Mapping Real-life Applications on Run-time
Reconfigurable NoC-based MPSoC on FPGA

Amit Kumar Singh #!, Akash Kumar *?, Thambipillai Srikanthan #3, Yajun Ha **

School of Computer Engineering, Nanyang Technological University, Singapore

lamit0011@ntu.edu.sgq,

3astsrikan@ntu.edu.sg

* Department of Electrical and Computer Engineering, National University of Singapore, Singapore
2 akash@nus.edu. sg, 4 elehy@nus.edu.sg

(Demonstration Paper)

Abstract—Multiprocessor systems-on-chip (MPSoC) are re-
quired to fulfill the performance demand of modern real-life
embedded applications. These MPSoCs are employing Network-
on-Chip (NoC) for reasons of efficiency and scalability. Addi-
tionally, these systems need to support run-time reconfiguration
of their components to cater to dynamically changing demands
of the system. Designing and programming such systems for
real-life applications prove to be a major challenge. This paper
demonstrates the designing of reconfigurable NoC-based MPSoC
and programming it for real-life applications. The NoC is
reconfigured at run-time to support different combinations of
multiple applications at different times.

The platform is verified with a case study executing the
parallelized C-codes of a simple producer-consumer and JPEG
decoder applications on a NoC-based MPSoC on a Xilinx FPGA.
Based on our investigations to map the applications on a 3x3
platform, we show that the NoC reconfiguration overhead is kept
at a minimum and the platform utilizes 85% of the total available
slices of Virtex-5 FPGA. Moreover, we show that the proposed
approach is highly scalable when targeting for large number of
applications.

I. INTRODUCTION

The advancements in nanometer technology have allowed to
integrate several embedded processors on a single chip creat-
ing multiprocessor systems-on-chip (MPSoCs). The MPSoCs
are proved as a promising solution to meet the increasing
performance requirement of real world complex applications
[1]. The communication demand of processors is fulfilled by
Networks-on-Chip (NoC) [2] that are efficient and a scalable
alternative over shared buses.

MPSoC on Field Programmable Gate Arrays (FPGAs) is
a new and increasingly important trend. These days several
FPGA-based MPSoC are appearing [3]. These facilitate rapid
prototyping and allow for research in new architectures with-
out the worries of their ASIC production. However, these have
reduced performance compared to their ASIC counterpart but
offer several advantages like flexibility, reconfiguration, less
time-to-market and less cost, to compensate for the same. The
latest FPGAs can accommodate 80-100 soft-core processors
in a single chip to create an MPSoC, and NoC is the best
solution to manage such large number of cores [4].

Modern embedded systems such as smart phones, PDAs etc.
need to support multiple applications to fulfill the end user

requirements, but all the applications are not active simultane-
ously. The combination of simultaneously active applications
from all possible applications is defined as a use-case. A use-
case requires some specific configuration for the FPGA to meet
the performance requirement and there might be large number
of use-cases to be supported in the system, requiring their
specific configurations. The appropriate configuration needs
to be loaded into the reconfigurable platform at run-time, as
and when required.

In this paper, we demonstrate a flow for designing a low
area overhead NoC-based MPSoC for FPGA platforms and
then programming it for real-life applications. The applications
are specified in the form of parallelized real C codes with
a corresponding Synchronous Data Flow (SDF) graph model
[5]. SDF graphs are often used to model DSP and concurrent
multimedia applications [5]. Mapping and evaluating SDF
models on the platform is relatively easy and SDF graphs of
many applications are already available [6]. Our flow allows
mapping of parallelized real C codes of real-life applications
as well as SDF models.

The design flow to generate NoC-based MPSoC takes a
low area overhead NoC [7], which supports run-time recon-
figuration and also provides throughput guarantees. This run-
time reconfiguration feature enables us to support different
use-cases at different times. The applications’ program codes
are loaded and compiled onto the platform processors in ad-
vance after finding suitable placement for them using efficient
mapping techniques reported in literature [8]. This obviously
costs more memory but avoids the overhead of loading and
compiling them at run-time when required, and we have
assigned sufficient memory to all the processors. It should
be mentioned that it is also possible to load and compile the
program codes at run-time, but at the cost of a high overhead.
Whenever a particular use-case (set of active applications)
needs to be supported in the platform, the corresponding
already compiled codes are enabled at the mapped processors
after configuring the NoC by the required configuration to
support the use-case. The NoC reconfiguration overhead is
kept at a minimum so that overall execution time for the use-
case is minimized.

There have been some quite recent works to generate

NoC-based MPSoC for FPGA platforms [9] [10] [11], but,
these are not area efficient and don’t support for efficient
run-time reconfiguration. Thus, they can not cater for the
scenarios when different use-cases need to be supported at
different times. Our approach is area efficient and has very low
reconfiguration overhead. We have targeted Vixtex-5 ML510
board [12]. We present case studies using SDF graphs of JPEG
and H263 decoders, and parallelized real C codes of producer-
consumer and JPEG decoder applications, whereas existing
works don’t target for the real C codes.

The rest of the paper is organized as follows. Section II
introduces SDF graphs. Section III gives an overview of our
mapping flow. Section ?? presents the experimentation to
demonstrate the case study for different use-cases. Section IV
concludes the paper and provides direction for future work.

II. SYNCHRONOUS DATA FLOW GRAPHS

An example of an SDF graph is shown in Fig. 1. There
are three tasks A, B and C in the graph. The values inside
the circles represent execution times of tasks. A directed edge
represents the dependency between the tasks, just like any
typical data flow graph. In order to start the execution of a
task, it needs some input data and produces some output data
after finishing the execution. These data are referred as fokens.
Tasks execution is also called firing. A task becomes ready
when there are sufficient input tokens on all of its input edges
and sufficient buffer space on all of its output channels. Task
can only fire when it is ready.

Fig. 1.

Example of an SDF graph

The edges might have initial tokens, indicated by bullets on
the edges, as shown on the edge from task A to B in Fig. 1.
Buffers can be modeled as an edge with initial tokens, where
the number of tokens on the edge indicates the available buffer
size. The available buffer size reduces when a task writes data
to such channels and the available buffer i.e. the token count
increases when the receiving task consumes the written data.

In the example provided in Fig. 1, only task B can start its
execution from the initial state as it has the required number
of tokens on all of its incoming edges. Once task B finishes
execution, it will produce 3 tokens on the edge to C. Now,
C can proceed as it has sufficient tokens and will produce 4
tokens on the edge to A upon completion.

III. DEMONSTRATION OVERVIEW

In this section, we present an overview of our demonstration
to map multiple applications on NoC-based MPSoC. First, we

demonstrate how a generic NoC-based MPSoC platform is
generated, in the Section III-A, then programming of the plat-
form to support multiple use-cases of multiple applications, in
Section III-B and finally, experiments performed for different
case studies and results obtained, in Section III-C.

A. NoC-based MPSoC Generation

Fig. 2 shows an overview of NoC-based MPSoC generation.
First, a desired NoC dimension is provided to generate the
NoC using the NoC Generator tool [7]. This tool gener-
ates a run-time reconfigurable spatial-division-multiplexing
(SDM) based NoC with throughput guarantee. The guaranteed
throughput is obtained by reserving the links of the NoC in
advance and avoiding the resource contention. In contrast,
in a packet switched NoC [13] [14], providing throughput
guarantee is difficult since there are no dedicated links.

f . Generate NoC NoC Adding
NoC Dimension___ | \ip) by NoCGen |——— | Processors | NOC-based
(mxn) Tool) to NoC MPSoC

Fig. 2. MPSoC Generation Flow

After generating the NoC, required number of microblaze
processors (mxn) [12] are added to the network interfaces
of the NoC to generate NoC-based MPSoC platforms. The
network interface ports of the NoC are connected to the Fast
Simplex Link (FSL) ports of the processors through FSL
communication buses available in the EDK IP catalog, for
providing hight speed communication [12].

In order to transfer data from one processor to another, first
of all, the NoC is configured with the required connection
requirements and then data is written on the master FSL port
of the sender processor to go through the network and finally,
it is read at the slave FSL port of the receiver processor. The
different configurations for different connection requirements
are also generated by the NoC Generator tool [7]. These
configurations are required to be loaded into the platform at
run-time to fulfill the communication needs of processors.

Thus, we are able to generate run-time reconfigurable NoC-
based MPSoC platforms. These platforms have low area
overhead and the processors present in the platform can
communicate faster through the dedicated links.

B. Programming MPSoC

Fig. 3 shows the process of programming the NoC-based
MPSoC platform for supporting multiple applications. First,
the platform is synthesized. Then, program codes of applica-
tions are loaded and compiled onto the platform processors
after finding suitable mapping for each application (Load
Codes onto Processors). Now, if a particular use-case (set
of active applications) needs to be executed then, first, the
NoC is configured with the appropriate configuration (fulfilling
the communications requirements of the use-case) and then
the required program codes corresponding to the use-case are
enabled. The NoC configurations for the possible use-cases
are stored in a controlling processor in advance to avoid the

overhead of creating the configuration data at run-time. Thus,
we just need to worry about the reconfiguration of NoC with
the already present configurations.

Use-Case

Applications’ Program codes
A

Load & Compile NoC Configuration &
Codes onto Enabling Required
Processors Applications

NoC-based MPSoC —» Synthesize —» —

Fig. 3. MPSoC Programming Flow

The program codes representation is important in our flow.
If we consider SDF graph models of the applications then the
program codes will implement just some delays as indicated
in the circles in Fig. 1. However, if we take the parallelized
real C codes of the applications then these codes need to be
placed onto the processors instead of some delay based code
as in SDF. Further, when using the real C codes, special care
has to be taken for sending and storing application data.

This procedure to execute a use-case facilitates faster execu-
tion as we do not need to bother about the overhead in loading
and compiling the required program codes at run-time. Further,
it should be noted that NoC reconfiguration overhead is kept at
a minimum. When another use-case needs to be executed then
the same procedure (NoC Configuration & Enabling Required
Applications) is adopted. Thus, we are able to support multiple
use-cases of multiple applications without re-synthesizing the
platform. The synthesis is the biggest bottleneck in designing
FPGA-based MPSoC due to large turn-around time.

C. Experiments

In this section, we demonstrate some observations that were
obtained by implementing SDF graphs and parallelized real C
codes using our mapping flow described in Section III. The
main objective of this experiment is to show that we are able to
support multiple use-cases of multiple applications. We show
that the reconfiguration overhead to configure the NoC is low.
Separate case studies are done for SDF graphs and parallelized
real C codes of applications. Our implementation platform is
Xilinx Virtex-5 ML510 development board. Xilinx EDK 12.1
and ISE 12.1 were used for synthesis and implementation. All
the microblaze processors in the platform are run at 100 MHz.

1) SDF Graphs Case Study: In this case study, we have
taken SDF models of JPEG and H263 decoders. The JPEG
and H263 decoders have been partitioned into 6 and 4 tasks
respectively. The SDF model of H263 decoder is shown in Fig.
4. The JPEG decoder application is mapped on 6 processors in
a 3x3 architecture on the basis of one task per processor. The
H263 application needs 4 processors and it is mapped on top of
the JPEG decoder application and thus sharing four processors
with JPEG decoder. So, finally, we utilized total 6 processors
out of the 3x3 platform, where 4 processors share tasks from
JPEG and H263 decoder and 2 processors execute tasks of
JPEG decoder only. As there are more available resources,
so more applications can be mapped, making the platform

scalable for large number of applications. Further, a bigger
platform can be created depending upon the availability of
logic resources in the FPGA.

Fig. 4.

SDF graph of H263 decoder

In order to evaluate multiple use cases from these two
applications, we selected to run the following use-cases:

e Only JPEG decoder active
o Both JPEG and H263 decoder active
e Only H263 decoder active

TABLE I
RECONFIGURATION OVERHEAD FOR DIFFERENT USE-CASES

Use-cases Reconfiguration Time (ms)
Only H263 0.05259
Only JPEG 0.07846
JPEG and H263 | 0.07849

We were able to successfully run all the above use cases
one by one after configuring the NoC for them. The NoC
configuration overhead (in milliseconds) for different use-
cases is reported in Table I. We can see that the reconfiguration
overhead is maintained at very low. This is because we are
using a low area overhead NoC. A couple of observations
can be made from Table I. First, configuration overhead for
’Only H263’ is minimum. This is because the connection is
required to connect 4 processors only. Second, configuration
overhead for ’JPEG and H263’ is maximum as 6 connections
are required for JPEG and only 4 for H263 decoder.

2) Parallelized C codes Case Study: In this case study, we
have taken parallelized real C codes of producer-consumer
and JPEG decoder applications. The producer-consumer and
JPEG decoder applications are partitioned into 2 and S tasks
respectively. Here, we have mapped all the tasks on two
processors only - consumer task & 2 tasks of JPEG decoder on
first processor and producer task & 3 tasks of JPEG decoder
on the second processor. We performed a different type of
mapping to differentiate it from the one-to-one mapping as
done for the SDF graphs and to also see if we can observe
some different behaviors. As we can see that we have utilized
only 2 processors of the 3x3 platform, so we can use rest
of the processors for many other applications. Thus, the
approach is highly scalable when targeting for large number
of applications. We intend to test with real C codes of other
real-life applications as and when they are available.

Here, we have selected following use-cases:

o Only Producer-Consumer active
o Both Producer-Consumer and JPEG decoder active

TABLE 11
RECONFIGURATION OVERHEAD FOR DIFFERENT USE-CASES

Use-cases Reconfiguration Time (ms)
Only Producer-Consumer 0.02885
Only JPEG 0.02886
Producer-Consumer and JPEG | 0.02891

e Only JPEG decoder active

We were also able to successfully run all these use cases
one by one after configuring the NoC for them. The NoC
configuration overhead (in milliseconds) for different use-
cases is reported in Table II. We can see that the recon-
figuration time required for evaluated use-cases is very low
(in milliseconds). A few observations can be made from
Table II. First, the reconfiguration time in all the use cases
in this case study is low as compared to the previous case
study. The reason behind this lies in the fact that here, we
have mapped all the tasks only on two processors so the
connection is required between two processors only. This
requires relatively less NoC configuration data as compared
to the cases where connection is required to connect more
than two processors like the previous case study. Second,
we can see that the reconfiguration time for the ’Producer-
Consumer and JPEG’ use-case is more than other two use
cases. This happens because more connections are required to
fulfill the communication needs of two simultaneously active
applications and thus more NoC configuration data, requiring
more time for the configuration.

IV. CONCLUSION

This paper describes the steps required to generate a low-
area overhead NoC-based MPSoC from a NoC that is run-
time reconfigurable and provides throughput guarantee. Ad-
ditionally, a methodology to program the NoC-based MPSoC
for multiple use-cases of multiple applications has been pre-
sented. We have avoided the run-time loading and compilation
overhead of program codes as well as of NoC configuration
data by placing them on the platform processors in advance.
While this uses more memory but the execution is very fast.
However, the memory cost can be reduced at the cost of
overhead in loading and compiling the codes at run-time. By
keeping the program codes and NoC configurations on the
platform processors in advance, applications can be executed
just by configuring the NoC with the required already present
configuration and enabling the program codes of applications

at different processors. The applications are evaluated on a
3x3 platform synthesized on a Xilinx Virtex 5 FPGA.

For the future work, we are planning to evaluate more
parallelized real C codes of real-life applications as and when
we get any of them. Further, there are free processors on
the platform so that they can cater for the support of new
applications making the platform scalable. We also plan to
evaluate different possible mapping combinations like map-
ping an application onto different processor counts and then
evaluating them. To overcome the memory limitation issues on
the processors, we would like to devise efficient techniques to
load and compile the program codes as well as NoC con-
figuration data, at run-time. We also wish to include support
for generating heterogeneous platforms and then programming
them as required. For all the above mentioned future work, we
would like to target parallelized real C codes.

ACKNOWLEDGMENT

We thank Mr. Zhiyao Joseph Yang for providing us the
source of the NoC [7] used in our work.

REFERENCES

[1] A. Jerraya et al., “Guest editors’ introduction: Multiprocessor systems-
on-chips,” Computer, vol. 38, no. 7, pp. 3640, 2005.

[2] L. Benini et al., “Networks on chips: a new soc paradigm,” Computer,
vol. 35, no. 1, pp. 70-78, 2002.

[3] T. Dorta et al., “Overview of fpga-based multiprocessor systems,” in
ReConFig ’09., Dec 2009, pp. 273 -278.

[4] G.-G. Mplemenos et al., “Mplem: An 80-processor fpga based multi-
processor system,” in FCCM '08., 2008, pp. 273-274.

[5] E. A. Lee et al., “Static scheduling of synchronous data flow programs
for digital signal processing,” IEEE Trans. Comput., vol. 36, no. 1, pp.
24-35, 1987.

[6] S. Stuijk et al., “SDF3: SDF For Free,” in ACSD ’06., June 2006, pp-
276-278.

[71 Z.J. Yang et al., “An area-efficient dynamically reconfigurable spatial
division multiplexing network-on-chip with static throughput guarentee,”
in FPT’10.

[8] A. K. Singh et al., “Communication-aware heuristics for run-time task
mapping on noc-based mpsoc platforms,” Journal of Systems Architec-
ture, vol. 56, no. 7, pp. 242 — 255, 2010.

[9] S. Lukovic et al., “An automated design flow for noc-based mpsocs on

fpga,” in RSP ’08, 2008, pp. 58-64.

S. V. Tota et al., “A case study for noc-based homogeneous mpsoc

architectures,” IEEE Trans. Very Large Scale Integr. Syst., vol. 17, no. 3,

pp. 384-388, 2009.

A. Kumar et al., “An fpga design flow for reconfigurable network-based

multi-processor systems on chip,” in DATE 07, 2007, pp. 117-122.

“Xilinx,” 2008, http://www.xilinx.com/.

E. Bolotin et al., “Qnoc: Qos architecture and design process for network

on chip,” J. Syst. Archit., vol. 50, no. 2-3, pp. 105-128, 2004.

D. Bertozzi et al., “Noc synthesis flow for customized domain specific

multiprocessor systems-on-chip,” IEEE Trans. Parallel Distrib. Syst.,

vol. 16, no. 2, pp. 113-129, 2005.

[10]

[11]

[12]
[13]

[14]

