most circuits, a
combination of the two (LR+LD) guarantees to provide more
than 80% fault-masking for all circuits.

Figure 8 plots the area overhead of the proposed fault-
tolerant techniques in comparison with the existing techniques
for the same set of benchmarks. The area overhead is measured
in terms of slices used. The area of the base design (without
incorporating fault-tolerant techniques) is normalized to 100
slices. As can be see from the figure, FMD achieves minimum
area overhead. However, only 50% faults are masked as shown
in Figure 7. The area overhead for FMD-R and LR are
respectively 2% and 4%. The proposed LR+LD technique has
an area overhead of 7% on average for all the benchmarks
considered.

3The threshold for LD is set to 0.7.
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D. Performance with varying fault-threshold

Figures 9 and 10 plots the fault masking and the area of
the proposed LD technique for varying threshold (T). From
Figure 9, we can see that the best fault masking for most
benchmarks is achieved when the threshold is set at 70.
Moreover, at this threshold, the area overhead is only 7% more
on average as compared to a design with no fault masking.
However, if optimum area and fault masking is required, it
can be seen from Figure 11, that a threshold of 60 would give
the best fault masking for the least area. Since the optimum
threshold varies with each design, it is left to the user to tune
the threshold according to the amount of fault masking needed
and the area overhead tolerable.

E. Fault-masking of entire circuits

Table II reports the circuit-wise (full chip) fault-rate ob-
tained by Monte Carlo simulations with 50K input vectors.
Faults are injected randomly into the circuit. The fault-rate
is measured by the number of observable faults. A fault
is observable if the observed primary output of the circuit
differs from the reference output. Otherwise, the fault is
considered to be masked in the circuit. The fault-rate of
proposed LR+LD is compared with the FMD technique and the
in-place decomposition technique of [6] referred as IPD. Our
technique can be used for fault masking of both combinatorial
and sequential circuits since the faults are masked individually
for each used LUT. However, IPD uses an end-to-end fault
masking technique that currently only works for combinatorial
circuits. Due to this, only combinatorial circuit benchmarks are
included for comparison.

There are few trends to note from the table. Firstly, the fault
rate for entire circuit are generally lower than those obtained
per LUT (refer Figure 7). The circuit-wise fault-masking is
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measured from primary inputs to primary outputs with some
of the LUT bits getting masked in the subsequent LUT. Sec-
ondly, the proposed LR+LD reduces the fault-rate significantly
achieving 68% and 60% lower fault-rate as compared to FMD
and IPD respectively.

F. Algorithm runtime

Table III reports the execution time of the different algo-
rithms proposed in this paper in comparison with the time
taken by the synthesis and place and route steps of the
conventional flow using Xilinx ISE 13.1.

V. CONCLUSIONS

This paper proposes a technique to maximize the fault-
masking capabilities of a LUT using logic decomposition
and restructuring. Experiments conducted with benchmarks
from a wide range of benchmark suites on Xilinx Virtex 6
FPGA board demonstrate that 85% of the faults in a LUT
can be masked with only 7% increase in slice usage. An open
source tool release is planned to help researchers world-wide
to benefit from our work and easily implement and test their
techniques with various benchmarks and compare with state
of the art techniques.
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