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ABSTRACT

With the extraordinary growth of cores and threads in to-
day’s multithreaded machines, analyzing and tuning the per-
formance of such platforms becomes a challenging task. In
this paper, we propose an intuitive and visualizable model
for analyzing the performance of contemporary highly con-
current multithreaded machines. Based on flow balancing
between service demand and service supply of the memory
system, the model draws an intuitive figure to characterize
machine state, identify bottlenecks and determine optimiza-
tion directions. The tractability of the model is highlighted
as it only requires two parameters from the workload. Our
model achieves 90% and 83% prediction accuracy for com-
putation throughput on Fermi and Kepler GPUs over the 16
applications from Rodinia benchmark.
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1. INTRODUCTION

Moore’s Law has continued to show promise, but the end
of clock-frequency scaling for uniprocessors has driven main-
stream computation towards the multi-core era [1]. Multi-
core processors offer enormous computing power, but insuf-
ficient exploitable parallelism and long-latency remote com-
munication, typically off-chip memory access, restrict the at-
tainable performance [2]. Consequently, multithreading [3]
has also been proposed as an effective solution. It raises
processor utilization through thread-level parallelism (TLP)
and hides memory delay via fast context switching. Later,
with the rapid growth of cores in a processor, the number
of threads has increased dramatically. Nowadays, a single
GPU chip encapsulates up to 2,880 scalar cores and can ac-
commodate over 30,000 active threads simultaneously.
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Obviously, tuning performance for such massively multi-
threaded platforms becomes a difficult challenge. Although
modest speedup could be attained through basic functional
porting, programmers have to spend significant time and ef-
fort to identify and alleviate the system bottlenecks before
fully extracting the hardware potential. This is especially
the case when little is known about the underlying imple-
mentation of the target machine. Therefore, many program-
mers and designers have to search exhaustively via profilers
or simulators in a huge design space, or rely entirely on em-
pirical guidelines.

Analytical model offers an alternative approach. It either
models a particular architecture that requires numerous pa-
rameters to grasp detailed machine features in order to pre-
dict performance precisely, e.g. [4, 5], or it models a general
machine that is easy to understand and manipulate so as to
highlight new behaviors, explain observed phenomena and
derive intuition, e.g. [6, 7].

This paper falls into the second category — we propose
a high-level, visualizable and throughput-oriented analyti-
cal model for general multithreaded machines. Based on
flow balancing between service demand and supply of the
memory system, our model clearly describes machine state,
locates performance bottlenecks and indicates optimization
directions. The major objective is to provide a visualizable
modeling tool for gaining insight and deriving intuition.

2. TRANSIT MODEL

In this section, we present the transit model. We first
describe how the components of the multithreaded machine
system are organized. We then present how to construct the
model and how to draw transit figures. Finally, we summa-
rize the input and output of the model.

2.1 Model Components

In the transit model, a computer machine is decomposed
into a computation and a memory system, denoted as CS
and MS. CS refers to computation units including multi-
processors, coprocessors and special accelerators while MS
refers to the memory hierarchy including local cache, shared
cache, off-chip DRAM, etc. For flexibility, the scope of MS
can be scaled along the memory hierarchy, from the top reg-
ister level to the bottom hard-disk or Internet level, in a
different context. For example, if MS refers to the off-chip
DRAM, then CS refers to the entire processor chip.
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Figure 1: System Organization. A computer system is partitioned
into double layers — MS stands isolated from the workload.
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Figure 2: Multithreaded Machine Model

From the application’s standpoint, it is CS that accom-
plishes the desired jobs; MS, however, plays an assistant
role since the application logic does not impose any data
movements among various memories — most of the time, the
application logic postulates the memory space to be flat and
unified. Therefore, the CS throughput is often viewed as the
primary performance metric while MS throughput remains
the secondary.

As depicted in Fig.1, MS stands isolated from the work-
load. Since it is CS that executes the user logic, the workload
has service demand over CS, which is the theoretical attain-
able throughput of CS . However, due to performance bot-
tlenecks inside the machine, the actual service supply is less
or equal to such service demand. Meanwhile, CS requires
MS to store the necessary data, so CS has service demand
upon MS. Similarly, the actual service supply of MS to CS
is less or equal to the service demand of CS.

2.2 Model Construction

With the system organization as a preamble, let us pro-
ceed to the model. As shown in Fig.2, the multithreaded
machine is modeled as an interactive queuing network [8, 9],
a special case of closed networks [10]. The reason for be-
ing “closed” is that the total number of threads is usually
dictated by the availability of hardware resources or appli-
cation configuration; while a new thread is only initiated
when an in-flight thread terminates. The memory hierarchy
is modeled as as an aggregate queuing system and the com-
putation system is modeled as a single-queue-multiple-server
network, inside which each server indicates a unique execu-
tion lane (also known as thread slot [11] or logical processor
[12]) that is capable of performing a unit-cost operation in a
single cycle or time slot. The n active threads are regarded
as the users of the two systems, and is thus postulated to be
independent of each other. Meanwhile, we also assume that
the workload for each thread is roughly homogeneous, just
like the GPU’s single-instruction-multiple-threads (SIMT)
kernels. However, this assumption could be relaxed if we
emphasize average-value-analysis (AVA) [9].

A thread has two states: thinking and waiting by fol-
lowing the interactive model’s terminology. It is thinking
when being processed in CS. After an average of Z cycles',
the thinking thread aborts CS and proposes a memory re-
quest. The thread is then suspended in MS for L cycles.

1Z is also known as arithmetic intensity [13] of the host
application, which is a ratio of computation operations to
memory operations.

Table 1: Symbol Table

Total threads in the machine
Threads in MS

Threads in CS

Service supply of MS to CS
Service demand from CS to MS

o<
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DEERE
=

Z | Arithmetic intensity (thinking time)
R Maximum MS throughput
M | Width of concurrent execution lanes
T CS transition point
) MS transition point
L Average memory access latency
M o " /n
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s |4 2 | A3
M  CS Threads M Cs Threads

(A) CS Service Demand from Workload (B) MS Service Demand from CS

Figure 3: Computation System: Z acts as a scaling factor that trans-
forms the service demand of the computation system to the service
demand on the memory system.

Upon fulfillment of the memory request, the thread exits
MS and enters CS again, starting a new turnaround (Z +
L cycles). Before actually being processed in CS, a thread
might buffer in a waiting queue. It is assumed that both the
waiting queue and the memory queue are sufficiently large
to hold all the pending and outstanding threads. This as-
sumption is justifiable as when threads are being blocked, it
is equivalent to them waiting in an abstract queue.

Consider the CS service demand in Fig.1, if the through-
put of a single thread being executed in one lane during a
cycle is normalized as one unit, then for an M-lane system
with z threads (Fig.2), the throughput is:

G(z) = {;

Such a shape (Fig.3-A) has been confirmed by several exist-
ing works on both multithreaded CPUs [14] and GPUs [15].
Now consider how CS service demand can be transformed to
MS service demand in Fig.1. With computation intensity Z,
we know that for each Z cycles on average, a memory fetch
is prompted. Therefore, the MS service demand (from CS),
or the average number of memory fetches with x threads in
CS (Fig.2) is

forz < M

forx>M (1)

)z forxz < M
M@—{% Y &)

as shown in Fig.3-B. Due to dependency, if such demand
could not be fulfilled by MS, performance of CS suffers.
Here, Z acts as a scaling factor that transforms CS service
demand to MS service demand. We mark the special point
x = M as the transition point () of CS, beyond which CS
saturates.

For MS, the service supply throughput in Fig.1 is gener-
ally similar to Fig.4-A: the beginning phase is nearly linear
it is a closed network [9]; the ending phase flattens out as
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Figure 4: Memory System: the transition region is aggregated as a
transition point.
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Figure 5: Memory system service supply (A) and demand (B). Note,
(A) is the same as Fig.4-B. (B) is obtained by reversing the horizontal
axis direction of Fig.3-B.
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Figure 6: Transit Figure: the equilibrium between service demand
and service supply of the memory system. It implies the current ma-
chine state: within the total n threads, k of them are in the memory
system and z are in the computation system.

throughput approaches bottleneck capacity. However, for
tractability, it is also modeled as a roofline shape (Fig.4-
B). We argue that this abstraction is already sufficient to
capture the characteristics of MS since only the transition
region is aggregated as a transition point (8). In fact, the
roofline like MS throughput function has also been observed
in real machines [16].

If we reverse the horizontal axis direction of MS service
demand throughput function g(x) (Fig.3-B), it becomes a
figure like Fig.5-B. Now focus on MS, we have its service
supply curve f(k) by itself (Fig.5-A) and service demand
curve g(x) imposed by the CS (Fig.5-B). Based on the flow
balance property [10], in a steady state of the machine,

f(k) = g() ®3)

Therefore, if the two figures are integrated as shown in Fig.6,
their intersection is just the equilibrium between service
demand and supply (or MS inflow and outflow [9]), which
is exactly the current throughput of MS. Consequently, the
CS throughput is Zr. We label this visualization transit
figure because it clearly illustrates the present bottlenecks
of the machine and the corresponding optimization direc-
tions that are effective to mitigate or remove the bottlenecks.

2.3 Model Input & Output

Input — As aforementioned, in the transit model there are
three architecture-related parameters R, L, M and two wor-

kload-related parameters Z and n (see Table.1). As the raw
memory latency is generally very difficult to change, in the
following optimization section, L is viewed as constant. The
tuning of the other four parameters and their impact on the
shape of the transit figures are shown in Fig.5.

Output — Given the five input parameters, the transit figure
can show the tendency of MS throughput and CS through-
put. In order see them directly from the figure, we propose
the following principles:

e Principle 1: If the intersection of f(k) and g(z) goes
up, then MS throughput increases.

e Principle 2: If the intersection goes up and Z is un-
changed, then CS throughput increases.

e Principle 3: If Z is increasing and the intersection
is on the right side of CS transition point, then CS
throughput increases.

In the following subsection, we show how these principles
can be leveraged to rapidly locate bottlenecks and determine
optimization directions.

2.4 Performance Bound

In this subsection, we describe four types of performance
bound. For each bound, we show the effective optimiza-
tion approaches. Since CS throughput is the primary mea-
sure, we only discuss those approaches that can increase CS
throughput.

2.4.1 Thread Bound

Identify — Thread bound addresses the state of the ma-
chine where insufficient threads are allocated. Therefore,
neither CS nor MS can reach its maximum throughput: in
the transit figure, the MS throughput function f(k) and CS
throughput function g(x) intersect at their sloping parts, as
shown in Fig.11.

Optimization — Based on Principle 2, to increase CS
throughput, we could raise the intersection point of f(k)
and g(z). To achieve this goal, we could push g(z) to the
right by enlarging thread volume n (via Fig.7), as described
in Fig.11. Or based on Principle 3, we could also increase
arithmetic intensity Z (via Fig.8) as the intersection is on
the right side of the CS transition point . The transit figure
is shown in Fig.12.

2.4.2 Memory Bound

Identify — Memory bound models the state of the ma-
chine when the memory system obtains its maximum throu-
ghput: f(k) = R. It indicates that in the transit figure
(Fig.13), f(k) and g(z) intersect at the flat part of f(k) but
the sloping part of g(z).

Optimization — Obviously, tuning n does not affect the
height of the intersection or Z. The feasible ways seem to
lower the sloping part of g(x) or lift the flat part of f(k),
which corresponds to upgrading Z (via Fig.8) and R (via
Fig.9). The transit figures are shown in Fig.13 and Fig.14.

2.4.3 Computation Bound

Identify — Computation bound is the state of the ma-
chine that g(z) = M/Z, which implies that in the transit
figure (Fig.15), f(k) and g(x) intersect at the flat part of
g(z) but at the sloping part of f(k).
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Figure 11: Thread Bound. f(k) and g(x)
intersect at their sloping parts. If we slide g(x)
to the right by increasing n (via Fig.7) and
draw a new curve, with the intersection goes
up, by Principle 1, MS throughput increases.
Meanwhile, as Z is unchanged, with Principle
2, CS throughput also increases. This method
is effective until 7 touches f(k) as then the
machine becomes computation bound.
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Figure 14: Memory Bound. f(k) and g(z) in-
tersect at the flat part of f(k) but the sloping
part of g(z). Based on Principle 2, we can raise
the intersection point to increase CS through-
put, which is equivalent to lifting the flat part
of f(k), or increasing R (via Fig.9). With Prin-
ciple 1, it also promotes MS throughput. This
approach is effective until § arrives at g(z), at
which the machine becomes thread bound.
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Figure 12: Thread Bound. f(k) and g(x) in-
tersect at their sloping parts. If we tilt g(x) by
increasing arithmetic intensity Z (via Fig.8),
as the intersection is on the right of =, with
Principle 3, CS throughput is essentially ris-
ing albeit MS throughput is dropping. This
approach fails when 7 reaches f(k). At that
moment, the machine becomes computation
bound.
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Figure 15: Computation Bound. f(k) and
g(x) intersect at the flat part of g(x) but the
sloping part of f(k). This is already a good
state as all M lanes are leveraged albeit some
memory bandwidth are wasted. To further in-
crease CS throughput, we can lift the flat part
of g(z) by increasing M (via Fig.10) based
on Principle 2. As the intersection goes up,
by Principle 1, MS throughput also increases.
This approach fails when 7 touches f(k).
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Figure 13: Memory Bound. f(k) and g(z)
intersect at the flat part of f(k) but the slop-
ing part of g(z). Since the intersection is on
the right side of m, based on Principle 3, we
can enhance CS throughput by increasing Z
(via Fig.8). Since the height of the intersection
is unchanged, by Principle 1, MS throughput
keeps constant. The machine becomes thread
bound when g(z) coincides §.
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Figure 16: Computation Bound. f(k) and
g(x) intersect at the flat part of g(x) but the
sloping part of f(k). Here, increasing Z (via
Fig.8) does not raise CS throughput because
the interaction falls on the left side of the CS
transition point 7, which violates Principle 3.
Also, since the height of the intersection is un-
changed, by Principle 1, MS throughput keeps
the same.

Optimization — Generally, this is the ideal state of the ma-
chine since CS throughput is already the maximum. How-
ever, we can still obtain a higher CS throughput by increas-
ing M (via Fig.10), as shown in Fig.15. Note, it is not
profitable to increase Z (via Fig.8), because in the scenar-
ios of computation bound, the intersection point is on the
left part of CS transition point m, which does not fulfill the
requirement of Principle 3, see Fig.16.

2.4.4 Capacity Bound

Identify — Capacity bound describes a very special state
of the machine when workload balance equals machine bal-
ance [17]. It requires M/Z = R, which is also the ridge
point of the Roofline model [6]. In this condition (Fig.17),
both f(k) and g(z) intersect at their flat parts. Here, the
thread volume n is no longer important if it is sufficient to
saturate both CS and MS.

Optimization — This is the optimal state for algorithm-
architecture or software-hardware codesign regarding thread

n

z
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Threads Threads
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Capacity Bound and Machine Balancing

Figure 17: Capacity Bound or Machine Balance. This is the opti-
mal case as both CS and MS attain its best performance. Meanwhile,
due to capacity bound, some threads may be idle.

parallelism as both CS and MS bandwidth are fully lever-

aged (f(k) = R,g(z) = M/Z).

timization is required. To

Therefore, no more op-
break the balance and further

improve performance, several factors have to be tuned si-
multaneously (e.g. M, n and R at the same time).



3. EXPERIMENT

We validate the transit model on a Fermi (Tesla-C2075)
and a Kepler GPUs (GTX-690). Although we test on GPUs,
the model can be applied on other multithreaded machines,
e.g. UltraSPARC T2, Intel Xeon Phi, etc. The Rodinia
Benchmark [18] is exploited for validation.

First we collect the machine-related input parameters L,
M, R by profiling f(k) and g(z) via microbenchmarking. We
view off-chip DRAM as MS. To plot f(k), a CUDA version
Stream Benchmark [19] is refined and utilized. In terms of
g(z), a microbenchmark is developed based on the method
proposed by [20]. Due to space limitation, we cannot display
the plots in the paper. However, we show the measured
coordinates of § and 7, which can be used to determine
f(k) and g(z) uniquely: For Tesla C2075, §(SP) = (1536,
8.93), §(DP) = (768, 9.29), «(SP) = (576, confirmed by
[20], 24.8), w(DP) = (384, 14); For GTX690, §(SP) =(2048,
16.25), 6(DP) = (1024, 18.86), w(SP) = (2048, 80), =w(DP)
= (384, 8). SP stands for single precision while DP stands
for double precision. The units are thread and GB/s.

Then we need the workload-related parameters Z and n.
For simplicity, the CUDA command-line profiler is leveraged
to gather and calculate. The equation is shown below:

n = occupancy * mazx_resident_threads
Z = instruction_issued/(dram_read + dram_write)

where the symbols on the right side are the names of the
profiler counters.

We compare the predicted computation/memory through-
put with the values measured by the profilers. A script is
developed to gather n and Z, and plot the corresponding
transit figure automatically. The results are shown in Fig.18
(for Tesla C2075) and Fig.19 (for GTX690).

As can be seen, for a majority of the applications, the dark
star (measured memory throughput) is near the intersection
(predicted by the model) except gaussian, lavaMD and par-
ticlefilter. We find that gaussian and particlefilter exhibit a
very irregular memory access pattern so the actual mem-
ory throughput function f(k) is far poorer than the ones we
profiled. lavaMD is the only application that adopts dou-
ble precision in Rodinia. Also, in the native machine code
(SASS) generated by cuobjdump, we find that most of the
stores are 128 bit-width while most of the loads are 64 bit-
width. This explains why such few threads can generate ex-
traordinary memory access performance. Finally, note that
the abscissa value of 6(SP) is 1536 for Tesla C2075, which is
also the maximum allowable threads per SM. This explains
the linear behavior of f(k) for most applications.

Overall, using the computation throughput (PCT & RCT
in Fig.18) as the metric, our model achieves 90.4% prediction
accuracy for Rodinia benchmarks on Tesla C2075 and 82.6%
on GTX690 without the three outliers (gaussian, lavaMD
and particlefilter). The major reason for Kepler showing a
poorer accuracy than Fermi is the deviation of the profiled
f(k), as we did not consider coalescing degree to keep the
model simple and general. However, Kepler is much more
sensitive to memory efficiency than Fermi as the core number
in Kepler SM is much larger than Fermi (192 vs. 32).

4. RELATED WORKS

Many performance models have been proposed for multi-
threaded machines [21, 22, 7, 23]. Saavedra-Barrera et al.

[21] set up a Markov-Chain to yield a formula for proces-
sor efficiency with respect to the number of threads. They
characterize three operating regimes: linear (efficiency be-
ing proportional to thread volume), transition and satu-
ration (efficiency depending only on remote reference rate
and switch cost). The destructive impact on cache due to
multithreading is also involved. Agarwal [22] presents an
analytical model for a multithreaded machine that covers
cache interference, interconnection network contention and
context-switching overhead. He concludes that two to four
threads are already sufficient to yield full processor utiliza-
tion if the working-set size is much smaller than caches. Guz
et al. [7] propose an analytical model targeting the trade-
off between thread volume and the effectiveness of shared
cache. A performance valley is identified between the cache
efficiency zone and multithreaded efficiency zone for appli-
cations that are sensitive to cache efficiency. Chen et al. [23]
focus on shared cache contention of multithreaded machines
and construct a stochastic model based on circular sequence
profiling of the threads.

All of these models, however, predominately focus on the
temporal behavior of a typical thread or average thread (per-
thread temporal behavior). Our model stays different in that
it stresses on the spatial distribution of the thread popula-
tion at a general state (all-thread spatial behavior). Mean-
while, most of the existing models (e.g. [4, 5]) are aimed at
time prediction, so are mostly devoted to the precise model-
ing of low-level details. Such an effort requires large amount
of parameters and the model itself can be time consuming
to learn and implement. In comparison, our model is more
straightforward as it focuses on providing high-level intu-
ition and is visualizable as an intuitive figure.

The model that is most similar to the transit model is
the Roofline model [6]. In comparison, both models utilize
a roofline shape to describe system throughput. The major
difference is that the transit model focuses specially on mul-
tithreaded machines. We add the thread volume, which is
probability the most crucial parameter for a multithreaded
machine, as a new dimension and emphasize the spatial dis-
tribution of the threads — the machine state. Secondly, in
contrast to the Roofline model which attributes all optimiza-
tions as the impact to operation intensity, we separate a
multithreaded machine into two parts so that each of them
can be profiled, varied and analyzed independently.

S. CONCLUSIONS

This paper has introduced an intuitive, flexible and visual-
izable model for analyzing the performance of modern highly
concurrent multithreaded machines. Motivated by the ob-
servation that the spatial distribution of threads between the
computation and memory systems can also describe machine
state and the fact that throughput performance is mostly
proportional to the number of internal threads before sat-
uration, we construct a cross-roofline like model called
transit to illustrate the present machine state, identify per-
formance bottlenecks and provide optimization intuition.
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Figure 18: Testing Rodinia Benchmarks on NVIDIA Tesla C2075. The star denotes the measured memory throughput. “PCT” is the predicted
computation throughput (GFLOPS) while “RCT” is the real measured computation throughput (GFLOPS).

Figure 19: Testing Rodinia Benchmarks on NVIDIA Kepler GTX690. The star denotes the measured memory throughput.
predicted computation throughput (GFLOPS) while “RCT” is the real measured computation throughput (GFLOPS).
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