
Performance Evaluation of Concurrently Executing
Parallel Applications on Multi-Processor Systems

Ahsan Shabbir Akash Kumar Bart Mesman Henk Corporaal
[a.shabbir,a.kumar,b.mesman,h.corporaal]@tue.nl

Eindhoven University Of Technology, 5600MB Eindhoven, The Netherlands.

Abstract—Multi-processors are increasingly being used in mod-
ern embedded systems for reasons of power and speed. These
systems have to support a large number of applications and
standards, in different combinations, called use-cases. The key
challenges are designing efficient systems handling all these use-
cases; this requires fast exploration of software and hardware
alternatives with accurate performance evaluation.
In this paper, we present a system-level FPGA-based simulation
methodology for performance evaluation of applications on multi-
processor platforms. We observe that for multiple applications
sharing an MPSoC platform, dynamic arbitration can cause
deadlock in simulation. We use conservative Parallel Discrete
Event Simulation (PDES) for simulation of these use-cases. We
further note that conservative PDES is inefficient so we present a
new PDES methodology that avoids causality errors by detecting
them in advance. We call our new approach as smart conservative
PDES. It is scalable in the number of use-cases and number of
simulated processors and is 15% faster than conservative PDES.
We further present results of a case-study of two real life
applications. We used our simulation technique to do a design
space exploration for optimal buffer space for JPEG and H263
decoders.

Keywords — PDES, Simulation, FPGAs, Performance Eval-
uation, DSE.

I. INTRODUCTION

Modern multimedia systems support a number of applica-
tions. For example, while traditionally a mobile phone had
to support only a handful of applications like a voice call
and sms, modern high-end mobile devices also act as a music
and video player, camera, gps, mobile TV and a complete
personal digital assistant. Many of these applications also
need to meet other non-functional requirements like timing
and low-power. These systems are increasingly becoming
multiprocessor to support the strict power and performance
requirements of applications. Accurate performance evaluation
of these applications on multiprocessor systems is a key
challenge when designing embedded systems [4]. To make
matters worse, many applications are active simultaneously.
Each combination of concurrently executing applications is
defined as a use-case [2]. The number of these use-cases
is exponential in the number of applications. An embedded
system with 10 applications may have over a thousand use-
cases. Due to a huge number of potential use-cases, it becomes
a challenge to evaluate their performance.

Software simulation is often used for performance eval-
uation. Unfortunately, the accuracy of simulation is often
inversely proportional to the time spent on it. Further, existing
techniques for performance evaluation are limited to single-
application designs [15], [16]. Hardware acceleration is often
used to speed simulation. However, it generally requires a high

design-time effort to build a simulation model in hardware.
Some techniques do exist that provide automated flows, but
they only simulate the system from the perspective of archi-
tecture and not that of applications [12], [13], [17]. Therefore,
an automated hardware simulation design synthesis approach
is needed that can deal with the large number of applications
and use-cases in modern multiprocessor systems.

In this article, we present an automated FPGA-based simu-
lation methodology for performance evaluation of multiple ap-
plications executing concurrently on multi-processor systems.
We specify applications using synchronous dataflow (SDF)
graph model of computation, although can easily handle any
other dataflow model. The architecture description is specified
including the desired mapping of tasks to processors, and
the arbiter type for each processor. The target multiprocessor
platform is generated in hardware, where each processor is
simulated using a Xilinx Microblaze processor. The properties
of each task (timing,repetition rate) are preserved during
software generation for each processor. The desired arbiter
for each processor is also generated automatically.

Further, we observe that dynamic arbiters in a processor lead
to deadlock in simulation. In order to prevent this, parallel
discrete event simulation (PDES) principles are used [5].
Typically PDES is used to accelerate sequential program
execution on parallel machines. In our approach, we use
PDES for simulating multiple applications – each consisting of
parallel tasks – executing on multiple processors. Most PDES
approaches fall under one of the two categories – conservative

and optimistic. We propose and use a smart conservative

approach that is intelligent to figure out when the sequen-
tial program execution can be compromised for improved
efficiency. We have developed a mechanism which on every
simulation step checks whether proceeding the simulation on
incomplete information can result in causality errors. If we
figure out that following the time-stamp ordering is imperative
then we switch to conservative PDES, otherwise we turn to
smart conservative PDES. Based on our technique, we have
developed a tool for performance evaluation of applications
on multi-processor platform. The tool is available at [7] for
on-line use.
Following are major contributions of this paper.

• Identification and solution of problems faced during sim-
ulation of multiple applications on a MPSoC platform.

• A new technique for PDES is presented that is 15% faster
than conservative PDES.

• An automated tool flow for the performance evaluation of
multiple applications executing concurrently on an FPGA
based MPSoC.

We validate our smart conservative PDES technique by a case-

study to optimize the buffer-space needed in an MPSoC design
given the performance constraints of the applications. The case
study shows that our FPGA-based simulation methodology is
at least 3 times faster than an optimized software simulation.
The solution is also scalable with the number of processors,
applications, and use-cases, as shown by our results. Further,
we compare the effectiveness of the smart conservative PDES
over the traditional conservative PDES.
The paper is organized as follows. Section 2 explains re-
lated work in this direction. In section 3, we perform a
review on SDF graphs. Section 4 presents our simulation
methodology. Section 5 is about our newly developed PDES
technique. Section 6 discusses details about implementation of
our methodology and presents results of case-study which we
performed to validate our approach. Section 7 concludes the
paper.

II. RELATED WORK

FPGAs can be used as simulation platforms; the reason
being their flexibility, relatively low cost, and reconfigurability.
Today, FPGAs are fast and big enough to provide scalable
alternative to software simulation. FPGA simulation efforts
such as RPM [12] have produced a system level multiprocessor
emulator. Designers can choose from a library of architectural
components and evaluate their performance. FAST [13] is an
FPGA based platform for modeling multi-processor system
with MIPS cores. It is suitable for MPSoC memory system
research. RAMP [17] is a cycle accurate, distributed con-
current event simulator. It claims to provide the user with
the flexibility to configure all components of multiprocessor
systems like processing elements, communication infrastruc-
ture, programming model etc. ATLAS [14] uses the BEE2
boards from RAMP and its main emphasis is software research
for transactional memory. The prototype runs the GNU/linux
operating system and runs multi-threaded applications that use
transactional memory.
All the above mentioned platforms simulate architectural
components of the multi-processor research. On the contrary,
our platform performs performance evaluation of multiple
applications on a multi-processor fabric. There are also some
analysis tools like SDF3 [15] for single applications, and they
use heuristics to find the actor-processor mappings. In [16],
authors have presented a scheduler for SDF graph simulation
on multi-processor platforms but it does not support multiple
applications. As far as we know, our approach is the first to
use FPGAs as simulation platform for performance evaluation
of multiple applications running concurrently on MPSoC plat-
forms.
In [4], the authors have presented a simulation model for
multiple applications. The tool helps in finding the throughput
of applications but it is not scalable and like any software
simulation environment it gets slower and slower as we
increase the number of simulated processors. Simflex [8] is
a micro-architectural simulator for multi-processors. It accel-
erates simulation by exploiting homogeneity of application
behaviors that repeat millions of times. It analyzes the ap-
plication and chooses the size of sample in such a way to
capture the behavior of the model completely. This technique
has a very high overhead due to creation of complete state
before execution of each sample. MAMPS [2] is a tool flow

7 65 4 2

4

3A
4

D

10

1 1

3

B

C

1
1

Fig. 1: Example of an SDF Graph.

for mapping multi-media applications on FPGA. It evaluates
the performance of applications by executing their models on
the FPGA fabric, however we only forward the time-stamps
of execution. Forwarding time stamps takes few cycles as
compared to execution of the program model. This makes our
approach faster than MAMPS.
A-ports [9] is another architectural simulator on FPGA. Like
our approach, it is also a graph of connected nodes. A node
may execute a simulation cycle when all of its inputs are ready.
However there are some key differences. A-Ports nodes are
required to send a message every cycle; even if the message
indicates that no change in the state of node has happened.
However, we only forward the control tokens if there is a
chance of deadlock in simulation.
MPARM [10] is an environment for MPSoC design space
exploration using SystemC. It is complete platform solution for
MPSoC simulation composed of processor models (ARM) bus
models (AMBA), memory models, hardware support for SMP
(hardware semaphores), and a software development toolset
including a C compiler and an operating system. It provides
several performance statistics, such as cache miss/hit rate and
bus contention and average waiting time. In [11] authors have
presented a methodology for performance analysis of pro-
cessor at different abstraction levels, offering different trade-
offs between estimation speed and accuracy. Neural networks
are used to provide software performance estimation. The
neural networks are first trained on benchmarks of specific
processors. The methodology is targeted towards processor
selection.

III. SYNCHRONOUS DATA FLOW GRAPHS

DSP and multi-media applications are of streaming nature.
Data flows through the processing nodes. These nodes perform
their computations on chunks of data and forward it to the
next processing node. SDF Graphs [20] can model these ap-
plications efficiently. SDF graphs are used extensively, to find
the expected performance of application on the computation
platform.
Figure 1 shows an example of an SDF Graph. There are four

actors/tasks in this graph (we will use terms actor and task
interchangeably). As in a typical data flow graph, a directed
edge represents the dependency between actors. Actors also
need some input data (or control information) before they
can start and usually also produce some output data; such
information is referred to as tokens. The edges may also
contain initial tokens, indicated by bullets on the edges, as seen
on the edge from actor C to A in Figure 1. Required number
of tokens at input edge, and number of tokens produced after
execution (input and output token rates), are also visible in
Figure 1. Actor execution is also called firing. An actor is

Application Specification

SDF Graphs

Profiling gives execution

times of tasks on target

processors.

Platform Specification

(a) Processors, Interconnect

(b) Communication delay

Arbitration Schemes

Platform Generation

(1) HW Generation

(a) Microblaze Processors

(b) Interconnect through FSL

Softwae Generation

(a) Arbitration Routines

(b) Performance monitoring

Execute Model

Generate

Results

Fig. 2: Simulation methodology

called ready when it has sufficient input tokens on all its input
edges and sufficient buffer space on all its output edges; an
actor can only fire when it is ready.
In the above example, only A can start execution from the
initial state, since the required number of tokens is present on
its only incoming edge. Once A has finished execution it will
produce 3 tokens on the edge to B. B can then proceed as it
has enough tokens and upon completion produce 4 tokens on
the edge to C. Since there are two initial tokens on the edge
from C to A, A can again fire as soon as it has finished the
first execution, without waiting for C to execute.
We choose SDF graphs as they are very helpful in finding the
throughput and buffer requirements of applications running
on multi-processor platforms. This brings analyzability and
predictability in the design which is of great importance in
embedded and non-embedded domains. Our approach is also
applicable to more general data flow models.

IV. SIMULATION PLATFORM GENERATION

In an MPSoC architecture, where processors are already
selected and hardware and software components have been
defined, a system-level simulation model can be used for
performance analysis. MPSoC architectures are composed of
multiple processors, hardware IPs, memories and peripherals.
Evaluation of individual components is not sufficient to an-
alyze the system performance. The situation is further com-
plicated if the platform has to support multiple applications
simultaneously.
Our simulation platform is a network of nodes/processors
connected to each other through First-in-First-out (FIFOs)
buffers. These nodes continuously check their input ports
and wait for arrival of tokens. The nodes then process these
tokens and forward the results to succeeding nodes. FIFOs
are placed between the nodes so that synchronization signals
between the producing and consuming nodes are not required.
We simulate a system of K applications having Nk actors.
E.g., “a0,a1, ...,aNa−1

” are “Na” actors from application A
and “b0,b1, ...,bNb−1

” are “Nb” actors from application B.
Actors from the same application communicate with each
other exclusively through messages going through edges “c”.
We assume that the executions times of the actors on the target
processors are known by profiling. Along with the application
information, we also require the platform information; e.g, the
number of processors, their interconnect topology, communi-
cation delay. At present we support point-to-point networks,
but our methodology is also applicable to shared networks.
Actors/Tasks executing on our platform are non-preemptive.
Figure 2 shows our simulation platform generation method-
ology. Applications are specified as SDF Graphs. Actor exe-

IQ

IDCT

H263 Stream

Video Out

1200 96

300 288

VLD

Re−Const

(a) H263 Task graph

VLD IZZ

IDCTDecoded Image

Jpeg Image

CC Re−order

36 24 72

2424288

IQ

(b) JPEG Task graph

ARM7

MBlaze0

H263 Stream

MBlaze1

jpeg image

H263 decoded Video

ARM9

MBlaze2

TI

jpeg
decoded
image

(c) Task mapping to processors

Fig. 3: Simulation platform generation

TABLE I: Processor-Actor Assignment.

Proc. H263 JPEG Sched. pol.

ARM7 VLD CC FCFS

ARM9 IQ,Re-const VLD,IQ,IZZ RRWS

TI IDCT IDCT,Re-order FCFS

cution times, platform specification, and scheduling policy at
each processor is input to our tool. The tool then generates
platform hardware and software (for Xilinx FPGA). Software
includes arbitration routines for schedulers in each processor.
The model is then executed and results are processed.

Figure 3 shows an example of our simulation technique.
H263 and JPEG are two applications to be simulated on a
three processor platform. Assume that ARM7, ARM9 and
a DSP from TI constitute a multi-processor platform. The
task graphs of applications are shown in Figure 3(a) and
Figure 3(b). Table I shows a mapping of tasks from the
two application on each processor and also shows the task
scheduling policy at each processor. The execution times (in
time units) of the graphs are also shown in Figure 3. The
platform is simulated on a 3 microblaze system which has
one-to-one correspondence with the target platform as shown
in Figure 3(c). Each processor can have actors from different
applications and maintains a local time-stamp “tsproc” of its
progress. In addition each actor also carries with it its own
time-stamp “tsactor”. The time-stamps indicate how far in
simulation time the processor or the actors have progressed.
For a processor, the time-stamps are updated when it executes
an actor or when it is idle. The same goes for actors. The time
at which an actor is ready, is determined by the time-stamp
of the latest available token from all input edges of an actor.
Following are important definitions/rules used in our approach.

Definitions:

• tsactor is earliest possible task/actor execution time at
which an actor can execute.

• The time-stamp of a processor tsproc is the latest time
to which this processor has simulated. It is updated as
follows

tsprocnew = max(tsproc,tsactor) (1)

• tstoken is the processor time tsproc(i) at which token is
produced in proci.

• Before an actor can fire, it has to ensure that no other
inputs can cause any change in the decision to execute
the actor. This is also called safe to execute. When an
actor executes, its execution time Texec(actor) is added to
its actor time.

tsactornew = max(tsactor,tsproc.)+Texec(actor) (2)

• For processors having a single-actor, the processor can
fire the actor when it is ready.

• Each FIFO buffer has a time-stamp “ts f i f o” associated
with it. When empty, it is equal to tstoken of the last
received token; otherwise it is equal to tstoken of the token
at the head of the FIFO.

THEOREM 1. Successive time-stamps ts f i f o(i)
, i ∈ N, on a

FIFO (edge) are guaranteed to be non-decreasing i.e. ts f i f o(i)

≥ ts f i f o(j)
for i > j.

Proof: Let p0 and p1 be two processors connected to
each other through a FIFO edge. Let ts f i f o(1)

and ts f i f o(2)

be time-stamps of successive tokens sent from p0 to p1. We
know that the token received in the FIFO is the processor
time of previous processor, and according to Equation 1 the
processor time can not decrease. Therefore ts f i f o(2)

≥ ts f i f o(1)
.

Hence time-stamps on a FIFO edge are guaranteed to be non-
decreasing.

Algorithm 1 Determining the ready time of all the actors.

1: {tsactor is ready time-stamp of an actor a.}
2: for all Incoming edges c where sinkc = a do

3: Read required input tokens on c

4: Let tsc be the time-stamp of the last read token on c

5: tsactor = max(tsactor , tsc)
6: end for

Algorithm 1 updates the time for each actor. The algorithm
reads the input tokens from all the incoming edges of the
actor. Since we are only simulating the performance, the real
data is not important and we are only interested in the time-
stamps of when the data was produced. The actor is ready to
fire at the time the last token is available. Since we are sure
the tokens in any FIFO are in non-decreasing time-stamps, we
can simply check the time-stamp of the last token read on all
the edges to determine the ready time of the actor.
The same is illustrated by means of an example in Figure 4.

The actor has two incoming edges and the number of tokens
needed from each edge is shown on the respective FIFO. The
time-stamps of the last tokens read on the left and on the top
edge are 10 and 9 respectively. Since the actor needs 3 time-
units to execute, the tokens produced on the edge have the
time-stamp of 13. Right side of Figure 4 shows the actor after
its execution. This assumes that there is no contention on the
processing node and that the actor can start execution as soon
as it is ready.
For static scheduling methodologies like Round Robin (RR)

3
3

2

a

2

3 a
(3)

2

4

Actor

Fires

2

9

3
(3)
a

2

10 5 5

9
9
6

2

13
13
4

Fig. 4: FIFO contains time-stamps of the tokens and determine when
an actor fires.

Deadlock

P0 = 0, 2, 4

8

(2)

4

0

2
 7

22

(2)

0

0

4

 0

a0
(2)

b0b0
(2)

a0

b1
(2) (2)

a1

(2)

2

10

5

a1
(2)

b1

P1 = 0, 2, 4

Control Tokens

Fig. 5: System deadlock.

and static order [4], the actor execution order is fixed and
does not depend on the arrival of actor time-stamps. In
such deterministic cases, there is no problem of ordering of
actor execution in simulation model. For dynamic arbitration
schemes like FCFS and Round Robin with Skipping (RRWS),
the simulation model should behave the same way as the
physical system. However, this can lead to deadlock in the
system. To remove deadlocks, we have implemented the well
know technique used in PDES. More details are in the next
section.

V. PDES FOR MULTIPLE APPLICATIONS

A. Deadlocks

An important issue in distributed simulation is deadlock.
According to [19], a deadlock condition is defined as

1) not all the processes in a network of processes have
terminated and

2) no process is executable.

In dynamic scheduling like FCFS, the ready actor with the
smallest time-stamp is executed. However if one of the input
FIFOs of this actor is empty; it blocks. If a cycle of interdepen-
dent empty FIFOs arises that has small time-stamps, then each
actor in that cycle must block and the simulation deadlocks
(more is described in following example). These deadlocks
can be avoided by a mechanism of look ahead (in our case
we call them “control tokens”) described in [5]. Readers can
refer to [5] for further details and proofs.
Figure 5 shows one such situation. In this example, both
processors P0 and P1, have two actors each from different
applications A and B. Their respective actor execution times
(2 units each) are also shown in the figure. We assume that at
the beginning of simulation, actor a0 and b1 execute due to
initial tokens at their inputs queues. Processor times of both P0
and P1 are incremented to 2 as shown in Figure 5. Now assume
actors a0 and b1 receive time-stamps 8 and 5 at their queues,

respectively. Note that tokens removed from the queues during
previous execution are shown beside the queues. Actors a1
and b0, both have data in their input queues and their time-
stamps are lower than that of a0 and b1 (2 each for a1 and b0
against 8 and 5 of a0 and b1, respectively). So both a1 and b0
fire resulting time stamps of 4 each, as shown in their output
queues (Figure 5). Next, the time-stamps at input FIFOs of
actors a1 and b0 are still lowest but they are waiting for their
data. There is a cycle of dependency between all four actors
and the simulation deadlocks and can not proceed any further.
To rectify this problem, we forward the expected arrival time
of tokens to the next processor. We call these tokens “control
tokens”. These control time-stamps require the system to be
predictable, i.e. we are able to predict the output of an actor
from the knowledge of its previous executions. In case of SDF
graphs we can predict the finishing time of an actor execution
by Equation(3).

tcntrl(actor) = Texec(actor)+max(tsproc,tsactor(actor)) (3)

Here tcntrl is the time-stamp of the control token to be sent
to the next processor. This time-stamp is a message to the
receiving processor that it will not receive any output from
sending processor before time tcntrl .
In case of above example, if actor b1 forwards control token
(encircled in Figure 5) having time-stamp of 7 and actor
a0 forwards control token of time-stamp 10 (according to
Equation (3)), the deadlock resolves and simulation continues.
To avoid sending too many control tokens, we only consider
sending one when the local processor time passed the time of
the previously sent control token.

B. Smart Conservative PDES

PDES, also called distributed simulation refers to the execu-
tion of a single discrete event simulation program on a parallel
computer. All algorithms for parallel simulation either fall into
the conservative or optimistic class.

• Parallel simulations are conservative if they satisfy the
property that no process receives information from any
other process that predates the current simulation time
of the receiving process [6].

• They are optimistic if the processes can act on incomplete
information thus admitting the case where messages may
arrive in the past.

Optimistic methods exploit more parallelism; however they
require some sort of roll back mechanism to an earlier valid
state. To achieve this synchronization, each process must
checkpoint its state and event information, which requires
storage space [6]. In multi-application systems when dynamic
scheduling is used, an optimistic approach generates a lot of
correction traffic due to close dependence of time-stamps on
the successive actors in an application. This increased traffic
will affect performance monitoring of the application.
So we propose a new PDES approach which we name as
smart conservative PDES. Our approach is different from
conservative PDES as we develop a mechanism to find out
the cases when violation of event list order can not produce
causality errors. In these cases we proceed the simulation
and do not wait un-necessarily for information which will
not affect the simulation order. If our mechanism finds out
that there is a possibility of causality error, we switch to

5

1

1

Q2

a0
(3) (3)

b0

3

a0

1

3

Q1

P0

3

P0

5

b0
(3)(3)

a0Q1

X 3

(a) case−1 (b) case−2

1

b01

Q2

Y

Fig. 6: Smart conservative PDES example

conservative PDES. An example in the next subsection will
further clarify our approach. Our approach borrows many
concepts from PDES work by Chandy [5] as we are using
event driven simulation. PDES simulates a single program
onto a multi-processor platform. However, we use PDES to
simulate multiple applications modeled as SDF Graphs. So
not only the actors of an application are to be executed in
a sequence, scheduling of actors from different applications
should also follow some scheduling policy. Our methodology
also does not require any central scheduler to synchronize the
processing nodes, which makes our approach more scalable.

C. Motivating Example

In this subsection, we show that for multi-application sim-
ulation, our smart conservative PDES provides an efficient
solution. Figure 6 shows two actors from two applications
mapped onto one processor P0. Their corresponding SDF
graph is shown on top of the figure. Actor a0 has two incoming
edges and actor b0 has one. Rate at all edges is 1. Figure 6(a)
shows the case when actor b0 has a lower time-stamp than
actor a0 and second edge of actor a0 is empty (so the token X
in queue Q2 has not yet arrived). For this case, if we schedule
these actors with the FCFS, we can ignore the token at Q2 as
actor time of a0 is tsa0 =max(5,X) (according to algorithm 1).
Even if the time-stamp of the received token at Q2 (which is
X), is lower than 3 we will execute b0 (as for FCFS we are
looking for the actor having minimum time-stamp value given
by min(max(5,X),3)). This property of not waiting for the
arrival of token “X” at Q2 is smart conservative scheduling
decision.
Figure 6(b) shows the case, when one of the queues of a0 has
a lower time-stamp than that of b0 and the other queue of a0
is empty. Let “Y” be the expected time-stamp value of token
at Q2. The value of Y can effect the scheduling decision by
the relation min(5,max(3,Y). It can be lower or higher than
5, in this case we use conservative approach and wait for the
arrival of time-stamp at Q2.
Now consider we apply conservative PDES for both cases.
Then in the first case, we are waiting unnecessarily for the
token in Q2 of actor a0.

Algorithm 2 FCFS arbitration algorithm for PDES.

1: FCFS arbitration()
2: {Check which of the actors are ready to execute.}
3: for all actors a do

4: actor ready[a] = is actor ready(a)
5: end for
6: for all actors a do

7: if (tsactor[a] < min time) then

8: min time = tsactor [a];actor = a; f lag min time = 1;
9: end if

10: end for

11: {If all the actors get ready after the CPU was idle then we set the CPU
time equal to the minimum time of the actors.}

12: tsproc = min time;
13: if (actor ready[actor] && f lag min time == 1) then

14: execute the actor
15: else
16: send control tokens(tsproc); return FCFS arbitration()
17: end if

Algorithm 3 RRWS arbitration algorithm for PDES.

1: RRWS arbitration(actor)
2: for all actors a do

3: if (tsactor[a] < minimum time) then
4: minimum time = tsactor[a]
5: end if

6: end for
7: {If all the actors get ready after the CPU was idle then we set the CPU

time equal to the minimum time of the actor}
8: tsproc = min time;
9: {Check the next actor from the list if it is ready}

10: if (is actor ready(actor)) then

11: if (tsproc < tsactor [actor]) then

12: Skip the actor;RRWS arbitration(next actor);
13: else

14: return; Execute the actor
15: end if

16: else
17: if (tsproc >= tsactor[actor]) then

18: send control tokens(tsproc);
19: Wait for the actor to get ready;
20: RRWS arbitration(actor)
21: else

22: Skip the actor;return RRWS arbitration(next actor);
23: end if
24: end if

D. Dynamic Actor Arbitration

Algorithm 2 shows our smart conservative FCFS arbitration.
The algorithm waits for any actor to get ready for execution
(line 4). Then it checks the minimum time of the actors. Next,
the algorithm verifies that the processor time is not less than
the minimum actor time. This can happen if all the actors get
ready during the time the processor was idle. In this case we
increase our processor time to minimum actor time (line 12).
The actor with smallest time stamp is executed if it is ready.
Control time-stamps are sent only if the actor is not ready or
its time is not minimum. Algorithm 3 shows the pseudo code
for RRWS arbitration under PDES. Like FCFS, the algorithm
ensures that if the processor time is less than actor times of all
actors then it sets the processor time to minimum actor time.
Then it picks an actor from the list of actors and checks if it
is ready (line 10). If the actor is ready then it determines if it
is safe to execute this actor. E.g. if the processor time is less
than the actor time, then we can not execute this actor, because
there is a possibility that an actor from other application may

Applications Platform Scheduling
Scheme

Generate Hardware
for All usecases.

Simulate Use−case

No All use−cases
done?

Yes

Extract Results From Files

Fig. 7: Software for each use-case is loaded one by one

arrive before the ready time of this actor. So we skip the actor
(line 12). If this is not the case, we execute the actor and pick
the next actor from the list. On the other hand if the actor
is not ready yet and processor time is more than this actors’
ready time, then we will have to wait for the arrival of tokens
for this actor and we can not skip it, as shown on line 19 of
Algorithm 3. Similarly, if the actor is not ready and its time is
greater than the processor time then the tokens for this actor
will arrive in future and we can safely skip to the next actor
(line 22).

VI. FPGA IMPLEMENTATION, EXPERIMENTS AND

RESULTS

We have implemented our simulation tool onto Xilinx
FPGA. The tasks are mapped to microblaze processors.
The FIFO links are mapped to FAST Simplex Links (FSL).
Additional peripherals such as timer, UART, and SysAce
are also used in the design. UART is useful for printing
debugging information of the system. Performance results of
each use-case are stored in the SysAce Compact Flash card.
A Timer is used for profiling the application.
The tool is fully automated and generates Xilinx HW/SW

files from XML input files. Our implementation platform
is Xilinx XUP Virtex II Pro Development Board with an
xc2vp30 FPGA on-board. Xilinx EDK 8.2i and ISE 8.2i were
used for synthesis and implementation. All tools run on a
Pentium dual core at 2.0GHZ with 2.0GB of RAM.

A. DSE Case Study

We present a case-study to use our simulation methodol-
ogy for performing a design space exploration to compute
the optimal buffer requirement for two applications running
concurrently on a multi-processor platform. Minimizing buffer
size is an important objective when designing embedded
systems. We explore the trade-off between the buffer-size used
and throughput obtained for multiple applications. Increasing
buffer space exploits more parallelism in the platform [21].
For single applications, the analysis is easier and has been
presented earlier [21]. For multiple applications it is non-
trivial to predict resource usage and performance because
multiple applications cause interference when they compete
for resources [2].
To predict performance of applications for different buffering
options, time spent during hardware synthesis is the limiting
factor. The solution is to synthesize a super-set hardware for
all use-cases in a typical design space exploration problem,

5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

use−case number

s
e

c
o

n
d

s
/u

s
e

−
c
a

s
e

Conservative Simulation

Smart Conservative Simulation

(a) conservative vs smarter conservative

0 5 10 15 20 25
0

20

40

60

80

100

120

 ← h/w synthesis time

Number of use−cases

T
o

ta
l
ti
m

e
,

m
in

u
te

s

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

POOSL Simulation

Smart Conservative Simulation

(b) POOSL vs smart conservative

0 5 10 15 20 25
0.06

0.065

0.07

0.075

0.08

0.085

0.09

use−case number

C
o

n
tr

o
l
T

o
k
e

n
s
/S

im
u

la
ti
o

n
 s

te
p

(c) Number of control tokens/simulation step

Fig. 8: Comparison of smart conservative with POOSL simulation.

and only change the software for each point in the design
space as shown in Figure 7. Interested readers are requested
to read [2] for more details about the technique.
The case study is performed for JPEG and H263 applications.
The descriptions are obtained from [22] and [23] respectively.
Both applications are mapped onto a 3 processor platform.
Figure 3 shows the task graphs and actor mappings of both
applications. The actors are mapped on processors by equally
distributing the compute load. In this case study the buffer
size has been modeled by the initial tokens present on the
incoming edge of the first actor. The larger this initial-token
count, the larger the buffer needed to store the output data.
In case of H263, each token corresponds to an entire decoded
frame, while in the case of JPEG, it is a complete image. The
design space consists of 25 points as for both applications,
the number of initial tokens are varied from 0 to 4. Hardware
synthesis time of the whole design on the FPGA was about
35 minutes. This is a one time overhead and after that we
only compile the software for each design point and download
that to get the results. We compare the performance of our
tool with a POOSL model [24]. POOSL is a very expressive
modeling language with a small set of powerfull primitives and
completely formally defined semantics. It furthermore serves
as a basis for performance analysis.
Figure 8 presents results from the case-study. Figure 8(a)
shows time taken by smart conservative approach at each de-
sign point. Smart conservative approach is 15% faster than the
conservative PDES. In [4], authors have created a tool to find
application throughput and buffer requirement using POOSL.
We compare our FPGA simulation platform results with this
POOSL model. Total time taken for POOSL simulation is
95 minutes where as the FPGA simulation took 41 minutes
only (including the hardware synthesis time). The speed up
gained for FPGA simulation platform for two applications is
around 3 as shown in Figure 8(b). This may seem like a small
improvement, but since our approach is more scalable, speedup
increases with increasing number of use-cases. E.g, if we have
to perform same DSE for 4 applications, the design space will
contain 625 use-cases. POOSL will simulate these use-cases
in about 2500 minutes where as our FPGA based technique
will require 110 minutes resulting in a speedup of around 23.
Figure 8(c) shows number of control tokens per simulation
step at each DSE point. Techniques like [9] require one

control token at each simulation step where as in our case
required number of control tokens/simulation step are very
low. Figure 8(c) also shows a decrease in number of tokens
with each DSE point. This is because from use-case 1-5, initial
H263 tokens are zero so only one application is executing in
the platform, resulting in more control tokens. As number of
initial tokens of H263 are increasing from use-case 6-25, Both
applications are active and fewer control tokens are required
due to increased exploitable parallelism.
Figure 9(a) shows how the throughput of JPEG decoder varies
with increasing number of tokens in the graph. When the
number of tokens (i.e. buffer-size in the real application) is
increased, the throughput also increases until a certain point
after which it saturates. When the JPEG decoder is the only
application executing (obtained by setting the initial tokens in
H263 to zero), we observe that its throughput increases almost
linearly till 3 initial tokens. We further observe that increasing
the initial tokens of H263 worsens the performance of JPEG.

B. Scalability

Figure 9(b) shows the scalability of FPGA simulation as
compared to POOSL. In this experiment we increased the
number of processors in a single application by one processor
at each experiment step. We simulated 500,000 iterations of
each resulting graph. It is evident from figure 9(b) that for
fewer number of processors, POOSL simulation is faster than
FPGA. It should be noted that the FPGA platform is running
at 50MHz and POOSL at 2.0 GHz. However, as we increase
the number of processors, POOSL simulation gets slower and
the simulation time keeps on increasing. On the other hand,
FPGA simulation takes almost the same time, as we keep
on increasing the number of processors. We increased the
number of processors up to 14. This is the highest number
of microblaze processors which we can synthesize on Xilinx
xc2vp30 FPGA, used for our experiments.
Figure 9(c) shows the normalized processor cycle speed up of
FPGA simulation against the POOSL simulation. POOSL and
FPGA simulation are running at different frequencies using
different type of processors, so to have a comparison we
convert their simulation time to normalized processor cycles.
Our POOSL simulation is running on Intel dual core 2.0
GHZ processor (only one of the processor being used) and
our FPGA simulation is mapped on 6 microblaze processors

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

Number of initial Tokens in JPEG

T
h

ro
u

g
h

p
u

t
o

f
J
P

E
G

 ×
 1

0
4

H263 not Active

H263: 1 Token

H263: 2−5 Tokens

(a) Effect of varying initial Tokens on JPEG throughput

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Number of processors

T
im

e
,

s
e

c

Smart Conservative PDES

Poosl Simulation

Conservative PDES

(b) Scalability with #Proc.

0 1 2 3 4 5 6
0

50

100

150

200

250

300

Number of applications

N
o

rm
a

liz
e

d
 p

ro
c
e

s
s
o

r
c
y
c
le

 S
p

e
e

d
 u

p

(c) Speedup with number of applications

Fig. 9: Figures comparing FPGA vs software simulation

running at 50 MHz each, as shown in Table II. Normalized
processor cycles are obtained by first multiplying the simu-
lation time, number of processors, and processor frequency
for both FPGA and POOSL simulation and then dividing the
corresponding products of POOSL by the FPGA products. Our
normalized processor cycle speed up for 6 applications is as
high as 218.

TABLE II: Normalized processor cycles.

of cycles cycles # of proc. # of proc. Tot. Cycles Tot. Cycles Speed
Appl. POOSL FPGA POOSL FPGA POOSL FPGA up in

×109 ×109 ×109 ×109 FPGA

1 280 0.73 1 6 280 4.39 64

2 830 .90 1 6 830 5.45 153

4 1120 1.125 1 6 1120 6.75 165

6 1710 1.307 1 6 1710 7.84 218

VII. CONCLUSIONS

In this paper, we propose a novel technique to accelerate
simulation of multiple applications on FPGAs. Our technique
is scalable as larger FPGAs are available to simulate designs
with a large number of applications and use-cases. The largest
Vertex-4 device [25] from Xilinx can be configured to have
about 97 microblaze processors. Support for such a large
number of processors makes our approach very attractive. We
also showed for two applications our simulation technique is
at least 3 times faster than an efficient software solution. This
speedup further increases for large number of applications,
use-cases and processors. Another contribution of our paper
is highlighting and solving the problems identified during
the PDES simulation for multiple applications. We present
efficient algorithms for three scheduling policies, RRWS,
RR and FCFS, in combination with our new smart PDES
simulation.
In the future, we intend to extend our work by supporting
more scheduling techniques. We also plan to include hardware
synthesis and performance evaluation options to our frame-
work. This will allow us to evaluate performance of hardware
modules like accelerators for multi-media applications. HDL
descriptions will be integrated in our simulation platform to
get feedback on performance of hardware modules.

REFERENCES

[1] W. Wolf, The future of multiprocessor systems-on-chips. Proc. DAC, pp
681-685, 2004.

[2] Akash Kumar et al. Multi-processor Systems Synthesis for Multiple
Use-Cases of Multiple Applications on FPGA. In ACM TODEAS. pp
1-27,July, 2008.

[3] A. Jerraya and W. Wolf, eds., Multiprocessor Systems-on-Chips, Morgan
Kaufman/Elsevier, 2004.

[4] Akash Kumar et al. Analyzing Composability of Applications on MP-
SoC Platforms. In JSA Vol 54, 2008, pp 369-383.

[5] K. M. Chandy and J. Mishra. Distributed Simulation: A Case Study
in Design and Verification of Distributed Programs. IEEE Trans. Soft.
Engg., 1979.

[6] F. Richard. Parallel Discrete Event Simulation. Communications of
ACM, 33(10), October 1990.

[7] www.ics.ele.tue.nl/∼akash
[8] T. F. Wenisch et al. Simflex:Statistical Sampleing of Computer System

Simulation. IEEE Micro, vol.26, issue 4. pp 18-31, July 2006.
[9] M. pellauer et al. A-Ports: an efficient abstraction for cycle-accurate

performance modles on FPGAs. FPGA ’08: Proceedings of 16th inter-
national ACM/SIGDA, New York USA.

[10] L. Binini et al. “MPARM”: Exploring the Multi-processor SoC Design
Space Exploration with SystemC“ JVSP Vol. 41,2005.

[11] M.Oyamada et al. Software Performance Estimation in MPSoC design.
DATE, 07. pp 38-43.

[12] K. Oner et al. The Design of RPM: An FPGA Based Multiprocessor
Emulator. In Proceedings of Intl. Symp. on FPGA. pp 60-66, 1995.

[13] J. D. Davis et al. A Chip prototyping Substrate: The Flexible Architec-
ture For Simulation ans Testing (FAST). HPCA, 2005.

[14] W. Sewooket al. A Practical FPGA-Based Framework for Novel CMP
Research. Intl. Symp. on FPGA. pp 116-125, 2007.

[15] S.Stuijk. Predictable Mapping of Streaming Applications. Ph.D. Thesis,
Eindhoven University of Technology, 2007.

[16] H. Chia-jui et al. Multithreaded Simulations for Synchronous Dataflow
Graphs. DAC, pp 331-336, 2008.

[17] C. Chang et al. BEE2: A high-end Reconfigurable Computing System.
IEEE Design and Test of Computers, pp 114-125, 2005.

[18] M. Flynn, Some Computer Organizations and their Effectiveness. IEEE
Transactions on Computers. Vol. C-21, page 948, 1972.

[19] K.M. Chandy and J. Mishra. Deadlock Absence Proofs for Networks of
Communicating Processes. IEEE Trans. Soft. Engg., 1981.

[20] E.A Lee and D. G. Messerschnitt. Static Scheduling of synchronous
dataflow programs for digital signal processing. IEEE Transactions on
Computers, Feb 1987.

[21] S. Stuijk et al., Exploring trade-offs in buffer requirements and through-
put constraints for synchronous dataflow graphs. 43rd DAC, pp. 899-904,
2006.

[22] D. Kock, E. 2002. Multiprocessor mapping of process networks: a JPEG
decoding case study. In Proc. of 15th ISSS, pp 68-73.

[23] R. Hoes. Predictable Dynamic Behavior in NOC-based MPSoC. Avail-
able from: www.es.ele.tue.nl/epicurus/ ,2004

[24] Available from: http://www.es.ele.tue.nl/poosl.
[25] http://www.xilinx.com

