High Speed Video Processing Using Fine-Grained
Processing on FPGA Platform

Zhi Ping Ang, Akash Kumar, Yajun Ha
Department of Electrical & Computer Engineering
National University of Singapore
4 Engineering Drive 3, Singapore 117583
Email: {angzhiping,akash,elehy} @nus.edu.sg

Abstract—The paper proposes an FPGA-based pixel array
processor which performs Laplacian filtering on a 40 by 40
pixel gray scale video at a high frame rate of 10000 frames
per second. The hardware architecture comprises of primitive
pixel processors that use bit-serial arithmetic to compute. Each
processor is connected in a 2-dimensional mesh topology to
form the overall array processor. It features the novel use
of partial reconfiguration to pass inputs into and pull results
out of the array. The array processor is implemented on the
Virtex-6 ML605 Evaluation Kit using a MicroBlaze system.
It has been found that each pixel processor requires a single
configurable logic block and is able to achieve the target frame
rate at a low operating frequency of 0.31 MHz. The detailed
correspondence between the contents of slice lookup tables and
bitstream format in Virtex-6 architectures is also documented.

Index Terms—Fine-grained FPGA computing; High speed
video processing; Partial reconfiguration; Bit-serial arithmetic

I. INTRODUCTION

Several scientific and engineering fields use high speed
video capture to investigate physical phenomena that are
too fast for human perception. An example would be to
analyse the bio-mechanics of a hummingbird’s wings during
flight [1]. Another application would be ballistic forensics,
whereby the impact pattern of the projectile can deduce
the make of the bullet [2]. Computational processing often
accompanies video capture to extract information from video
frames. [Figure 1| shows the effects of two filters, the Sobel
filter which does edge-detection, and the median filter which
performs noise removal.

A. High Speed Video Processing

High frame rate videos require processing power that
matches the high data throughput. Otherwise, a mismatch in
data rate can be accommodated with the following methods:

1) Off-line Processing: Most commercial high-speed
cameras have a large hard drive to buffer captured frames.
An example would be the Fastcam SA-X by Photron USA
Incorporated, which captures seven second long video in
its 64 GB hard drive at a frame rate of 100000 frames per
second at a resolution of 256 by 256 pixels.

Video analysis proceeds by taking a video of a finite
window and processing it off-line on a workstation. This
implies that image processing cannot be performed in real-
time. However, real-time processing is highly desirable as the
image acquisition system can analyse and make situational

Figure 1.
— Input, D — Output)

Sobel filtering (A — Input, B — Output) and median filtering (C

decisions of an ongoing event. Another advantage is that
off-line processing requires a large amount of secondary
storage to buffer the incoming data, something that real-time
processing does not require.

2) Frame Dropping: Another way of matching the high
throughput of data with low speed processing in real-time is
to drop n — 1 frames for every frame processed. A reduced
frame rate of processing loses accuracy as discarded data
could have been used to refine upon the collected data.

B. Research Contributions

This research proposes a single-chip reconfigurable hard-
ware architecture which eliminates the use of off-line process-
ing and frame dropping by accelerating video processing
using an array of pixel processors. Each pixel processor
operates on a single pixel, providing a computational speed-
up proportional to the input frame size. Therefore, processing
time is independent of the video dimensions.

This array processor also features the novel use of partial
reconfiguration to distribute pixel values to all the processors
in the array, where it is infeasible to use a bus interface
since the array occupies a large area.

II. HARDWARE-BASED HIGH SPEED VIDEO PROCESSING

To address the disadvantages of off-line processing and
frame dropping, dedicated hardware is used to attain high
frame rate video processing. They are categorised into three
main classes.

A. Commercial Video Processors

For commercially available devices that are able to process
incoming frames in real-time, processing capability is often
built into image sensors. Unfortunately, most image sensors
have primitive forms of built-in processing. The following
are examples of primitive processing that are commonly
available:

1) Colour Space Conversion: Almost all image sensors
output the image in either RGB or YCbCr colour space.
Colour space conversion trivially transforms the image
strictly at the pixel level, so no useful higher level informa-
tion, such as edge features, can be obtained. An example
would be the OV5642 Color CMOS QSXGA Image Sensor
by Omni Vision, which provides output in colour space
formats such as RGB444, CCIR656 and YCbCr422.

2) Amplification: Amplification makes the overall image
brighter by uniformly scaling the magnitude of every pixel.
Similar to this operation occurs at the pixel
level, so it does not perform any useful higher-level analysis.
Adjustments are often limited to fewer than 4 bits.

3) Power Line Filtering: When the image sensor operates
from the power mains, the 60 Hz power line hum will affect
the output image. Therefore, power line filtering is used
to remove this effect. Although this filtering is a form of
high level processing, it implements fixed filtering with no
opportunity of tuning the filter parameters.

B. ASIC-based Video Processing in Research

Image sensors with built-in high speed processing capa-
bilities are more advanced within the research community
as compared to commercial sensors. This section explores
some of the cutting edge technology realised on application-
specific integrated circuits (ASIC):

1) A Programmable Vision Chip Based on Multiple Levels
of Parallel Processors [3]: Zhang et al. developed a vision
chip which performs edge detection on an input video of
128 by 128 pixel resolution at a rate of 500000 fps. The
chip devotes a processing element for every pixel, therefore,
the speed up achieved is substantial.

2) Switched Current Analogue Matrix Processor (SCAMP-
3) [4]]: The SCAMP-3 chip performs Sobel filtering on an
input video of 128 by 128 pixels at a frame rate of 3600
fps. Similar to the chip mentioned in speed up
is achieved by devoting dedicated hardware to every image
pixel.

3) A Real-Time Motion-Feature-Extraction Image Proces-
sor Employing Digital-Pixel-Sensor-Based Parallel Architec-
ture [5|]: The chip designed by Zhu and Shibata is fabricated
on the 65 nm process. It features a 100 by 100 pixel sensor
integrated with a row parallel processing unit. As this chip

does row parallel as compared to pixel parallel processing
in the previous 2 examples, the effective processing frame
rate is on the order of a few hundred fps.

C. FPGA-based Video Processing in Research

Although ASIC-based chips achieve excellent frame rate
processing, design and fabrication are tedious and expensive.
The design turnaround time for ASIC-based designs can
take several months. Moreover, fabricating ASICs is not
cost-effective unless they are manufactured in high volumes
(i.e. millions of units per fabrication run). Therefore, a
more flexible and cost effective platform such as the field
programmable gate arrays (FPGA) is preferred for low to
middle volume usage. The following discusses cutting edge
developments of high speed video processing on FPGA.

1) 2000 fps Real-time Vision System with High-frame-rate
Video Recording [6]]: The paper mentions a video capturing
and centroid computation onto a dual-FPGA system. The first
chip performs camera input processing, noise reduction and
interfaces with a workstation; the second chip is responsible
for video processing. The input video has a resolution of
512 by 512 pixels and processes at an effective frame rate
of 2000 fps.

2) Development of High-speed and Real-time Vision
Platform, H3 Vision [7|]: In this research the dual-FPGA
setup is similar to that of [|6], except that the system performs
optical flow computation on a 1024 by 1024 pixel input
image at a frame rate of 1000 fps.

In both research efforts, the downside is that two FPGA
chips are required to achieve a high processing frame rate. It
is preferable for a video capture system to be implemented
on a single chip solution as a larger chip count translates
to higher material costs. Moreover, a multi-chip solution
would mean higher developmental effort and a larger power
expenditure by the system compared to single-chip.

III. PROPOSED ARCHITECTURE

We have seen that in order to avoid the disadvantages
of offline processing or frame dropping as mentioned in
hardware processing is required. The inflexible
and costly ASICs give FPGA-based solutions an upper hand
in terms of implementation flexibility and cost effectiveness.
However, the current state-of-the-art research in high speed
imaging on FPGA has been found to be unsatisfactory in
terms of the use of multiple chips to implement a capture-
and-process system. Therefore, this research paper proposes
a single-chip FPGA solution which performs high speed
video processing.

A. Specifications

This section details the architecture that is to be imple-
mented on a single FPGA chip for this research:

1) Frame Rate: The targeted frame rate is at least 10000
fps.

2) Video Type: The input video is in gray scale with a
bit-depth of 8 and has a resolution of 40 by 40 pixels.

pixel pixel pixel
pixel pixel pixel
pixel pixel pixel

Figure 2. 2-dimensional mesh connected pixel processors

3) Computation: The Laplacian operator is realised and

is given by

1
V2 py=Ipy— =

4 (Iz—l,y + Iat+1,y + Im,y—l + I:c,y+1)

ey

The Laplacian operator is widely used in applications such
as artifact rejection [8]], scene classification [[9] and image
segmentation [10].

4) Architectural Topology: A two dimensional mesh array
(Figure 2) consisting of interconnecting primitive pixel
processors, whereby each processor processes a single pixel.
A processor assigned to every pixel ensures pixel-level
parallelism.

5) Target Platform: The implementation is targeted for the
Xilinx ML605 XC6VLX240T-1FFG1156 Evaluation Board.

B. Bit-serial Arithmetic

Since a processor is devoted to a pixel, economical use
of hardware resources is essential. Therefore, bit-serial
arithmetic is used to implement the Laplacian operator
on each processor. Common arithmetic operations such as
addition, subtraction and multiplication by a constant factor
can be systematically translated into their respective bit-
serial equivalents [11]]. For example, the addition between
two n-bit numbers can be implemented using a single full
adder and a flip-flop, but at the expense of using n clock
cycles for a single addition.

By translating into a bit-serial form, the
architecture of a pixel processor is obtained as shown in
Pixel values reside in shift registers that are
implemented using lookup tables (LUT) in SLICEM-type
slices. The registers shift out pixel values least significant bit-
first into the bit-serial circuitry before returning to populate
the result back into shift registers. Observe that the quarter
pixel value is computed by truncating the last two bits.
This would incur truncation error, but shows
that the error is bounded and follows a predictable error
distribution.

Bit serial arithmetic can also be applied to other common
image filter kernels. [[12]] shows how the Sobel operator and
Hough transformation are implemented using a bit serial
array array. Due to the local connectivities between each pixel

1
|
1
FA, '
:
1
1
1
1

—> Routing fabric
—> Compute/—reset global net
===% Partial reconfi guration fabric

To neighbouring pixel processors

Figure 3. Bit-serial architecture of a pixel processor

processor, these filters are required to have finite support,
i.e. the value of a processed pixel only depends on a small
neighbourhood around where the original pixel is.

C. Fartial Reconfiguration for Pixel Data Distribution

Since the mesh array occupies a large region, using a
bus to distribute pixel data is impractical. Therefore, the
array processor features the novel use of the reconfiguration
architecture to populate shift registers within the array with
input values and to read out the processed data. Reading and
writing configuration data is achieved by using the internal
configuration access port (ICAP) [13[]. The use of partial
reconfiguration to distribute data throughout the FPGA fabric
is novel as the reconfiguration architecture is normally used
with the intention of swapping predefined logic partitions to
cater for multiple use cases. There are several advantages
of using the ICAP module:

1) Reduce Routing Congestion: The partial reconfigura-
tion network can be viewed as a secondary routing fabric.
It is highly recommended to segment part of the design to
use the partial reconfiguration, which could potentially free
up routing resources for a larger design.

2) Smaller Design: By making full use of the partial
reconfiguration routing, a design requires a smaller area
because less routing and logic is occupied. Routing may
consume additional logic, for example, if a signal drives
a large net, logic is replicated to provide a higher current
drive.

D. Gigabit Input Bandwidth From Camera Sensor to FPGA

In order to meet the requirements outlined in [Section I1I-Al
a data throughput of 0.128 Gb/s from the sensor to the FPGA

is required. Three modes of transmission are highlighted:
1) High Speed Differential Signalling using SelectlO™ :
Most image sensor chips provide multi-lane low voltage
differential signalling (LVDS) outputs. An example would
be the MT9J003 CMOS Digital Sensor by Aptina Imaging,
which provides a four lane LVDS output with a maximum
throughput of 2.8 Gb/s. On the FPGA side, the Virtex-6
series supports LVDS via its SelectlO™ ports. Besides LVDS,

SelectIO™ supports other signalling standards such as HT,
LVPECL, differential HSTL and SSTL. The smallest chip
of the Virtex-6 range supports up to 180 differential pairs,
therefore, gigabit input bandwidth can easily be realised
through parallel use of multiple ports.

2) 10 GbE Using RocketlO™: Modern high speed
industrial cameras are often equipped with the Gigabit
Ethernet (GbE) Vision interfaces. For example, the iPort
Video Transmitter by Pleora Technologies has a 10 GbE
interface. Xilinx provides a 10 Gigabit Ethernet Media
Access Controller (GEMAC), which requires the use of
RocketlO™gigabit transceivers.

3) I GbE Using Tri-Mode Ethernet Media Access Con-
troller: If the required throughput is less than a gigabit,
the Tri-Mode Ethernet Media Access Controller (TEMAC),
which is available as a hard IP on Virtex-6 FPGAs, can be
used without any additional soft IP core if interfacing is
done solely through the physical layer. For this research, we
are simulating a camera input from a workstation into the
FPGA using the 1 GbE interface.

IV. XILINX VIRTEX-6 LUT-BITSTREAM
CORRESPONDENCE

In order to populate the shift register with input pixel
values, knowledge of the bitstream format to configure
the ICAP module is required. So far, the one-to-one cor-
respondence between the contents of lookup tables and
the requisite bitstream format has been poorly documented
in both commercial and research literature. The reason of
this omission on the part of Xilinx may either be due to
lack of commercial demand, or possibly the company’s
desire to prevent reverse engineering on their products.
Nevertheless this information is crucial for research groups
who are interested in exploring the possibilities of partial
reconfiguration on existing commercial hardware. Therefore,
this section details the work that has been done on deducing
the LUT-bitstream correspondence on Virtex-6 architectures.

A. Methodology

The Xilinx FPGA Editor is used to alter the contents
within LUTs of a slice and the bitstream of the modified
configuration is generated. The original and modified bit-
streams are then compared using RapidSmith [14].

B. Regions

The Virtex-6 architecture is organized into regions which
are 40 CLBs in height. Altering a single CLB-type frame
changes the LUT contents of a column of 40 slices (i.e.
slices with the same X coordinates) within the same region.
It is impossible to atomically configure either columns which
are not region-aligned or columns which comprise of more
than 40 slices.

C. Frame

The finest granularity of reconfiguration is the frame. A
frame configures a quarter of the LUT contents of 40 slices
lying in a single column of the same region. For Virtex-6

Lookup table contents =

o|oe] [0 <t]en| o =[S —
\./ll‘ll\ mmmmmmmm <r|m 1)
<|<

= s S S
BEEEEEEEHB

=

o

B z[51 a2 5]
BEREE

LI XMYN A\

& Bitstream contents (LSB indexed as 0)

Figure 4. Bitstream to LUT correspondence of a single slice

architectures, a frame comprises 81 32-bit words [13]]. The
first 40 words configure slices with the lower Y coordinates
(i.e. Words 1 & 2 configures SLICE_XmYn, words 3 & 4
configures SLICE_XmYn+1 etc.); the 41% word configures
the horizontal clock tree and error correction codes; the last
40 words configure slices with the larger Y coordinates.

D. Slice Level LUT-to-Bitstream Correspondence

In order to fully configure the LUT contents of a column
of 40 region-aligned slices, 4 consecutively addressed frames
are required. The 256-bit LUT contents of a slice consists
of 8 words straddling across 4 frames.

The detailed correspondence between LUT content and
bitstream is shown in The location within the
bitstream which determines the value of the respective LUT
entry is given by the intersection of both axes at a numbered
box. The number represents the frame index where the bit
resides, with O representing the frame with the smallest frame
address, and 1-3 representing the consecutively addressed
frames. The recursive pattern of the bit correspondences is
succinctly represented by dotted boxes labelled by letters.
Boxes of the same letter have exactly the same structure.

To give an example, given the 4 frame addresses which
configure a slice as X, ..., X+3, the bit value in the entry
AS50 is determined by the 2" bit of the bitstream which
configures the frame addressed at X+3.

E. LUT Configuration

The 6-input LUTSs found in Virtex-6 architecture are highly
flexible; those found in SLICEL-type can be configured as
ROMs, whereas those found in SLICEM-type can be config-
ured as either RAMs, ROMs or shift registers. Depending on
what functionality a LUT realises, the requisite bit pattern
to correctly populate the LUT is different. details
the various bit patterns necessary to correctly initialize or
interpret the contents of LUTs that are configured in various
modes. Below highlights pertinent details regarding

Table T
BIT FORMAT OF VARIOUS LUT CONFIGURATIONS

1) How to Read: The top row represents the four function
generators of a slice. The left column shows the possible
configurations of a LUT can take. Numbered boxes within
the table identify which of the bit in one of the four function
generators is responsible for storing a particular bit in the
respective configuration. To give an example, bit 65 of a
RAMI128X1S is stored in bit 1 of the function generator C.

2) Replicated Bits: Some configurations replicate stored
bits across multiple function generators to implement multi-
ple read ports. For example, bit 3 of a RAM64X1Q is stored
in A3, B3, C3 and D3. During partial reconfiguration, the
bitstream has to configure replicated bits to the same binary
value.

3) O5/06 Outputs: The ROM32X1 and SRL16 allow two
independent blocks, provided they have the same addressing,
to be implemented using one function generator. The OS5
output is associated with the lower 32-bits, and the O6 is
associated with the upper 32-bits of a function generator.

4) Multi-bit Memories: Configurations such as the
RAM32X6SDP are multi-bit memories. The bit ordering
adheres to the diagrams shown in [[15].

V. SYSTEM CONFIGURATION SETUP

shows the system configuration used to test the
array processor on the ML605 platform. Peripherals and

memories are connected together to a MicroBlaze processor
using the AMBA AXI4 interface protocol. Control signals
to operate peripherals go through the slower AXI4-Lite bus,
whereas high throughput traffic, such as DMA transfers

LUT contents — <l —_ — —_ || o
LUT ™ RlEEER | ZEEREAE | BTl | eleRas | SRERRE | AERREE | SR g AEE | ¢
configuration
05 o) | &
ROM32X1
06 Sl=|fer|~ | &
RAM64X1S/ROM64X1 o= o £ R N S R I
RAM64X1D i ol o A R) £ 1 Y e K e g I R £ 2 B o T
RAMI28X1S/ROM128X1 [of—|neof~ | Sof=fz]als | gjzlalelz|z | glg5(g8 | &
Bit 0 o~ | 7 of—|en| | F o|—[aenfs | & of—|afer| < | &
RAM32X2Q -
Bit 1 ||| o S| —|Nfen| <+ - S| —|N|en| < - S| —| | en| <+ oy
Bit0 Sl | &
Bit 1 S| | &
Bit2 Sl=f| | &
RAM32X6SDP -
Bit3 = |
Bit 4 = |
Bit 5 Sl | =
RAM64X1Q i o e L) 1 s 5 e e e e s S K i R 5 3 5 s e K s i I R e 3 B S e
Bit 0 S| =[] e el s e S R
RAM64X3SDP Bit 1 i o i R 3 6 S S R I
Bit 2 - |
RAM128X1D
RAM256X1S/ROM256X1
05
SRL16
SRL32

<«+—> AXI4 bus connection
< ----> Direct memory access

T TR
1
1
v Gigabit
) Ethernet
(> DMA [g
>
pors | |2 pe
sprAM [5 Il ICAP fe oo 5
Interrupt é Array processor
(> Micro3laze

.................. » Interrupt line
- — > Gigabit ethernet

----- » Configuration interface

Figure 5. System configuration

and program memory fetching, occurs over the AXI4 bus.
The following sections highlight pertinent details of the
configuration.

A. User Constraints File

There are three aspects of constraints that have to be
imposed on the design using the User Constraints File (UCF)
[16[]: Placement, timing and logic preservation.

1) Placement: The shift registers, which hold pixel values,
have to be manually placed at predetermined locations within
the FPGA fabric as values are passed into and out of these
registers using partial reconfiguration. Knowledge of the

absolute positions would then allow a correctly formatted
bitstream to be generated in order to populate these registers.

The LOC constraint is used to determine which slice a shift
register is being located. Since for Virtex-6 architectures shift
registers are only available in slices of SLICEM-type [15]],
LOC appropriately assigns every shift register to available
SLICEM slices. Within a SLICEM slice, there are four
possible LUT locations to site a 32-bit shift register [[15]].
Therefore, a BEL constraint is used to constraint which of
the four is to be used as a shift register.

2) Timing: Assuming the ICAP is configured using a 32-
bit interface at a frequency of 100 MHz and 10% overhead,
it can be shown that to achieve the target frame rate of 10000
frames per second, the array processor requires a minimum
clock frequency of 0.31 MHz.

By constraining the clock net within the array processor
to run slightly above the minimum required clock frequency,
it allows the shift registers to be arbitrary located in the
FPGA using the LOC/BEL constraints. This is not possible
if the required clock frequency is on the order of 100 MHz,
where in order to meet timing the shift registers may be
required to be placed automatically using Xilinx place and
route.

3) Logic Preservation: Since the shift registers are modi-
fied via the reconfiguration chain, there is no need for the
register contents to be connected to a top level port. The
SAVE NET FLAG constraint, which prevents the removal
of signals that are unconnected to any I/O pins, is applied
to prevent the Xilinx tool chain from optimizing these shift
registers away since they have no effect on external logic.

B. Pixel Array Processor

The array processor is implemented as an AXI4-Lite slave
peripheral with a single register at the peripheral base address.
A write operation from the MicroBlaze would start the
peripheral (regardless of the write value), whereas a read
operation has no effect. The processor has an interrupt line
which sends a rising edge to the interrupt controller when a
frame has finished processing.

C. Direct Memory Access

A direct memory access (DMA) IP core is used to mediate
high speed memory transfers between peripherals and the
DDR3 SDRAM memory. There is a connection between the
GbE IP and the memory.

D. Interrupts

The following peripherals are connected to the MicroB-
laze interrupt controller: GbE, DMA, ICAP and the array
processor. Interrupts are used to signal completion so that
the MicroBlaze can initiate the next operation.

E. Operation

1) Passing Video into FPGA: A computer passes un-
processed video frames to and processed frames from the
FPGA via a 1 GbE interface. The GbE hardware IP intercepts
the data packets, and with the assistance of the DMA IP,

v

input*.pgm

| Input vectors
/
| <—| Output vectors

Model Sim
@ python

original.mpg

testbench.v

Error
Analysis

4

MATLAB

output*.pgm

Workflow of functional simulation and verification

Figure 6.

automatically populates a buffer residing in the memory.
Upon completion, the DMA interrupts MicroBlaze which in
turn starts transferring data from the memory to the ICAP.
The Lightweight IP (LwIP) library [[17] is used to control
the Ethernet hardware using software.

2) Partial Reconfiguration using ICAP: The MicroBlaze
initiates a DMA transfer from the memory to the ICAP
module. Upon the completion of populating pixel values
using reconfiguration, the MicroBlaze issues a start command
to the array processor.

3) Sending Processed Data Out Using ICAP: Upon
completion of the Laplacian operation, the array processor
interrupts the MicroBlaze, which then initiates a DMA
transfer to pull configuration data out of the array through
the ICAP to the memory.

4) Sending Processed Data Out of FPGA: Processed data
residing in the memory is then transferred out of the FPGA
through the GbE interface to the computer.

VI. METHODOLOGY
A. Test Input

Test video clips are obtained from the UCF-Lockheed-
Martin UAV Data Selﬂ The input video is a full colour
MPEG-2 of resolution 960 by 540 pixels. Since the array
processor requires raw frames as input, the open source
FFMPEG [18] is used to prepare the video by executing the
following processes: frame extraction, RGB-to-gray scale
conversion, scaling the resolution down by a factor of four
along both dimensions, and finally cropping to give a 40 by
40 pixels image in Portable Gray Map (PGM) format with
a bit depth of 8.

B. Verilog Simulation

The array processor is simulated to verify for functional
correctness before implementation on the ML605. A Verilog
test bench parses the PGM images and populates the pixel
values into the array processor. Likewise, the results are
processed by the test bench to give a series of PGM images.
The simulation is performed on Modelsim PE with the help
of Python scripting.

Uhttp://crev.ucf.edu/data/UCF_Aerial_Action.php

http://crcv.ucf.edu/data/UCF_Aerial_Action.php

Figure 7.
correspond to the following modules: light green — array processor, yellow
— ethernet, blue — ICAP, cyan — DDR3 SDRAM bus interface, white —
MicroBlaze, purple — AXI4 bus interface

Post routed layout on the XC6VLX240T. Coloured regions

C. Running on FPGA

The test inputs are passed into the array processor
implemented on the ML605 through a computer connected
to the FPGA via a 1 GbE interface. The processed results
are relayed back to the computer for analysis.

D. Error Analysis

MATLAB is used to measure the amount of truncation
error incurred. It takes in the original gray scale images
and process the ideal Laplacian image using floating point
precision. With the ideal image, it compares with the
output of the Verilog simulation and does a pixel-to-pixel
comparison.

VII. RESULTS

shows the post-routed layout of the entire system
on the ML605. The array processor (highlighted in green)
is neatly sited in a rectangular region at the top left corner
as a result of the UCF placement constraints.

A. Resource Utilization

The resource utilization of the array processor is shown in
This agrees well with the model of the pixel proces-
sor shown in [Figure 3| where 4 slice flip-flops and 4 LUTs
are required to implement a single processor. On average, a
single pixel processor consumes a single configurable logic
block. The figures in the occupied slice column gradually
decreases as the size of the array processor increases due
to fixed resource overheads involved in implementing the
AXI4-Lite bus logic.

B. Comparison Between MATLAB, Simulation and Imple-
mentation Outputs

Between the Verilog simulation model and the implemen-
tation, the outputs are identical, whereas the outputs between
the MATLAB model and the other two differ slightly due to
truncation error in computing the quarter pixel value. It can
be shown that the pixel-to-pixel error between the MATLAB
model and the other two follows approximately that of the

Table 11
RESOURCE UTILIZATION OF ARRAY PROCESSOR PERIPHERAL

Size of array Average resource per pixel

processor Occupied slices | Flip-flop | LUT | LUTRAM
2 x2 4.000 3.500 4.000 4.000
4 x4 2.813 3.875 4.000 4.000
8 x 8 2.328 3.969 4.000 4.000
16 x 16 2.145 3.992 4.000 4.000
32 x 32 2.061 3.998 4.000 4.000
40 x 40 2.063 3.999 4.000 4.000
60 x 60 2.080 3.999 4.000 4.000

Az 7 -/\r.ld A Jf 7o

4 il il

Figure 8.
simulation output and FPGA output

(From left) Original frame #1, MATLAB output, Verilog

multinomial distribution function given by the coefficients
of P(x) given in where the term az’ means
that the probability of the pixel-to-pixel error being b is a.
1 1 1 3 4

P(z) = 556 (1+x4 + a2 —|—x4> (2)

The use of truncation to compute the quarter pixel value
leads to an overestimation of the computed Laplacian value
that is at most 3.0. On average, 0.58 bits of precision is lost
in the computed Laplacian. A x2-test is administered, and
there is insufficient evidence at the 95% confidence level
to reject the hypothesis that the error indeed follows the
multinomial distribution.

Figure 8| shows the output results of frame #1 of the test
video clip. Observe that the outputs from the Verilog and
FPGA are slightly noisier than the one from MATLAB. This
is due to the random errors introduced by truncation error.

VIII. CONCLUSION

In this paper, the LUT-to-bitstream correspondence spe-
cific to Virtex-6 has been fully reversed engineered and
documented. A working implementation of a 40 by 40
pixel has been realized on the ML605, which has been
verified to be functionally correct with respect to its Verilog
model. On average, a pixel processor requires 1 CLB. The
array processor is able to achieve the target frame rate at
a mere 0.31 MHz. To explain the discrepancy between the
MATLAB and Verilog simulation outputs, a multinomial
error distribution adequately models the truncation incurred

as mentioned in [Section III-B!

IX. FUTURE WORK: UTILIZING SLICEL LUTS AS
INPUTS

SLICEL-type slices do not contain shift registers. There-
fore, they are not suitable to store pixel values. This is
unnecessarily restrictive as it is possible to adapt the SLICEL
architecture to accept pixel inputs.

A. Pixel inputs

Since the LUT contents of SLICEL is reconfigurable, pixel
values can be passed into SLICEL through the ICAP module.
Given that there are four distinct LUTs in a SLICEL, a slice
can hold up to four pixel values. Pixels are limited to a
bitwidth of 32-bits because when they are passed out of the
array through SRL32 elements.

B. Bit-serial format

To convert the pixels stored within the LUT into bit serial
format, the multiplexers of the LUTs are addressed by a
n-bit up counter (assuming a pixel bitwidth of 2"). The
output of each multiplexer will give an LSB-first bit-serial
format. n global lines are required to address all SLICEL
multiplexers within the mesh array. Since there are 12 global
clock nets in the Virtex-6 architecture that are accessible to
signals [[19], this should be sufficient if n is small enough.

C. Quarter and full pixel

To generate the quarter and full pixel values, two flip-flops
are required to delay every serial stream. Since there are 8
flip-flops in every SLICEL, every slice is self-sufficient to
implement 4 pixels. The quarter and full pixel serial inputs
are then processed by the circuitry implementing Laplacian
operator.

D. Outputting pixels

The outputs are fed into the shift register inputs of a
SLICEM-type slice. The 4 LUTs of a SLICEM can either be
configured to give 8 16-bit or 4 32-bit shift registers. Given
the predominantly 1:1 ratio of SLICEM to SLICEL slices,
with some regions being 3:1, the recommended SLICEM
configuration would be 8 16-bit shift registers, where each
SLICEM would service inputs from 2 SLICEL. Pixel values
are then read out by reading the frame contents associated
with SLICEM-type slices. neatly summarises what
has been mentioned.

REFERENCES

[1] D. Warrick, B. Tobalske, and D. Powers, “Aerodynamics of the
hovering hummingbird,” Nature, vol. 435, no. 7045, pp. 1094-1097,
2005.

M. Thali, B. Kneubuehl, P. Vock, G. Allmen, and R. Dirnhofer, “High-
speed documented experimental gunshot to a skull-brain model and
radiologic virtual autopsy,” The American journal of forensic medicine
and pathology, vol. 23, no. 3, pp. 223-228, 2002.

W. Zhang, Q. Fu, and N. Wu, “A programmable vision chip based
on multiple levels of parallel processors,” Solid-State Circuits, IEEE
Journal of, vol. 46, no. 9, pp. 2132-2147, 2011.

P. Dudek and S. Carey, “General-purpose 128 x 128 simd processor
array with integrated image sensor,” Electronics Letters, vol. 42, no. 12,
pp. 678679, 2006.

H. Zhu and T. Shibata, “A real-time motion-feature-extraction image
processor employing digital-pixel-sensor-based parallel architecture,”
in Circuits and Systems (ISCAS), 2012 IEEE International Symposium
on. IEEE, 2012, pp. 1612-1615.

I. Ishii, T. Tatebe, Q. Gu, Y. Moriue, T. Takaki, and K. Tajima, “2000
fps real-time vision system with high-frame-rate video recording,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on. IEEE, 2010, pp. 1536-1541.

[2]

(3]

(4]

(5]

(6]

[7]

[8

[t}

[9]

(10]
(11]
[12]

[13]

[14]

[15]

[16]
(171

(18]

[19]

oL SLICEL T SLICEM
> : I I

E ! : i
D2 21> D31,...,D0p| 2DFF |-> | :
= ipixel ! I

D1 o ! ! |sRL32| !
DO p S :
:1/4pixel: DIN :

c3l N =
2 L O :
c2 B> c31, .. 2DFF >3 | :
= H 1 I

c1 T P50 sRus|
co R =N :
S bew |

B3l N P O]
2 P !
B2 s> B3, ..., Bo—p{ 2DFF -5, B ! :
£ PO i

2(1) I B3 SRL32 |
4 >0 :

P P | !

A31 N e
g P :
A2 2> A31,...,A0p| 2DFF > | |
c 1 ! !

Al o ! ! |sRL32]| !
" ko |

Lo |

Figure 9.

Configuration of SLICEL to store pixel inputs

I. Ishii, T. Taniguchi, R. Sukenobe, and K. Yamamoto, “Development
of high-speed and real-time vision platform, h3 vision,” in Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on. 1EEE, 2009, pp. 3671-3678.

P. Van Dokkum, “Cosmic-ray rejection by laplacian edge detection,”
Publications of the Astronomical Society of the Pacific, vol. 113, no.
789, pp. 1420-1427, 2001.

B. Yousefi, S. Mirhassani, and H. Marvi, “Classification of remote
sensing images from urban areas using laplacian image and bayesian
theory,” in Proceedings of SPIE, vol. 6718, 2007, pp. 1-9.

N. Pal and S. Pal, “A review on image segmentation techniques,”
Pattern recognition, vol. 26, no. 9, pp. 1277-1294, 1993.

K. Johansson, “Low power and low complexity constant multiplication
using serial arithmetic,” Ph.D. dissertation, Linkdping, 2006.

C. Nagendra, M. Borah, M. Vishwanath, R. Owens, and M. Irwin,
“Edge detection using fine-grained parallelism in vlsi,” in Acoustics,
Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE
International Conference on, vol. 1. 1EEE, 1993, pp. 401-404.
Virtex-6 FPGA Configuration, Xilinx Inc., September 2012, uG360
(v3.5).

C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid prototyping tools for fpga designs: Rapidsmith,” in Field-
Programmable Technology (FPT), 2010 International Conference on.
IEEE, 2010, pp. 353-356.

Virtex-6 FPGA Configurable Logic Block User Guide, Xilinx Inc.,
February 2012, uG364 (v1.2).

Constraints Guide, Xilinx Inc., January 2012, uG625 (v13.4).

A. Dunkels, “lwip-a lightweight tcp/ip stack,” Available from World
Wide Web: http://www. sics. se/ adam/Iwip/index. html, 2005.

S. Tomar, “Converting video formats with ffmpeg,” Linux Journal,
vol. 2006, no. 146, p. 10, 2006.

Virtex-6 FPGA Clocking Resources, Xilinx Inc., May 2012, uG362
(v2.1).

	I Introduction
	I-A High Speed Video Processing
	I-A1 Off-line Processing
	I-A2 Frame Dropping

	I-B Research Contributions

	II Hardware-based High Speed Video Processing
	II-A Commercial Video Processors
	II-A1 Colour Space Conversion
	II-A2 Amplification
	II-A3 Power Line Filtering

	II-B ASIC-based Video Processing in Research
	II-B1 A Programmable Vision Chip Based on Multiple Levels of Parallel Processors zhang2011
	II-B2 Switched Current Analogue Matrix Processor (SCAMP-3) dudek2006
	II-B3 A Real-Time Motion-Feature-Extraction Image Processor Employing Digital-Pixel-Sensor-Based Parallel Architecture zhu2012

	II-C FPGA-based Video Processing in Research
	II-C1 2000 fps Real-time Vision System with High-frame-rate Video Recording ishii2010
	II-C2 Development of High-speed and Real-time Vision Platform, H3 Vision ishii2009

	III Proposed Architecture
	III-A Specifications
	III-A1 Frame Rate
	III-A2 Video Type
	III-A3 Computation
	III-A4 Architectural Topology
	III-A5 Target Platform

	III-B Bit-serial Arithmetic
	III-C Partial Reconfiguration for Pixel Data Distribution
	III-C1 Reduce Routing Congestion
	III-C2 Smaller Design

	III-D Gigabit Input Bandwidth From Camera Sensor to FPGA
	III-D1 High Speed Differential Signalling using SelectIO™
	III-D2 10 GbE Using RocketIO™
	III-D3 1 GbE Using Tri-Mode Ethernet Media Access Controller

	IV Xilinx Virtex-6 LUT-Bitstream correspondence
	IV-A Methodology
	IV-B Regions
	IV-C Frame
	IV-D Slice Level LUT-to-Bitstream Correspondence
	IV-E LUT Configuration
	IV-E1 How to Read
	IV-E2 Replicated Bits
	IV-E3 O5/O6 Outputs
	IV-E4 Multi-bit Memories

	V System Configuration Setup
	V-A User Constraints File
	V-A1 Placement
	V-A2 Timing
	V-A3 Logic Preservation

	V-B Pixel Array Processor
	V-C Direct Memory Access
	V-D Interrupts
	V-E Operation
	V-E1 Passing Video into FPGA
	V-E2 Partial Reconfiguration using ICAP
	V-E3 Sending Processed Data Out Using ICAP
	V-E4 Sending Processed Data Out of FPGA

	VI Methodology
	VI-A Test Input
	VI-B Verilog Simulation
	VI-C Running on FPGA
	VI-D Error Analysis

	VII Results
	VII-A Resource Utilization
	VII-B Comparison Between MATLAB, Simulation and Implementation Outputs

	VIII Conclusion
	IX Future Work: Utilizing SLICEL LUTs as Inputs
	IX-A Pixel inputs
	IX-B Bit-serial format
	IX-C Quarter and full pixel
	IX-D Outputting pixels

	References

