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Abstract

Analysis, Design and Management of Multimedia Multiprocessor
Systems.

The design of multimedia platforms is becoming increasingly more complex. Mod-
ern multimedia systems need to support a large number of applications or func-
tions in a single device. To achieve high performance in such systems, more and
more processors are being integrated into a single chip to build Multi-Processor
Systems-on-Chip (MPSoCs). The heterogeneity of such systems is also increasing
with the use of specialized digital hardware, application domain processors and
other IP (intellectual property) blocks on a single chip, since various standards
and algorithms are to be supported. These embedded systems also need to meet
timing and other non-functional constraints like low power and design area. Fur-
ther, processors designed for multimedia applications (also known as streaming
processors) often do not support preemption to keep costs low, making traditional
analysis techniques unusable.

To achieve high performance in such systems, the limited computational re-
sources must be shared. The concurrent execution of dynamic applications on
shared resources causes interference. The fact that these applications do not al-
ways run concurrently only adds a new dimension to the design problem. We
define each such combination of applications executing concurrently as a use-
case. Currently, companies often spend 60-70% of the product development cost
in verifying all feasible use-cases. Having an analysis technique can significantly
reduce this development cost. Since applications are often added to the system
at run-time (for example, a mobile-phone user may download a Java application
at run-time), a complete analysis at design-time is also not feasible. Existing
techniques are unable to handle this dynamism, and the only solution left to the
designer is to over-dimension the hardware by a large factor leading to increased
area, cost and power.

In this thesis, a run-time performance prediction methodology is presented
that can accurately and quickly predict the performance of multiple applications
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before they execute in the system. Synchronous data flow (SDF) graphs are used
to model applications, since they fit well with characteristics of multimedia appli-
cations, and at the same time allow analysis of application performance. Further,
their atomic execution requirement matches well with the non-preemptive nature
of many streaming processors. While a lot of techniques are available to ana-
lyze performance of single applications, for multiple applications this task is a lot
harder and little work has been done in this direction. This thesis presents one of
the first attempts to analyze performance of multiple applications executing on
heterogeneous non-preemptive multiprocessor platforms.

Our technique uses performance expressions computed off-line from the appli-
cation specifications. A run-time iterative probabilistic analysis is used to estimate
the time spent by tasks during the contention phase, and thereby predict the per-
formance of applications. An admission controller is presented using this analysis
technique. The controller admits incoming applications only if their performance
is expected to meet their desired requirements.

Further, we present a design-flow for designing systems with multiple appli-
cations. A hybrid approach is presented where the time-consuming application-
specific computations are done at design-time, and in isolation with other appli-
cations, and the use-case-specific computations are performed at run-time. This
allows easy addition of applications at run-time. A run-time mechanism is pre-
sented to manage resources in a system. This ensures that once an application is
admitted in the system, it can meet its performance constraints. This mechanism
enforces budgets and suspends applications if they achieve a higher performance
than desired. A resource manager (RM) is presented to manage computation and
communication resources, and to achieve the above goals of performance predic-
tion, admission control and budget enforcement.

With high consumer demand the time-to-market has become significantly
lower. To cope with the complexity in designing such systems, a largely automated
design-flow is needed that can generate systems from a high-level architectural de-
scription such that they are not error-prone and consume less time. This thesis
presents a highly automated flow – MAMPS (Multi-Application Multi-Processor
Synthesis), that synthesizes multi-processor platforms for multiple applications
specified in the form of SDF graph models.

Another key design automation challenge is fast exploration of software and
hardware implementation alternatives with accurate performance evaluation, also
known as design space exploration (DSE). This thesis presents a design methodol-
ogy to generate multiprocessor systems in a systematic and fully automated way
for multiple use-cases. Techniques are presented to merge multiple use-cases into
one hardware design to minimize cost and design time, making it well-suited for
fast DSE of MPSoC systems. Heuristics to partition use-cases are also presented
such that each partition can fit in an FPGA, and all use-cases can be catered for.
The above tools are made available on-line for use by the research community.
The tools allow anyone to upload their application descriptions and generate the
FPGA multi-processor platform in seconds.
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CHAPTER 1

Trends and Challenges in Multimedia Systems

Odyssey, released by Magnavox in 1972, was the world’s first video game con-
sole [Ody72]. This supported a variety of games from tennis to baseball. Re-
movable circuit cards consisting of a series of jumpers were used to interconnect
different logic and signal generators to produce the desired game logic and screen
output components respectively. It did not support sound, but it did come with
translucent plastic overlays that one could put on the TV screen to generate
colour images. This was what is called as the first generation video game console.
Figure 1.1(a) shows a picture of this console, that sold about 330,000 units. Let
us now forward to the present day, where the video game consoles have moved
into the seventh generation. An example of one such console is the PlayStation3
from Sony [PS309] shown in Figure 1.1(b), that sold over 21 million units in the
first two years of its launch. It not only supports sounds and colours, but is a
complete media centre which can play photographs, video games, movies in high
definitions in the most advanced formats, and has a large hard-disk to store games
and movies. Further, it can connect to one’s home network, and the entire world,
both wireless and wired. Surely, we have come a long way in the development of
multimedia systems.

A lot of progress has been made from both applications and system-design
perspective. The designers have a lot more resources at their disposal – more
transistors to play with, better and almost completely automated tools to place
and route these transistors, and much more memory in the system. However, a
number of key challenges remains. With increasing number of transistors has come
increased power to worry about. While the tools for the back-end (synthesizing a
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(a) Odyssey, released in 1972 – an exam-
ple from first generation video game con-
sole [Ody72].

(b) Sony PlayStation3 released in 2006 –
an example from the seventh generation
video game console [PS309]

Figure 1.1: Comparison of world’s first video console with on e of the most modern
consoles.

chip from the detailed system description) are almost completely automated, the
front-end (developing a detailed specification of the system) of the design-process
is still largely manual, leading to increased design time and error. While the
cost of memory in the system has decreased a lot, its speed has little. Further,
the demands from the application have increased even further. While the cost of
transistors has declined, increased competition is forcing companies to cut cost, in
turn forcing designers to use as few resources as necessary. Systems have evolving
standards often requiring a complete re-design often late in the design-process.
At the same time, the time-to-market is decreasing, making it even harder for the
designer to meet the strict deadlines.

In this thesis, we present analysis, design and management techniques for
multimedia multi-processor platforms. To cope with the complexity in design-
ing such systems, a largely automated design-flow is needed that can generate
systems from a high-level system description such that they are not error-prone
and consume less time. This thesis presents a highly automated flow – MAMPS
(Multi-Application Multi-Processor Synthesis), that synthesizes multi-processor
platforms for not just multiple applications, but multiple use-cases. (A use-case is
defined as a combination of applications that may be active concurrently.) One of
the key design automation challenges that remain is fast exploration of software
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and hardware implementation alternatives with accurate performance evaluation.
Techniques are presented to merge multiple use-cases into one hardware design
to minimize cost and design time, making it well-suited for fast design space
exploration in MPSoC systems.

In order to contain the design-cost it is important to have a system that is
neither hugely over-dimensioned, nor too limited to support the modern appli-
cations. While there are techniques to estimate application performance, they
often end-up providing a high-upper bound such that the hardware is grossly
over-dimensioned. We present a performance prediction methodology that can
accurately and quickly predict the performance of multiple applications before
they execute in the system. The technique is fast enough to be used at run-time
as well. This allows run-time addition of applications in the system. An admission
controller is presented using the analysis technique that admits incoming appli-
cations only if their performance is expected to meet their desired requirements.
Further, a mechanism is presented to manage resources in a system. This ensures
that once an application is admitted in the system, it can meet its performance
constraints. The entire set-up is integrated in the MAMPS flow and available
on-line for the benefit of research community.

This chapter is organized as follows. In Section 1.1 we take a closer look at the
trends in multimedia systems from the applications perspective. In Section 1.2
we look at the trends in multimedia system design. Section 1.3 summarizes the
key challenges that remain to be solved as seen from the two trends. Section 1.4
explains the overall design flow that is used in this thesis. Section 1.5 lists the key
contributions that have led to this thesis, and their organization in this thesis.

1.1 Trends in Multimedia Systems Applications

Multimedia systems are systems that use a combination of content forms like text,
audio, video, pictures and animation to provide information or entertainment to
the user. The video game console is just one example of the many multimedia sys-
tems that abound around us. Televisions, mobile phones, home theatre systems,
mp3 players, laptops, personal digital assistants, are all examples of multimedia
systems. Modern multimedia systems have changed the way in which users re-
ceive information and expect to be entertained. Users now expect information to
be available instantly whether they are traveling in the airplane, or sitting in the
comfort of their houses. In line with users’ demand, a large number of multimedia
products are available. To satisfy this huge demand, the semiconductor compa-
nies are busy releasing newer embedded, and multimedia systems in particular,
every few months.

The number of features in a multimedia system is constantly increasing. For
example, a mobile phone that was traditionally meant to support voice calls, now
provides video-conferencing features and streaming of television programs using
3G networks [HM03]. An mp3 player, traditionally meant for simply playing
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music, now stores contacts and appointments, plays photos and video clips, and
also doubles up as a video game. Some people refer to it as the convergence
of information, communication and entertainment [BMS96]. Devices that were
traditionally meant for only one of the three things, now support all of them. The
devices have also shrunk, and they are often seen as fashion accessories. A mobile
phone that was not very mobile until about 15 years ago, is now barely thick
enough to support its own structure, and small enough to hide in the smallest of
ladies-purses.

Further, many of these applications execute concurrently on the platform in
different combinations. We define each such combination of simultaneously active
applications as a use-case. (It is also known as scenario in literature [PTB06].)
For example, a mobile phone in one instant may be used to talk on the phone
while surfing the web and downloading some Java application in the background.
In another instant it may be used to listen to MP3 music while browsing JPEG
pictures stored in the phone, and at the same time allow a remote device to access
the files in the phone over a bluetooth connection. Modern devices are built to
support different use-cases, making it possible for users to choose and use the
desired functions concurrently.

Another trend we see is increasing and evolving standards. A number of stan-
dards for radio communication, audio and video encoding/decoding and interfaces
are available. The multimedia systems often support a number of these. While
a high-end TV supports a variety of video interfaces like HDMI, DVI, VGA,
coaxial cable; a mobile phone supports multiple bands like GSM 850, GSM 900,
GSM 180 and GSM 1900, besides other wireless protocols like Infrared and Blue-
tooth [MMZ+02, KB97, Blu04]. As standards evolve, allowing faster and more
efficient communication, newer devices are released in the market to match those
specifications. The time to market is also reducing since a number of companies
are in the market [JW04], and the consumers expect quick releases. A late launch
in the market directly hurts the revenue of the company.

Power consumption has become a major design issue since many multimedia
systems are hand-held. According to a survey by TNS research, two-thirds of
mobile phone and PDA users rate two-days of battery life during active use as
the most important feature of the ideal converged device of the future [TNS06].
While the battery life of portable devices has generally been increasing, the active
use is still limited to a few hours, and in some extreme cases to a day. Even for
other plugged multimedia systems, power has become a global concern with rising
oil prices, and a growing awareness in people to reduce energy consumption.

To summarize, we see the following trends and requirements in the application
of multimedia devices.

• An increasing number of multimedia devices are being brought to market.

• The number of applications in multimedia systems is increasing.

• The diversity of applications is increasing with convergence and multiple
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standards.

• The applications execute concurrently in varied combinations known as use-
cases, and the number of these use-cases is increasing.

• The time-to-market is reducing due to increased competition, and evolving
standards and interfaces.

• Power consumption is becoming an increasingly important concern for fu-
ture multimedia devices.

1.2 Trends in Multimedia Systems Design

A number of factors are involved in bringing the progress outlined above in mul-
timedia systems. Most of them can be directly or indirectly attributed to the
famous Moore’s law [Moo65], that predicted the exponential increase in transis-
tor density as early as 1965. Since then, almost every measure of the capabilities
of digital electronic devices – processing speed, transistor count per chip, memory
capacity, even the number and size of pixels in digital cameras – are improving
at roughly exponential rates. This has had two-fold impact. While on one hand,
the hardware designers have been able to provide bigger, better and faster means
of processing, on the other hand, the application developers have been working
hard to utilize this processing power to its maximum. This has led them to de-
liver better and increasingly complex applications in all dimensions of life – be it
medical care systems, airplanes, or multimedia systems.

When the first Intel processor was released in 1971, it had 2,300 transistors
and operated at a speed of 400 kHz. In contrast, a modern chip has more than
a billion transistors operating at more than 3 GHz [Int09]. Figure 1.2 shows the
trend in processor speed and the cost of memory [Ade08]. The cost of memory has
come down from close to 400 U.S. dollars in 1971, to less than a cent for 1 MB of
dynamic memory (RAM). The processor speed has risen to over 3.5 GHz. Another
interesting observation from this figure is the introduction of dual and quad core
chips since 2005 onwards. This indicates the beginning of multi-processor era. As
the transistor size shrinks, they can be clocked faster. However, this also leads to
an increase in power consumption, in turn making chips hotter. Heat dissipation
has become a serious problem forcing chip manufacturers to limit the maximum
frequency of the processor. Chip manufacturers are therefore, shifting towards
designing multiprocessor chips operating at a lower frequency. Intel reports that
under-clocking a single core by 20 percent saves half the power while sacrificing
just 13 percent of the performance [Ros08]. This implies that if the work is divided
between two processors running at 80 percent clock rate, we get 74 percent better
performance for the same power. Further, the heat is dissipated at two points
rather than one.
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Figure 1.2: Increasing processor speed and reducing memory cost [Ade08].

Further, sources like Berkeley and Intel are already predicting hundreds and
thousands of cores on the same chip [ABC+06, Bor07] in the near future. All
computing vendors have announced chips with multiple processor cores. More-
over, vendor road-maps promise to repeatedly double the number of cores per
chip. These future chips are variously called chip multiprocessors, multi-core chips,
and many-core chips, and the complete system as multi-processor systems-on-chip
(MPSoC).

Following are the key benefits of using multi-processor systems.

• They consume less power and energy, provided sufficient task-level paral-
lelism is present in the application(s). If there is insufficient parallelism,
then some processors can be switched off.

• Multiple applications can be easily shared among processors.

• Streaming applications (typical multimedia applications) can be more easily
pipelined.

• More robust against failure – a Cell processor is designed with 8 cores (also
known as SPE), but not all are always working.

• Heterogeneity can be supported, allowing better performance.

• It is more scalable, since higher performance can be obtained by adding
more processors.
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(a) Homogeneous systems (b) Heterogeneous systems

Figure 1.3: Comparison of speedup obtained by combining r smaller cores into a
bigger core in homogeneous and heterogeneous systems [HM08 ].

In order to evaluate the true benefits of multi-core processing, Amdahl’s law
[Amd67] has been augmented to deal with multi-core chips [HM08]. Amdahl’s law
is used to find the maximum expected improvement to an overall system when
only a part of the system is improved. It states that if you enhance a fraction f
of a computation by a speedup S, the overall speedup is:

Speedupenhanced(f, S) =
1

(1 − f) + f
S

However, if the sequential part can be made to execute in less time by using a
processor that has better sequential performance, the speedup can be increased.
Suppose we can use the resources of r base-cores (BCs) to build one bigger core,
which gives a performance of perf(r). If perf(r) > r i.e. super linear speedup, it is
always advisable to use the bigger core, since doing so speeds up both sequential
and parallel execution. However, usually perf(r) < r. When perf(r) < r, trade-
off starts. Increasing core performance helps in sequential execution, but hurts
parallel execution. If resources for n BCs are available on a chip, and all BCs are
replaced with n/r bigger cores, the overall speedup is:

Speeduphomogeneous(f, n, r) =
1

1−f
perf(r) + f.r

perf(r).n

When heterogeneous multiprocessors are considered, there are more possibil-
ities to redistribute the resources on a chip. If only r BCs are replaced with 1
bigger core, the overall speedup is:

Speedupheterogeneous(f, n, r) =
1

1−f
perf(r) + f

perf(r)+n−r
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Figure 1.3 shows the speedup obtained for both homogeneous and heteroge-
neous systems, for different fractions of parallelizable software. The x-axis shows
the number of base processors that are combined into one larger core. In total
there are resources for 16 BCs. The origin shows the point when we have a homo-
geneous system with only base-cores. As we move along the x-axis, the number of
base-core resources used to make a bigger core are increased. In a homogeneous
system, all the cores are replaced by a bigger core, while for heterogeneous, only
one bigger core is built. The end-point for the x-axis is when all available resources
are replaced with one big core. For this figure, it is assumed that perf(r) =

√
r.

As can be seen, the corresponding speedup when using a heterogeneous system is
much greater than homogeneous system. While these graphs are shown for only
16 base-cores, similar performance speedups are obtained for other bigger chips
as well. This shows that using a heterogeneous system with several large cores on
a chip can offer better speedup than a homogeneous system.

In terms of power as well, heterogeneous systems are better. Figure 1.4 shows
the intrinsic computational efficiency of silicon as compared to that of micropro-
cessors [Roz01]. The graph shows that the flexibility of general purpose micro-
processors comes at the cost of increased power. The upper staircase-like line of
the figure shows Intrinsic Computational Efficiency (ICE) of silicon according to
an analytical model from [Roz01] (MOPS/W ≈ α/λV 2

DD , α is constant, λ is
feature size, and VDD is the supply voltage). The intrinsic efficiency is in theory
bounded on the number of 32-bit mega (adder) operations that can be achieved
per second per Watt. The performance discontinuities in the upper staircase-like
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line are caused by changes in the supply voltage from 5V to 3.3V, 3.3V to 1.5V,
1.5V to 1.2V and 1.2 to 1.0V. We observe that there is a gap of 2-to-3 orders of
magnitude between the intrinsic efficiency of silicon and general purpose micro-
processors. The accelerators – custom hardware modules designed for a specific
task – come close to the maximum efficiency. Clearly, it may not always be de-
sirable to actually design a hypothetically maximum efficiency processor. A full
match between the application and architecture can bring the efficiency close to
the hypothetical maximum. A heterogeneous platform may combine the flexibility
of using a general purpose microprocessor and custom accelerators for compute
intensive tasks, thereby minimizing the power consumed in the system.

Most modern multiprocessor systems are heterogeneous, and contain one or
more application-specific processing elements (PEs). The CELL processor [KDH+05],
jointly developed by Sony, Toshiba and IBM, contains up to nine-PEs – one gen-
eral purpose PowerPC [WS94] and eight Synergistic Processor Elements (SPEs).
The PowerPC runs the operating system and the control tasks, while the SPEs
perform the compute-intensive tasks. This Cell processor is used in PlaySta-
tion3 described above. STMicroelectronics Nomadik contains an ARM processor
and several Very Long Instruction Word (VLIW) DSP cores [AAC+03]. Texas
Instruments OMAP processor [Cum03] and Philips Nexperia [OA03] are other ex-
amples. Recently, many companies have begun providing configurable cores that
are targeted towards an application domain. These are known as Application
Specific Instruction-set Processors (ASIPs). These provide a good compromise
between general-purpose cores and ASICs. Tensilica [Ten09, Gon00] and Silicon
Hive [Hiv09, Hal05] are two such examples, which provide the complete toolset to
generate multiprocessor systems where each processor can be customized towards
a particular task or domain, and the corresponding software programming toolset
is automatically generated for them. This also allows the re-use of IP (Intellectual
Property) modules designed for a particular domain or task.

Another trend that we see in multimedia systems design is the use of Platform-
Based Design paradigm [SVCBS04, KMN+00]. This is becoming increasingly
popular due to three main factors: (1) the dramatic increase in non-recurring
engineering cost due to mask making at the circuit implementation level, (2) the
reducing time to market, and (3) streamlining of industry – chip fabrication and
system design, for example, are done in different companies and places. This
paradigm is based on segregation between the system design process, and the
system implementation process. The basic tenets of platform-based design are
identification of design as meeting-in-the-middle process, where successive refine-
ments of specifications meet with abstractions of potential implementations, and
the identification of precisely defined abstraction layers where the refinement to
the subsequent layer and abstraction processes take place [SVCBS04]. Each layer
supports a design stage providing an opaque abstraction of lower layers that allows
accurate performance estimations. This information is incorporated in appropri-
ate parameters that annotate design choices at the present layer of abstraction.
These layers of abstraction are called platforms. For MPSoC system design, this
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Figure 1.5: Platform-based design approach – system platfo rm stack.

translates into abstraction between the application space and architectural space
that is provided by the system-platform. Figure 1.5 captures this system-platform
that provides an abstraction between the application and architecture space. This
decouples the application development process from the architecture implemen-
tation process.

We further observe that for high-performance multimedia systems (like cell-
processing engine and graphics processor), non-preemptive systems are preferred
over preemptive ones for a number of reasons [JSM91]. In many practical systems,
properties of device hardware and software either make the preemption impos-
sible or prohibitively expensive due to extra hardware and (potential) execution
time needed. Further, non-preemptive scheduling algorithms are easier to imple-
ment than preemptive algorithms and have dramatically lower overhead at run-
time [JSM91]. Further, even in multi-processor systems with preemptive proces-
sors, some processors (or co-processors/ accelerators) are usually non-preemptive;
for such processors non-preemptive analysis is still needed. It is therefore impor-
tant to investigate non-preemptive multi-processor systems.

To summarize, the following trends can be seen in the design of multimedia
systems.

• Increase in system resources: The resources available for disposal in terms
of processing and memory are increasing exponentially.

• Use of multiprocessor systems: Multi-processor systems are being developed
for reasons of power, efficiency, robustness, and scalability.

• Increasing heterogeneity: With the re-use of IP modules and design of cus-
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tom (co-) processors (ASIPs), heterogeneity in MPSoCs is increasing.

• Platform-based design: Platform-based design methodology is being em-
ployed to improve the re-use of components and shorten the development
cycle.

• Non-preemptive processors: Non-preemptive processors are preferred over
preemptive to reduce cost.

1.3 Key Challenges in Multimedia Systems Design

The trends outlined in the previous two sections indicate the increasing complexity
of modern multimedia systems. They have to support a number of concurrently
executing applications with diverse resource and performance requirements. The
designers face the challenge of designing such systems at low cost and in short time.
In order to keep the costs low, a number of design options have to be explored
to find the optimal or near-optimal solution. The performance of applications
executing on the system have to be carefully evaluated to satisfy user-experience.
Run-time mechanisms are needed to deal with run-time addition of applications.
In short, following are the major challenges that remain in the design of modern
multimedia systems, and are addressed in this thesis.

• Multiple use-cases: Analyzing performance of multiple applications execut-
ing concurrently on heterogeneous multi-processor platforms. Further, this
number of use-cases and their combinations is exponential in the number of
applications present in the system. (Analysis and Design)

• Design and Program: Systematic way to design and program multi-processor
platforms. (Design)

• Design space exploration: Fast design space exploration technique. (Analy-
sis and Design)

• Run-time addition of applications: Deal with run-time addition of applica-
tions – keep the analysis fast and composable, adapt the design (-process),
manage the resources at run-time (e.g. admission controller). (Analysis,
Design and Management)

• Meeting performance constraints: A good mechanism for keeping perfor-
mance of all applications executing above the desired level. (Design and
Management)

1.3.1 Analysis

We present a novel probabilistic performance prediction (P 3) algorithm for pre-
dicting performance of multiple applications executing on multi-processor plat-



12 1.3. KEY CHALLENGES IN MULTIMEDIA SYSTEMS DESIGN

forms. The algorithm predicts the time that tasks have to spend during con-
tention phase for a resource. The computation of accurate waiting time is the
key to performance analysis. When applications are modeled as synchronous
dataflow (SDF) graphs, their performance on a (multi-processor) system can be
easily computed when they are executing in isolation (provided we have a good
model). When they execute concurrently, depending on whether the used sched-
uler is static or dynamic, the arbitration on a resource is either fixed at design-time
or chosen at run-time respectively (explained in more detail in Chapter 2). In the
former case, the execution order can be modeled in the graph, and the perfor-
mance of the entire application can be determined. The contention is therefore
modeled as dependency edges in the SDF graph. However, this is more suited
for static applications. For dynamic applications such as multimedia, dynamic
scheduler is more suitable. For dynamic scheduling approaches, the contention
has to be modeled as waiting time for a task, which is added to the execution
time to give the total response time. The performance can be determined by com-
puting the performance (throughput) of this resulting SDF graph. With lack of
good techniques for accurately predicting the time spent in contention, designers
have to resort to worst-case waiting time estimates, that lead to over-designing
the system and loss of performance. Further, those approaches are not scalable
and the over-estimate increases with the number of applications.

In this thesis, we present a solution to performance prediction, with easy anal-
ysis. We highlight the issue of composability i.e. mapping and analysis of perfor-
mance of multiple applications on a multiprocessor platform in isolation, as far as
possible. This limits computational complexity and allows high dynamism in the
system. While in this thesis, we only show examples with processor contention,
memory and network contention can also be easily modeled in SDF graph as
shown in [Stu07]. The technique presented here can therefore be easily extended
to other system components as well. The analysis technique can be used both at
design-time and run-time.

We would ideally want to analyze each application in isolation, thereby re-
ducing the analysis time to a linear function, and still reason about the overall
behaviour of the system. One of the ways to achieve this, would be complete vir-
tualization. This essentially implies dividing the available resources by the total
number of applications in the system. The application would then have exclusive
access to its share of resources. For example, if we have 100 MHz processors
and a total of 10 applications in the system, each application would get 10 MHz
of processing resource. The same can be done for communication bandwidth
and memory requirements. However this gives two main problems. When fewer
than 10 tasks are active, the tasks will not be able to exploit the extra avail-
able processing power, leading to wastage. Secondly, the system would be grossly
over-dimensioned when the peak requirements of each application are taken into
account, even though these peak requirements of applications may rarely occur
and never be at the same time.

Figure 1.6 shows this disparity in more detail. The graph shows the period of
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son to simulation.

ten streaming multimedia applications (inverse of throughput) when they are run
concurrently. The period is the time taken for one iteration of the application.
The period has been normalized to the original period that is achieved when each
application is running in isolation. If full virtualization is used, the period of appli-
cations increases to about ten times on average. However, without virtualization,
it increases only about five times. A system which is built with full-virtualization
in mind, would therefore, utilize only 50% of the resources. Thus, throughput
decreases with complete virtualization.

Therefore, a good analysis methodology for a modern multimedia system

• provides accurate performance results, such that the system is not over-
dimensioned,

• is fast in order to make it usable for run-time analysis, and to explore a
large number of design-points quickly, and

• easily handles a large number of applications, and is composable to allow
run-time addition of new applications.

It should be mentioned that often in applications, we are concerned with the
long-term throughput and not the individual deadlines. For example, in the case
of JPEG application, we are not concerned with decoding of each macro-block,
but the whole image. When browsing the web, individual JPEG images are not
as important as the entire page being ready. Thus, for the scope of this thesis,
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we consider long-term throughput i.e. cumulative deadline for a large number of
iterations, and not just one. However, having said that it is possible to adapt the
analysis to individual deadlines as well. It should be noted that in such cases,
the estimates for individual iteration may be very pessimistic as compared to
long-term throughput estimates.

1.3.2 Design

As is motivated earlier, modern systems need to support many different combi-
nations of applications – each combination is defined as a use-case – on the same
hardware. With reducing time-to-market, designers are faced with the challenge
of designing and testing systems for multiple use-cases quickly. Rapid proto-
typing has become very important to easily evaluate design alternatives, and to
explore hardware and software alternatives quickly. Unfortunately, lack of au-
tomated techniques and tools implies that most work is done by hand, making
the design-process error-prone and time-consuming. This also limits the num-
ber of design-points that can be explored. While some efforts have been made
to automate the flow and raise the abstraction level, these are still limited to
single-application designs.

Modern multimedia systems support not just multiple applications, but also
multiple use-cases. The number of such potential use-cases is exponential in the
number of applications that are present in the system. The high demand of func-
tionalities in such devices is leading to an increasing shift towards developing
systems in software and programmable hardware in order to increase design flex-
ibility. However, a single configuration of this programmable hardware may not
be able to support this large number of use-cases with low cost and power. We
envision that future complex embedded systems will be partitioned into several
configurations and the appropriate configuration will be loaded into the reconfig-
urable platform (defined as a piece of hardware that can be configured at run-
time to achieve the desired functionality) on the fly as and when the use-cases
are requested. This requires two major developments at the research front: (1) a
systematic design methodology for allowing multiple use-cases to be merged on a
single hardware configuration, and (2) a mechanism to keep the number of hard-
ware configurations as small as possible. More hardware configurations imply a
higher cost since the configurations have to be stored in the memory, and also
lead to increased switching in the system.

In this thesis, we present MAMPS (Multi-Application Multi-Processor Synthe-
sis) – a design-flow that generates the entire MPSoC for multiple use-cases from
application(s) specifications, together with corresponding software projects for au-
tomated synthesis. This allows the designers to quickly traverse the design-space
and evaluate the performance on real hardware. Multiple use-cases of applica-
tions are supported by merging such that minimal hardware is generated. This
further reduces the time spent in system-synthesis. When not all use-cases can
be supported with one configuration, due to the hardware constraints, multiple
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configurations of hardware are automatically generated, while keeping the num-
ber of partitions low. Further, an area estimation technique is provided that can
accurately predict the area of a design and decide whether a given system-design
is feasible within the hardware constraints or not. This helps in quick evaluation
of designs, thereby making the DSE faster.

Thus, the design-flow presented in this thesis is unique in a number of ways:
(1) it supports multiple use-cases on one hardware platform, (2) estimates the
area of design before the actual synthesis, allowing the designer to choose the
right device, (3) merges and partitions the use-cases to minimize the number of
hardware configurations, and (4) it allows fast DSE by automating the design
generation and exploration process.

The work in this thesis is targeted towards heterogeneous multi-processor sys-
tems. In such systems, the mapping is largely determined by the capabilities of
processors and the requirements of different tasks. Thus, the freedom in terms of
mapping is rather limited. For homogeneous systems, task mapping and schedul-
ing are coupled by performance requirements of applications. If for a particular
scheduling policy, the performance of a given application is not met, mapping may
need to be altered to ensure that the performance improves. As for the schedul-
ing policy, it is not always possible to steer them at run-time. For example, if
a system uses first-come-first-serve scheduling policy, it is infeasible to change it
to a fixed priority schedule for a short time, since it requires extra hardware and
software. Further, identifying the ideal mapping given a particular scheduling
policy already takes exponential time in the total number of tasks. When the
scheduling policy is also allowed to vary independently on processors, the time
taken increases even more.

1.3.3 Management

Resource management, i.e. managing all the resources present in the multipro-
cessor system, is similar to the task of an operating system on a general purpose
computer. This includes starting up of applications, and allocating resources to
them appropriately. In the case of a multimedia system (or embedded systems, in
general), a key difference from a general purpose computer is that the applications
(or application domain) is generally known, and the system can be optimized for
them. Further, most decisions can be already taken at design-time to save the
cost at run-time. Still, a complete design-time analysis is becoming increasingly
harder due to three major reasons: 1) little may be known at design-time about
the applications that need to be used in future, e.g. a navigation application like
Tom-Tom may be installed on the phone after-wards, 2) the precise platform may
also not be known at design time, e.g. some cores may fail at run-time, and 3)
the number of design-points that need to be evaluated is prohibitively large. A
run-time approach can benefit from the fact that the exact application mix is
known, but the analysis has to be fast enough to make it feasible.

In this thesis, we present a hybrid approach for designing systems with
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multiple applications. This splits the management tasks into off-line and on-line.
The time-consuming application specific computations are done at design-time
and for each application independent from other applications, and the use-case
specific computations are performed at run-time. The off-line computation in-
cludes tasks like application-partitioning, application-modeling, determining the
task execution times, determining their maximum throughput, etc. Further, para-
metric equations are derived that allow throughput computation of tasks with
varying execution times. All this analysis is time-consuming and best carried out
at design-time. Further, in this part no information is needed from the other
applications and it can be performed in isolation. This information is sufficient
enough to let a run-time manager determine the performance of an application
when executing concurrently on the platform with other applications. This al-
lows easy addition of applications at run-time. As long as all the properties
needed by the run-time resource manager are derived for the new application, the
application can be treated as all the other applications that are present in the
system.

At run-time, when the resource manager needs to decide, for example, which
resources to allocate to an incoming application, it can evaluate the performance
of applications with different allocations and determine the best option. In some
cases, multiple quality levels of an application may be specified, and at run-time
the resource manager can choose from one of those levels. This functionality of
the resource manager is referred to as admission control. The manager also
needs to ensure that applications that are admitted do not take more resources
than allocated, and starve the other applications executing in the system. This
functionality is referred to as budget enforcement. The manager periodically
checks the performance of all applications, and when an application does better
than the required level, it is suspended to ensure that it does not take more
resources than needed. For the scope of this thesis, the effect of task migration is
not considered since it is orthogonal to our approach.

1.4 Design Flow

Figure 1.7 shows the design-flow that is used in this thesis. Specifications of
applications are provided to the designer in the form of Synchronous Dataflow
(SDF) graphs [SB00, LM87]. These are often used for modeling multimedia ap-
plications. This is further explained in Chapter 2. As motivated earlier in the
chapter, modern multimedia systems support a number of applications in varied
combinations defined as use-case. Figure 1.7 shows three example applications
– A, B and C, and three use-cases with their combinations. For example, in Use-
case 2 applications A and B execute concurrently. For each of these use-cases,
the performance of all active applications is analyzed. When a suitable mapping
to hardware is to be explored, this step is often repeated with different mappings,
until the desired performance is obtained. A probabilistic mechanism is used to
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Figure 1.7: Complete design flow starting from applications specifications and
ending with a working hardware prototype on an FPGA.
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estimate the average performance of applications. This performance analysis

technique is presented in Chapter 3.

When a satisfactory mapping is obtained, the system can be designed and
synthesized automatically using the system-design approach presented in Chap-
ter 5. Multiple use-cases need to be merged on to one hardware design such that
a new hardware configuration is not needed for every use-case. This is explained
in Chapter 6. When it is not possible to merge all use-cases due to resource
constraints (slices in an FPGA, for example), use-cases need to be partitioned
such that the number of hardware partitions are kept to a minimum. Further, a
fast area estimation method is needed that can quickly identify whether a set of
use-cases can be merged due to hardware constraints. Trying synthesis for every
use-case combination is too time-consuming. A novel area-estimation technique
is needed that can save precious time during design space exploration. This is
explained in Chapter 6.

Once the system is designed, a run-time mechanism is needed to ensure that
all applications can meet their performance requirements. This is accomplished
by using a resource manager (RM). Whenever a new application is to be started,
the manager checks whether sufficient resources are available. This is defined
as admission-control. The probabilistic analysis is used to predict the perfor-
mance of applications when the new application is admitted in the system. If the
expected performance of all applications is above the minimum desired perfor-
mance then the application is started, else a lower quality of incoming application
is tried. The resource manager also takes care of budget-enforcement i.e. en-
suring applications use only as much resources as assigned. If an application uses
more resources than needed and starves other applications, it is suspended. Fig-
ure 1.7 shows an example where application A is suspended. Chapter 4 provides
details of two main tasks of the RM – admission control and budget-enforcement.

The above flow also allows for run-time addition of applications. Since the
performance analysis presented is fast, it is done at run-time. Therefore, any
application whose properties have been derived off-line can be used, if there are
enough resources present in the system. This is explained in more detail in Chap-
ter 4.

1.5 Key Contributions and Thesis Overview

Following are some of the major contributions that have been achieved during the
course of this research and have led to this thesis.

• A detailed analysis of why estimating performance of multiple applications
executing on a heterogeneous platform is so difficult. This work was pub-
lished in [KMC+06], and an extended version is published in a special issue
of the Journal of Systems Architecture containing the best papers of the
Digital System Design conference [KMT+08].
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• A probabilistic performance prediction (P 3) mechanism for multiple applica-
tions. The prediction is within 2% of real performance for experiments done.
The basic version of the P 3 mechanism was first published in [KMC+07],
and later improved and published in [KMCH08].

• An admission controller based on P 3 mechanism to admit applications only
if they are expected to meet their performance requirements. This work is
published in [KMCH08].

• A budget enforcement mechanism to ensure that applications can all meet
their desired performance if they are admitted. This work is published
in [KMT+06].

• A Resource Manager (RM) to manage computation and communication
resources, and achieve the above goals. This work is published in [KMCH08].

• A design flow for multiple applications, such that composability is main-
tained and applications can be added at run-time with ease.

• A platform synthesis design technique that generates multiprocessors plat-
forms with ease automatically and also programs them with relevant pro-
gram codes, for multiple applications. This work is published in [KFH+07].

• A design flow explaining how systems that support multiple use-cases should
be designed. This work is published in [KFH+08].

A tool-flow based on the above for Xilinx FPGAs that is also made available
for use on-line for the benefit of research community. This tool is available on-line
at www.es.ele.tue.nl/mamps/ [MAM09].

This thesis is organized as follows. Chapter 2 explains the concepts involved
in modeling and scheduling of applications. It explores the problems encountered
when analyzing multiple applications executing on a multi-processor platform.
The challenge of Composability, i.e. being able to analyze applications in isola-
tion with other applications, is presented in this chapter. Chapter 3 presents a
performance prediction methodology that can accurately predict the performance
of applications at run-time before they execute in the system. A run-time it-
erative probabilistic analysis is used to estimate the time spent by tasks during
contention phase, and thereby predict the performance of applications. Chapter 4
explains the concepts of resource management and enforcing budgets to meet the
performance requirements. The performance prediction is used for admission con-
trol – one of the main functions of the resource manager. Chapter 5 proposes an
automated design methodology to generate program MPSoC hardware designs in
a systematic and automated way for multiple applications named MAMPS. Chap-
ter 6 explains how systems should be designed when multiple use-cases have to
be supported. Algorithms for merging and partitioning use-cases are presented in
this chapter as well. Finally, Chapter 7 concludes this thesis and gives directions
for future work.
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CHAPTER 2

Application Modeling and Scheduling

Multimedia applications are becoming increasingly more complex and computa-
tion hungry to match consumer demands. If we take video, for example, televisions
from leading companies are already available with high-definition (HD) video res-
olution of 1080x1920 i.e. more than 2 million pixels [Son09, Sam09, Phi09] for
consumers and even higher resolutions are showcased in electronic shows [CES09].
Producing images for such a high resolution is already taxing for even high-end
MPSoC platforms. The problem is compounded by the extra dimension of mul-
tiple applications sharing the same resources. Good modeling is essential for two
main reasons: 1) to predict the behaviour of applications on a given hardware
without actually synthesizing the system, and 2) to synthesize the system after a
feasible solution has been identified from the analysis. In this chapter we will see
in detail the model requirements we have for designing and analyzing multimedia
systems. We see the various models of computation, and choose one that meets
our design-requirements.

Another factor that plays an important role in multi-application analysis is
determining when and where a part of application is to be executed, also known
as scheduling. Heuristics and algorithms for scheduling are called schedulers.
Studying schedulers is essential for good system design and analysis. In this
chapter, we discuss the various types of schedulers for dataflow models. When
considering multiple applications executing on multi-processor platforms, three
main things need to be taken care of: 1) assignment – deciding which task of
application has to be executed on which processor, 2) ordering – determining the
order of task-execution, and 3) timing – determining the precise time of task-
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execution1. Each of these three tasks can be done at either compile-time or
run-time. In this chapter, we classify the schedulers on this criteria and highlight
two of them most suited for use in multiprocessor multimedia platforms. We
highlight the issue of composability i.e. mapping and analysis of performance of
multiple applications on a multiprocessor platform in isolation, as far as possible.
This limits computational complexity and allows high dynamism in the system.

This chapter is organized as follows. The next section motivates the need of
modeling applications and the requirements for such a model. Section 2.2 gives an
introduction to the synchronous dataflow (SDF) graphs that we use in our analy-
sis. Some properties that are relevant for this thesis are also explained in the same
section. Section 2.3 discusses the models of computation (MoCs) that are avail-
able, and motivates the choice of SDF graphs as the MoC for our applications.
Section 2.4 gives state-of-the-art techniques used for estimating performance of
applications modeled as SDF graphs. Section 2.5 provides background on the
scheduling techniques used for dataflow graphs in general. Section 2.6 extends
the performance analysis techniques to include hardware constraints as well. Sec-
tion 2.8 provides a comparison between static and dynamic ordering schedulers,
and Section 2.9 concludes the chapter.

2.1 Application Model and Specification

Multimedia applications are often also referred to as streaming applications

owing to their repetitive nature of execution. Most applications execute for a very
long time in a fixed execution pattern. When watching television for example,
the video decoding process potentially goes on decoding for hours – an hour is
equivalent to 180,000 video frames at a modest rate of 50 frames per second (fps).
High-end televisions often provide a refresh rate of even 100 fps, and the trend
indicates further increase in this rate. The same goes for an audio stream that
usually accompanies the video. The platform has to work continuously to get this
output to the user.

In order to ensure that this high performance can be met by the platform, the
designer has to be able to model the application requirements. In the absence
of a good model, it is very difficult to know in advance whether the application
performance can be met at all times, and extensive simulation and testing is
needed. Even now, companies report a large effort being spent on verifying the
timing requirements of the applications. With multiple applications executing on
multiple processors, the potential number of use-cases increases rapidly, and so
does the cost of verification.

We start by defining a use-case.

1Some people also define only ordering and timing as scheduling, and assignment as binding

or mapping.
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Definition 1 (Use-case:) Given a set of n applications A0, A1, . . . An−1, a
use-case U is defined as a vector of n elements (x0, x1, . . . xn−1) where xi ∈
{0, 1} ∀ i = 0, 1, . . . n − 1, such that xi = 1 implies application Ai is active.

In other words, a use-case represents a collection of multiple applications that
are active simultaneously. It is impossible to test a system with all potential
input cases in advance. Modern multimedia platforms (high-end mobile phones,
for example) allow users to download applications at run-time. Testing for those
applications at design-time is simply not possible. A good model of an application
can allow for such analysis at run-time.

One of the major challenges that arise when mapping an application to an
MPSoC platform is dividing the application load over multiple processors. Two
ways are available to parallelize the application and divide the load over more
than one processor, namely task-level parallelism (also known as pipe-lining) and
data-level parallelism. In the former, each processor gets a different part of an
application to process, while in the latter, processors operate on the same func-
tionality of application, but different data. For example, in case of JPEG image
decoding, inverse discrete cosine transform (IDCT) and colour conversion (CC),
among other tasks, need to be performed for all parts (macro-blocks) of an im-
age. Splitting the task of IDCT and CC on different processors is an example of
task-level parallelism. Splitting the data, in this case macro-blocks, to different
processors is an example of data-level parallelism. To an extent, these approaches
are orthogonal and can be applied in isolation or in combination. In this thesis,
we shall focus primarily on task-level parallelism.

Parallelizing an application to make it suitable for execution on a multi-
processor platform can be a very difficult task. Whether an application is written
from start in a manner that is suitable for SDF model, or whether an SDF model
is extracted from the existing (sequential) application, in either case we need to
know how long the execution of each program segment will take; how much data
and program memory will be needed for it; and when communication program
segments are mapped on different processors, how much communication buffer
capacity do we need. Further, we also want to know what is the maximum per-
formance that the application can achieve on a given platform, especially when
sharing the platform with other applications. For this, we have to also be able to
model and analyze scheduling decisions.

To summarize, following are our requirements from an application model that
allow mapping and analysis on a multiprocessor platform:

• Analyze computational requirements: When designing an application for
MPSoC platform, it is important to know how much computational resource
an application needs. This allows the designers to dimension the hardware
appropriately. Further, this is also needed to compute the performance esti-
mates of the application as a whole. While sometimes, average case analysis
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of requirements may suffice, often we also need the worst case estimates, for
example in case of real-time embedded systems.

• Analyze memory requirements: This constraint becomes increasingly more
important as the memory cost on a chip goes high. A model that allows
accurate analysis of memory needed for the program execution can allow a
designer to distribute the memory across processors appropriately and also
determine proper mapping on the hardware.

• Analyze communication requirements: The buffer capacity between the com-
municating tasks (potentially) affects the overall application performance. A
model that allows computing these buffer-throughput trade-offs can let the
designer allocate appropriate memory for the channel and predict through-
put.

• Model and analyze scheduling: When we have multiple applications sharing
processors, scheduling becomes one of the major challenges. A model that
allows us to analyze the effect of scheduling on applications performance is
needed.

• Design the system: Once the performance of system is considered satisfac-
tory, the system has to be synthesized such that the properties analyzed are
still valid.

Dataflow models of computation fit rather well with the above requirements. They
provide a model for describing signal processing systems where infinite streams of
data are incrementally transformed by processes executing in sequence or paral-
lel. In a dataflow model, processes communicate via unbounded FIFO channels.
Processes read and write atomic data elements or tokens from and to channels.
Writing to a channel is non-blocking, i.e. it always succeeds and does not stall the
process, while reading from a channel is blocking, i.e. a process that reads from
an empty channel will stall and can only continue when the channel contains suf-
ficient tokens. In this thesis, we use synchronous dataflow (SDF) graph to model
applications and the next section explains them in more detail.

2.2 Introduction to SDF Graphs

Synchronous Data Flow Graphs (SDFGs, see [LM87]) are often used for modeling
modern DSP applications [SB00] and for designing concurrent multimedia applica-
tions implemented on multi-processor systems-on-chip. Both pipelined streaming
and cyclic dependencies between tasks can be easily modeled in SDFGs. Tasks
are modeled by the vertices of an SDFG, which are called actors. The commu-
nication between actors is represented by edges through which it is connected to
other actors. Edges represent channels for communication in a real system.
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Figure 2.1: Example of an SDF Graph

The time that the actor takes to execute on a processor is indicated by the
number inside the actor. It should be noted that the time an actor takes to execute
may vary with the processor. For sake of simplicity, we shall omit the detail as
to which processor it is mapped, and just define the time (or clock cycles) needed
on a RISC processor [PD80], unless otherwise mentioned. This is also sometimes
referred to as Timed SDF in literature [Stu07]. Further, when we refer to the time
needed to execute a particular actor, we refer to the worst-case execution-time
(WCET). The average execution time may be lower.

Figure 2.1 shows an example of an SDF graph. There are three actors in this
graph. As in a typical data flow graph, a directed edge represents the dependency
between actors. Actors need some input data (or control information) before they
can start, and usually also produce some output data; such information is referred
to as tokens. The number of tokens produced or consumed in one execution of
actor is called rate. In the example, a0 has an input rate of 1 and output rate of
2. Further, its execution time is 100 clock cycles. Actor execution is also called
firing. An actor is called ready when it has sufficient input tokens on all its input
edges and sufficient buffer space on all its output channels; an actor can only fire
when it is ready.

The edges may also contain initial tokens, indicated by bullets on the edges,
as seen on the edge from actor a2 to a0 in Figure 2.1. In the above example, only
a0 can start execution from the initial state, since the required number of tokens
are present on its only incoming edge. Once a0 has finished execution, it will
produce 2 tokens on the edge to a1. a1 can then proceed, as it has enough tokens,
and upon completion produce 1 token on the edge to a2. However, a2 has to wait
before two executions of a1 are completed, since it needs two input tokens.

A number of properties of an application can be analyzed from its SDF model.
We can calculate the maximum performance possible of an application. We can
identify whether the application or a particular schedule will result in a deadlock.
We can also analyze other performance properties, e.g. latency of an application,
buffer requirements. Below we give some properties of SDF graphs that allow
modeling of hardware constraints that are relevant to this thesis.
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2.2.1 Modeling Auto-concurrency

The example in Figure 2.1 brings a very interesting fact to notice. According to
the model, since a1 requires only one token on the edge from a0 to fire, as soon
as a0 has finished executing and produced two tokens, two executions of a1 can
start simultaneously. However, this is only possible if a1 is mapped and allowed
to execute on multiple processors simultaneously. In a typical system, a1 will
be mapped on a processor. Once the processor starts executing, it will not be
available to start the second execution of a1 until it has at least finished the first
execution of a1. If there are other actors mapped on it, the second execution of
a1 may even be delayed further.
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Figure 2.2: SDF Graph after modeling auto-concurrency of 1 f or the actor a1

Fortunately, there is a way to model this particular resource conflict in SDF.
Figure 2.2 shows the same example, now updated with the constraint that only
one execution of a1 can be active at any one point in time. In this figure, a
self-edge has been added to the actor a1 with one initial token. (In a self-edge,
the source and destination actor is the same.) This initial token is consumed
in the first firing of a1 and produced after a1 has finished the first execution.
Interestingly enough, by varying the number of initial tokens on this self-edge, we
can regulate the number of simultaneous executions of a particular actor. This
property is called auto-concurrency.

Definition 2 (Auto-concurrency) The auto-concurrency of an actor is
defined as the maximum number of simultaneous executions of that actor.

In Figure 2.2, the auto-concurrency of a1 is 1, while for a0 and a2 it is infinite.
In other words, the resource conflict for actors a0 and a2 is not modeled. In fact,
the single initial token on the edge from a2 to a0 limits the auto-concurrency of
these two actors to one; a self-edge in this case would be superfluous.
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2.2.2 Modeling Buffer Sizes

One of the very useful properties of SDF graphs is its ability to model available
buffers easily. Buffer-sizes may be modeled as a back-edge with initial tokens. In
such cases, the number of tokens on that edge indicates the buffer-size available.
When an actor writes data on a channel, the available size reduces; when the
receiving actor consumes this data, the available buffer increases, modeled by an
increase in the number of tokens.
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Figure 2.3: SDF Graph after modeling buffer-size of 2 on the e dge from actor a2 to
a1

Figure 2.3 shows such an example, where the buffer size of the channel from a1

to a2 is shown as two. Before a1 can be executed, it has to check if enough buffer
space is available. This is modeled by requiring tokens from the back-edge to be
consumed. Since it produces one token per firing, one token from the back-edge is
consumed, indicating reservation of one buffer space on the output edge. On the
consumption side, when a2 is executed, it frees two buffer spaces, indicated by a
release of two tokens on the back-edge. In the model, the output buffer space is
claimed at the start of execution, and the input token space is released only at
the end of firing. This ensures atomic execution of the actor.

2.3 Comparison of Dataflow Models

While SDF graphs allow analysis of many properties and are well-suited for multi-
media applications, they do have some restrictions. For example, conditional and
data-dependent behaviour cannot be expressed in these models. In this section,
we provide an overview of the other models of computation (MoC). In [Stu07],
Stuijk has summarized and compared many models on the basis of their expres-
siveness and succinctness, efficiency of implementation, and analyzability. Ex-
pressiveness determines to what extent real-applications can be represented in a
particular model. Models that are static in nature (e.g. SDF) cannot capture
behaviour of highly dynamic applications (e.g. object segmentation from an input
sequence) accurately. Succinctness (or compactness) determines how compact
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that representation is. Efficiency of implementation determines how easily the
application model can be implemented in terms of its schedule length. Analyz-
ability determines to what extent the model can be analyzed and performance
properties of applications determined. As mentioned in the earlier section, this
is one of the most important considerations for us. In general, a model that can
be easily analyzed at design-time is also more efficient for implementation, since
most scheduling and resource assignment decisions can be made at design-time.
Figure 2.4 shows how different models are placed on these three axes.

Expressiveness and Succinctness

Analyzability Implementation efficiency

KPN
SADF
BDF

CSDF

Computation graphs
SDF / Weighted marked graphs
HSDF / Marked graphs

Figure 2.4: Comparison of different models of computation [ Stu07].

Kahn Process Network

Kahn process network (KPN) was proposed by Kahn in 1974 [Kah74]. The
amount of data read from an edge may be data-dependent. This allows mod-
eling of any continuous function from the inputs of the KPN to the outputs of the
KPN with an arbitrarily small number of processes. KPN is sufficiently expres-
sive to capture precisely all data dependent dataflow transformations. However,
this also implies that in order to analyze properties like the throughput or buffer
requirements of a KPN all possible inputs have to be considered.
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Scenario Aware Dataflow

Scenario aware dataflow (SADF) was first introduced by Theelen in 2006 [TGB+06].
This is also a model for design-time analysis of dynamic streaming and signal
processing applications.This model also allows for data-dependent behaviour in
processes. Each different execution pattern is defined as a scenario. Such scenar-
ios denote different modes of operations in which resource requirements can differ
considerably. The scenario concept enables to coherently capture the variations
in behaviour of different processes in a streaming application. A key novelty of
SADF is the use of a stochastic approach to capture the scenario occurrences as
well as the occurrence of different execution times within a scenario in an abstract
way. While some properties of these graphs like deadlock and throughput are pos-
sible to analyze at design time, in practice this analysis can be quite slow. This
model is less compact than KPN, since all scenarios have to be explicitly specified
in the model, and known at design time. This also makes it less expressive since
not all kinds of systems can be expressed accurately in SADF.

Boolean Dataflow

The last model of computation that we discuss having data-dependent behaviour
is boolean dataflow (BDF) model [Lee91, BL93]. In this model, each process
has a number of inputs and outputs to choose from. Depending on the value of
control tokens data is read from one of the input channels, and written to one of
the output channels. This model is less expressive than the earlier two models
discussed, since the control freedom in modeling processes is limited to either true
or false. Similar to the earlier two models discussed, the analyzability is limited.

Cyclo Static Dataflow

Now we move on to the class of more deterministic data flow models of computa-
tion. In a cyclo-static dataflow (CSDF) model [LWAP94, BELP96], the rates of
data consumed and produced may change between subsequent firings. However,
the pattern of this change is pre-determined and that makes it more analyzable
at design time. These graphs may be converted to SDF graphs, and are therefore
as expressive as SDF graphs. However, the freedom to change the rates of data
makes them more compact than SDF in representing some applications. They
are also as analyzable, but slower if we consider the same number of actors, since
the resulting schedule is generally a little more complex.

Recently, special channels have been introduced for CSDF graphs [DBC+07].
Often applications share buffers between multiple consumers. This cannot be
directly described in CSDF. The authors show how such implementation spe-
cific aspects can be modeled in CSDF without the need of extensions. Thus,
the analyzability of the graph is maintained, and appropriate buffer-sizes can be
computed from the application model.
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Computation Graphs

Computation graphs were first introduced by Karp and Miller in 1966 [KM66]. In
these graphs there is a threshold set for each edge specifying the minimum number
of tokens that should be present on that edge before an actor can fire. However,
the number of tokens produced and consumed for each edge is still fixed. These
models are less expressive than CSDF, but more analyzable. A synchronous data
flow graph is a subset of these computation graphs.

Synchronous Dataflow

Synchronous dataflow (SDF) graphs were first proposed by Lee and Messerschmitt
in 1987 [LM87]. However, as has been earlier claimed [Stu07], these correspond
to subclass weighted marked graph [TCWCS92] of Petri nets, which is a general
purpose model of computation with a number of applications [Pet62, Mur89]. SDF
graphs have a constant input and output rate that does not change with input or
across different firings. They also don’t support execution in different scenarios as
may be specified by data. Therefore, their expressivity is rather limited. However,
this also makes them a lot easier to analyze. Many performance parameters can
be analyzed as explained in Section 2.4.

Homogeneous Synchronous Data Flow

Homogeneous Synchronous Data Flow (HSDF) graphs are a subset of SDF graphs.
In HSDF graph model, the rates of all input and output edges is one. This implies
that only one token is read and written in any firing of an actor. This limits the
expressiveness even more, but makes the analysis somewhat easier. HSDF graphs
can be converted into SDF and vice-versa. However, in practice the size of an
HSDF for an equivalent SDFG may be very large as shown by examples in [Stu07].
Lately, analysis techniques have been developed that work almost as fast directly
on an SDF graph as on an HSDF graph (for the same number of nodes) [Gha08].
Therefore, the added advantage of using an HSDF graph is lost.

After considering all the alternatives, we decided in favour of SDF graphs since
their ability to analyze applications in terms of other performance requirements,
such as throughput and buffer, was one of our key requirements. Further, a
number of analysis tools for SDF graph were available (and more in development)
when this research was started [SDF09]. However, since SDF graphs are not able
to express some real applications accurately, we do have to pay a little overhead
in estimating performance. For example, the execution time is assumed to be the
worst-case execution-time. Thus, in some cases, the performance estimates may
be pessimistic.
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2.4 Performance Modeling

In this section, we define the major terminology that is relevant for this thesis.

Definition 3 (Actor Execution Time) Actor execution time, τ(a) is defined
as the time needed to complete execution of actor a on a specified node. In cases
where the required time is not constant but varying, this indicates the maximum
time for actor execution.

τ(a0) = 100, for example, in Figure 2.3.

Definition 4 (Iteration) An iteration of a graph is defined as the minimum
non-zero execution (i.e. at least one actor has executed) such that the initial
state of the graph is obtained.

In Figure 2.3, one iteration of graph A is completed when a0, a1 and a2 have
completed one, two and one execution(s) each respectively.

Definition 5 (Repetition Vector) Repetition Vector q of an SDF graph A
is defined as the vector specifying the number of times an actor in A is executed
for one iteration of A.

For example, in Figure 2.3, q[a0 a1 a2] = [1 2 1]. It should be mentioned that
any integer multiple of repetition vector defined above is also a repetition vector.
The above definition gives a minimal repetition vector in which all entries are
integers.

Definition 6 (Application Period) Application Period Per(A) is defined as
the time SDFG A takes to complete one iteration on average.

Per(A) = 300 in Figure 2.3, assuming it has sufficient resources and no con-
tention, and all the actors fire as soon as they are ready. (Note that actor a1 has
to execute twice.)

Definition 7 (Application Throughput) Application Throughput, ThrA is
defined as the number of iterations of an SDF graph A in one second.
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This is simply the inverse of period, Per(A), when period is defined in seconds.
For example, an application with a throughput of 50 Hz takes 20 ms to complete
one iteration. When the graph in Figure 2.3 is executing on a single processor of
300 MHz, the throughput of A is 1 MHz since the period is 1 micro-second.

Throughput is one of the most interesting properties of SDF graphs relevant
to the design of any multimedia system. Designers and consumers both want
to know the sustained throughput the system can deliver. This parameter often
directly relates to the consumer. For example, throughput of an H.264 decoder
may define how many frames can be decoded per second. A higher throughput
in this case directly improves the consumer experience.

2.4.1 Steady-state vs Transient

Often, in an application, it takes a few iterations of the application before it starts
its periodic behaviour. For example, consider the application graph as shown
earlier in Figure 2.1, but now with three initial tokens on the edge from a2 to a0.
Consider further, that each of the three actors is mapped on a multi-processor
system with three processors, P0, P1 and P2, such that actor ai is mapped on Pi

for i = 0, 1, 2. Let us assume that the processors are connected to each other
with a point-to-point connection with infinite bandwidth with directions similar
to channels in the application graph. Figure 2.5 shows the updated graph and
the three processor system with the appropriate mapping.
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Figure 2.5: SDF Graph and the multi-processor architecture on which it is mapped

In this example, if we look at the time taken for one single iteration, we
get a period of 300 cycles. However, since each actor has its own dedicated
processor, soon we get the token distribution as shown in Figure 2.6. From this
point onwards, all the actors can continue firing indefinitely since all actors have
sufficient tokens and dedicated resources. Thus, every 100 cycles, an iteration of
application A is completed. (Note that the first iteration still takes 300 cycles to
be completed.) This final state is called steady-state. The initial execution of the
graph leading to this state is called transient phase.
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Figure 2.6: Steady-state is achieved after two executions o f a0 and one of a1

For the graph as shown in Figure 2.5, the maximal throughput for 300 MHz
processors is 3 MHz or three million iterations per second. In this thesis when we
refer to the throughput of a graph, we generally refer to the maximal achievable
throughput of a graph, unless otherwise mentioned. This only refers to the steady-
state throughput. When we use the term achieved throughput of a graph, we shall
refer to the long-term average throughput achieved for a given application. This
also includes the transient phase of an application. Please note that for infinitely
long execution, the long-term average throughput is the same as the steady-state
throughput.

Another way to define throughput is the rate of execution of an output actor
divided by its repetition vector entry. If we consider actor a2 as the output actor
of application A, we see that the throughput of the application is the same as the
execution rate of a2, since its repetition vector entry is 1.

2.4.2 Throughput Analysis of (H)SDF Graphs

A number of analysis techniques are available to compute the throughput of SDF
graphs [Gha08, Stu07, SB00, Das04, BKKB02]. Most of these techniques first
convert an SDF graph into a homogeneous SDF (HSDF) graph. HSDF is a special
class of SDF in which the number of tokens consumed and produced is always
equal to one. Techniques are available to convert an SDF into HSDF and the
other way around [SB00]. After conversion to HSDF, throughput is computed as
the inverse of the maximal cycle mean (MCM) of the HSDF graph [Das04, KM66].
MCM in turn is the maximum of all cycle-means. A cycle-mean is computed as
the weighted average of total delay in a cycle divided by the number of tokens in
it.

The conversion to HSDF from an SDF graph may result in an explosion in the
number of nodes [PL95]. The number of nodes in the corresponding HSDF graph
for an SDF graph is determined by its repetition vector. There are examples of
real-applications (H.263 in this case), where an SDF model requires only 4 nodes
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and an HSDF model of the same application has 4754 nodes [Stu07]. This makes
the above approach very infeasible for many multimedia applications. Lately,
techniques have been presented that operate on SDF graphs directly [GGS+06,
Gha08]. These techniques essentially simulate the SDF execution and identify
when a steady-state is reached by comparing previous states with current state.
Even though the theoretical bound is high, the experimental results show that
these techniques can compute the throughput of many multimedia applications
within milliseconds.

A tool called SDF 3 has been written and is available on-line for use by the
research community [SGB06a, SDF09]. Beside being able to generate random
SDF graphs with specified properties, it can also compute throughput of SDF
graphs easily. It allows to visualize these graphs as well, and compute other
performance properties. The same tool was used for throughput computation
and graph generation in many experiments conducted in this thesis.

However, the above techniques only work on a particular execution time of
actors. If there is any change in the actor execution time, the entire analysis
has to be repeated. Recently, a technique has been proposed in [GGBS08] that
allows variable execution time. This technique computes equations that limit the
application period, for a given range of actor execution times. When the exact
actor execution time is known, these equations can be evaluated to compute the
actual period of the application. This idea is used in Chapter 3 to compute
throughput of applications.

It should be mentioned that the techniques mentioned here do not take into
account resource contention and essentially assume that infinite resources are
available, except SDF 3. SDF 3 also takes resource contention into account but is
limited to preemptive systems. Before we see how throughput can be computed
when considering limited computation resources, we review the basic techniques
used for scheduling dataflow graphs.

2.5 Scheduling Techniques for Dataflow Graphs

One of the key aspects in designing multiprocessor systems from any MoC is
scheduling. Compile-time scheduling promises near-optimal performance at low
cost for final system, but is only suitable for static applications. Run-time schedul-
ing can address a wider variety of applications, at greater system cost. Scheduling
techniques can be classified in a number of categories based on which decisions
are made at compile time (also known as design-time) and which decisions are
made at run-time. [LH89, SB00]. There are three main decisions when scheduling
tasks (or actors) on a processor:2 1) which tasks to assign to a given processor,
2) what is the order of these tasks on it and 3) what is the timing of these tasks.
We consider four different types of schedulers.

2When considering mapping of channels on the network, there are many more categories.
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1. The first one is fully static where everything is decided at compile time
and the processor has to simply execute the tasks. This approach has tradi-
tionally been used extensively for DSP applications due to their repetitive
and constant resource requirement. This is also good for systems where
guarantees are more important and (potential) speed-up from earlier exe-
cution is not desired. Further, the run-time scheduler becomes very simple
since it does not need to check for availability of data and simply executes
the scheduled actors at respective times. However, this mechanism is com-
pletely static, and cannot handle any dynamism in the system like run-time
addition of applications, or any unexpectedly higher execution time for a
particular iteration.

2. The second type is self-timed, where the assignment and ordering is
already done at compile time. However, the exact time for firing of actors
is determined at run-time, depending on the availability of data. Self-timed
scheduling is more suitable for cases when the execution time of tasks may
be data-dependent, but the variation is not very large. This can often
result in speed-up of applications as compared to analysis at design-time,
provided the worst-case execution time estimates are used for analyzing the
application performance. Since earlier arrival of data cannot result in later
production of data, the performance bounds computed at compile-time are
preserved. However, this also implies that the schedule may become non-
work-conserving, i.e. that a task may be waiting on a processor, while the
processor is sitting idle waiting for the task in order.

3. The third type is static assignment, where the mapping is already fixed
at compile time, but the ordering and timing is done at run-time by the
scheduler. This allows the schedule to become work-conserving and perhaps
achieve a higher overall throughput in the system. However, it might also
result in a lower overall throughput since the bounds cannot be computed
at compile-time (or are not preserved in this scheduler). This scheduling
is most applicable for systems where applications have a large variation in
execution time. While for a single application, the order is still imposed by
the data-dependency among tasks and makes self-timed more suitable, for
multiple applications the high variation in execution time, makes it infeasible
to enforce the static-order.

4. The last one is called fully dynamic where mapping, ordering and tim-
ing are all done at run-time. This gives full freedom to the scheduler, and
the tasks are assigned to an idle processor as soon as they are ready. This
scheduler also allows for task migration. This may result in a yet higher
throughput, since this tries to maximize the resource utilization and mini-
mize the idle time, albeit at the cost of performance guarantee. It should
be noted that run-time assignment also involves a (potentially) higher over-
head in data movement. When the assignment is fixed at compile time, the
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Table 2.1: The time which the scheduling activities "assign ment", "ordering", and
"timing" are performed is shown for four classes of schedule rs. The scheduling
activities are listed on top and the strategies on the left [L H89].

Scheduler Assignment Ordering Timing Work-conserving
Fully static compile compile compile no
Self timed compile compile run no
Static assignment compile run run processor-level
Fully dynamic run run run yes

task knows the processor to which the receiving actor is mapped apriori.

These four scheduling mechanisms are summarized in Table 2.1. As we move
from fully-static to fully-dynamic scheduler, the run-time scheduling activity (and
correspondingly overhead) increases. However, this also makes it more robust for
handling dynamism in the system. The last column shows the work-conserving
nature of the schedulers. A fully-static scheduler is non-conserving since the
exact time and order of firing (task execution) is fixed. The self-timed schedule is
work-conserving only when at most one task is mapped on one processor, while
the static-assignment is also work-conserving for multiple applications. However,
in static assignment if we consider the whole system (i.e. multiple processors), it
may not be work-conserving, since tasks may be waiting to execute on a particular
processor, while other processors may be idle.

In a homogeneous system, there is naturally more freedom to choose which
task to assign to a particular processor instance, since all processors are identi-
cal. On the contrary, in a heterogeneous system this freedom is limited by which
processors can be used for executing a particular task. When only one processor
is available for a particular task, the mapping is inherently dictated by this limi-
tation. For a complete heterogeneous platform, a scheduler is generally not fully
dynamic, unless a task is allowed to be mapped on different types of processors.
However, even in those cases, assignment is usually fixed (or chosen) at compile
time. Further, the execution time for multimedia applications is generally highly
variant making a fully-static scheduler often infeasible. Designers therefore have
to make a choice between a self-timed or a static-assignment schedule. The only
choice left is essentially regarding the ordering of tasks on a processor.

In the next section, we shall see how to analyze performance of multiple ap-
plications executing on a multiprocessor platform for both self-timed and static-
assignment scheduler. Since the only difference in these two schedulers is the
time at which ordering of actors is done, we shall refer to self-timed and static-
assignment scheduler as static-ordering and dynamic-ordering scheduler re-
spectively for easy differentiation.
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2.6 Analyzing Application Performance on Hardware

In Section 2.4, we assumed we have infinite computing and communication re-
sources. Clearly, this is not a valid assumption. Often processors are shared, not
just among tasks of one application, but also with other applications. We first
see how we can model this resource contention for a single application, and later
for multiple applications.

We start with considering an HSDF graph with constant execution times to
illustrate that even for HSDF graphs it is already complicated. In [BKKB02],
the authors propose to analyze performance of a single application modeled as an
HSDF graph mapped on a multi-processor system by modeling dependencies of
resources by adding extra edges to the graph. Adding these extra edges enforces a
strict order among the actors mapped on the same processor. Since the processor
dependency is now modeled in the graph itself, we can simply compute the max-
imum throughput possible of the graph, and that corresponds to the maximum
performance the application can achieve on the multiprocessor platform.

Unfortunately, this approach does not scale when we move on to the SDF
model of an application. Converting an SDF model to an HSDF model can
potentially result in a large number of actors in the corresponding HSDF graph.
Further, adding such resource dependency edges essentially enforces a static-order
among actors mapped on a particular processor. While in some cases, only one
order is possible (due to natural data dependency among those actors), in some
cases the number of different orders is also very high. Further, different orders
may result in different overall throughput of the application. This becomes even
worse when we consider multiple applications. This is shown by means of an
example in the following sub-section.

2.6.1 Static Order Analysis

In this sub-section, we look at how application performance can be computed
using static-order scheduler, where both processor assignment and ordering is
done at compile-time. We show that when multiple applications are mapped
on multiple processors sharing them, it is 1) difficult to make a static schedule,
2) time-consuming to analyze application performance given a schedule, and 3)
infeasible to explore the entire scheduling space to find one that gives the best
performance for all applications.

Three application graphs – A, B and C, are shown in Figure 2.7. Each is an
HSDF with three actors. Let us assume actors Ti are mapped on processing node
Pi where Ti refers to ai, bi and ci for i = 1, 2, 3. This contention for resources is
shown by the dotted arrows in Figure 2.8. Clearly, by putting these dotted arrows,
we have fixed the actor-order for each processor node. Figure 2.8 shows just one
such possibility when the dotted arrows are used to combine the three task graphs.
Extra tokens have been inserted in these dotted edges to indicate the initial state
of arbiters on each processor. The tokens indicating processor contention are
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Figure 2.7: Example of a system with 3 different application s mapped on a 3-
processor platform.

shown in gray, while the regular data tokens are shown in black. Clearly, this is
only possible if each task is required to be run an equal number of times. If the
rates of each task are not the same, we need to introduce multiple copies of actors
to achieve the required ratio, thereby increasing analysis complexity.

When throughput analysis is done for this complete graph, we obtain a mean
cycle count of 11. The bold arrows represent the edges that limit the through-
put. The corresponding schedule is also shown. One actor of each application is
ready to fire at instant t0. However, only a1 can execute since it is the only one
with a token on all its incoming edges. We find that the graph soon settles into
the periodic schedule of 11 clock cycles. This period is denoted in the schedule
diagram of Figure 2.8 between the time instant t1 and t2.

Figure 2.9 shows just another of the many possibilities for ordering the actors
of the complete HSDF. Interestingly, the mean cycle count for this graph is 10,
as indicated by the bold arrows. In this case, the schedule starts repeating after
time t1, and the steady state length is 20 clock cycles, as indicated by difference
in time instants t1 and t2. However, since two iterations for each application are
completed, the average period is only 10 clock cycles.

From arbitration point of view, if application graphs are analyzed in isola-
tion, there seems to be no reason to prefer actor b1 or c1 after a1 has finished
executing on P1. There is at least a delay of 6 clock cycles before a1 needs P1



2. APPLICATION MODELING AND SCHEDULING 39

A B

C

3

3 3 3 1

5

53

1

a1 a2

a3

b1 b2

b3

c1 c2

c3

0 5 10 15 20 25

A B C

Steady−statet0 t1 t2

P1

P2

P3

Figure 2.8: Graph with clockwise schedule (static) gives MC M of 11 cycles. The
critical cycle is shown in bold.

again. Also, since b1 and c1 take only 3 clock cycles each, 6 clock cycles are
enough to finish their execution. Further both are ready to be fired, and will not
cause any delay. Thus, the local information about an application and the actors
that need a processor resource does not easily dictate preference of one task over
another. However, as we see in this example, executing c1 is indeed better for the
overall performance. Computing a static order relies on the global information
and produces the optimal performance. This becomes a serious problem when
considering MPSoC platforms, since constructing the overall HSDF graph and
then computing its throughput is very compute intensive. Further, this is not
suitable for dynamic applications. A small change in execution time may change
the optimal schedule.

The number of possibilities for constructing the HSDF from individual graphs
is very large. In fact, if one tries to combine g graphs of say a actors, scheduled
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Figure 2.9: Graph with anti-clockwise schedule (static) gi ves MCM of 10 cycles. The
critical cycle is shown in bold. Here two iterations are carr ied out in one steady-state
iteration.

in total on a processors, there are ((g − 1)!)a unique combinations, each with a
different actor ordering, for only single occurrence of each application actor. (Each
processor has g actors to schedule, and therefore (g − 1)! unique orderings on a
single processor. This leads to ((g − 1)!)a unique combinations, since ordering
on each processor is independent of ordering on another.) To get an idea of
vastness of this number, if there are 5 graphs with 10 actors each we get 2410 or
close to 6.34 · 1013 possible combinations. If each computation would take only
1ms to compute, 2009 years are needed to evaluate all possibilities. This is only
considering the cases with equal rates for each application, and only for HSDF
graphs. A typical SDF graph with different execution rates would only make the
problem even more infeasible, since the transformation to HSDF may yield many
actor copies. An exhaustive search through all the graphs to compute optimal
static order is simply not feasible.
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Deadlock Analysis

Deadlock avoidance and detection is an important concern when applications may
be activated dynamically. Applications modeled as (H)SDF graphs can be ana-
lyzed for deadlock occurrence within an application. However, deadlock detection
and avoidance between multiple applications is not so easy. When static order
is being used, every new use-case requires a new schedule to be loaded into the
kernel. A naive reconfiguration strategy can easily send the system into deadlock.
This is demonstrated with an example in Figure 2.10.

Say actors a2 and b3 are running in the system on P2 and P3 respectively.
Further assume that static order for each processor currently is A → B when only
these two applications are active, and with a third application C, A → B → C
for each node. When application C is activated, it gets P1 since it is idle. Let us
see what happens to P2: a2 is executing on it and it is then assigned to b2. P3 is
assigned to c3 after b3 is done. Thus, after each actor is finished executing on its
currently assigned processor, we get a3 waiting for P3 that is assigned to task c3,
b1 waiting for P1 which is assigned to a1, and c2 waiting for P2, which is assigned
to b2.
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Figure 2.10: Deadlock situation when a new job, C arrives in t he system. A cycle
a1, b1, b2, c2, c3, a3, a1 is created without any token in it.

Looking at Figure 2.10, it is easy to understand why the system goes into a
deadlock. The figure shows the state when each actor is waiting for a resource
and not able to execute. The tokens in the individual sub-graph show which
actor is ready to fire, and the token on the dotted edge represents which resource
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is available to the application. In order for an actor to fire, the token should be
present on all its incoming edges – in this case both on the incoming dotted edge
and the solid edge. It can be further noted that a cycle is formed without any
token in it. This is clearly a situation of deadlock [KM66] since the actors on this
cycle will never be enabled. This cycle is shown in Figure 2.10 in bold edges. It is
possible to take special measure to check and prevent the system from going into
such deadlock. This, however, implies extra overhead at both compile-time and
run-time. The application may also have to be delayed before it can be admitted
into the system.

We can therefore conclude that computing a static order for multiple appli-
cations is very compute intensive and infeasible. Further, the performance we
obtain may not be optimal. However, the advantage of this approach is that we
are guaranteed to achieve the performance that is analyzed for any static order
at design-time provided the worst-case execution time estimates are correct.

2.6.2 Dynamic Order Analysis

In this sub-section, we look at static-assignment scheduler, where only proces-
sor assignment is done at compile-time and the ordering is done at run-time.
First-come-first-serve (FCFS) falls under this category. Another arbiter that we
propose here in this category is round-robin-with-skipping (RRWS). In RRWS, a
recommended order is specified, but the actors can be skipped over if they are
not ready when the processor becomes idle. This is similar to the fairness arbiter
proposed by Gao in 1983 [Gao83]. However, in that scheduler, all actors have
equal weight. In RRWS, multiple instances of an actor can be scheduled in one
cycle to provide an easy rate control mechanism.

The price a system-designer has to pay when using dynamic scheduling is
the difficulty in determining application performance. Analyzing application per-
formance when multiple applications are sharing multiprocessor platform is not
easy. An approach that models resource contention by computing worst-case-

response-time for TDMA scheduling (requires preemption) has been analyzed
in [BHM+05]. This analysis also requires limited information from the other
SDFGs, but gives a very conservative bound that may be too pessimistic. As
the number of applications increases, the minimum performance bound decreases
much more than the average case performance. Further, this approach assumes
a preemptive system. A similar worst-case analysis approach for round-robin is
presented in [Hoe04], which also works on non-preemptive systems, but suffers
from the same problem of lack of scalability.

Let us revisit the example in Figure 2.7. Since 3 actors are mapped on each
processor, an actor may need to wait when it is ready to be executed at a processor.
The maximum waiting time for a particular actor can be computed by considering
the critical instant as defined by Liu and Layland [LL73]. The critical instant

for an actor is defined as an instant at which a request for that actor has the
largest response time. The response time is defined as the sum of an actor’s
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waiting time and its execution time. If we take worst case execution time, this
can be translated as the instant at which we have the largest waiting time. For
dynamic scheduling mechanisms, it occurs when an actor becomes ready just after
all the other actors, and therefore has to wait for all the other actors. Thus, the
total waiting time is equal to the sum of processing times of all the other actors
on that particular node and given by the following equation.

twait(Tij) =
m

∑

k=1,k 6=i

texec(Tkj) (2.1)

Here texec(Tij) denotes the execution time of actor Tij , i.e. actor of task Ti

mapped on processor j. This leads to a waiting time of 6 time units as shown
in Figure 2.11. An extra node has been added for each ‘real’ node to depict the
waiting time (WT ai). This suggests that each application will take 27 time units
in the worst case to finish execution. This is the maximum period that can be
obtained for applications in the system, and is therefore guaranteed. However,
as we have seen in the earlier analysis, the applications will probably settle for
a period of 10 or 11 cycles depending on the arbitration decisions made by the
scheduler. Thus, the bound provided by this analysis is about two to three times
higher than real performance.

3 6

336 6

A

a1 a2

a3

WT a1 WT a2

WT a3

Figure 2.11: Modeling worst case waiting time for applicati on A in Figure 2.7.

The deadlock situation shown in Figure 2.10 can be avoided quite easily by us-
ing dynamic-order scheduling. Clearly, for FCFS, it is not an issue since resources
are never blocked for non-ready actors. For RRWS, when the system enters into
a deadlock, the arbiter would simply skip to the actor that is ready to execute.
Thus, processors 1, 2 and 3 are reassigned to B, C and A as shown in Table 2.2.
Further, an application can be activated at any point in time without worrying
about deadlock. In dynamic scheduling, there can never be a deadlock due to
dependency on processing resources for atomic non-preemptive systems.
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Table 2.2: Table showing the deadlock condition in Figure 2. 10.
Node Assigned to Task waiting Reassigned in RRWS

P1 A B B
P2 B C C
P3 C A A

2.7 Composability

As highlighted in Chapter 1, one of the key challenges when designing multime-
dia systems is dealing with multiple applications. For example, a mobile phone
supports various applications that can be active at the same time, such as lis-
tening to mp3 music, typing an sms and downloading some java application in
the background. Evaluating resource requirements for each of these cases can be
quite a challenge even at design time, let alone at run time. When designing a
system, it is quite useful to be able to estimate resource requirements early in the
design phase. Design managers often have to negotiate with the product divisions
for the overall resources needed for the system. These estimates are mostly on a
higher level, and the managers usually like to adopt a spread-sheet approach for
computing it. As we see in this section, it is often not possible to use this view.

We define composability as mapping and analysis of performance of multiple
applications on a multiprocessor platform in isolation, as far as possible. Note
that this is different from what has been defined in literature by Kopetz [KO02,
KS03]. Composability as defined by Kopetz is integration of a whole system from
well-specified and pre-tested sub-systems without unintended side-effects. The key
difference in this definition and our definition is that composability as defined
by Kopetz is a property of a system such that the performance of applications
in isolation and running concurrently with other applications is the same. For
example, say we have a system with 10 applications, each with only one task and
all mapped on the same processor. Let us further assume that all tasks take 100
time units to execute in isolation. According to the definition of Kopetz, it will
also take 100 time units when running with the other tasks. This can only be
achieved in two ways.

1. We can assume complete virtualization of resources, and that each applica-
tion gets one-tenth of processor resources. This implies that we only use
one-tenth of the resources when only one application is active. Further, to
achieve complete virtualization, the processor has to be preempted and its
context has to be switched every single cycle3.

2. We consider a worst-case schedule in which all applications are scheduled,
and the total execution time of all applications is 100 time units. Thus, if
a particular application is not active, the processor simply waits for that

3This could be relaxed a bit, depending on the observability of the system.
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many time units as it is scheduled for. This again leads to under-utilization
of the processor resources. Besides, if any application takes more time, then
the system may collapse.

Clearly, this implies that we cannot harness the full processing capability. In
a typical system, we would want to use this compute power to deliver a better
quality-of-service for an application when possible. We want to let the system
execute as many applications as possible with the current resource availability,
and let applications achieve their best behaviour possible in the given use-case.
Thus, in the example with 10 applications, if each application can run in 10 time
units in isolation, it might take 100 time units when running concurrently with
all the other applications. We would like to predict the application properties
given the application mix of the system, with as little information from other
applications as possible.

Some of the things we would like to analyze are for example, deadlock oc-
currence, and application performance. Clearly, since there is more than one
application mapped on a multi-processor system, there will be contention for the
resources. Due to this contention, the throughput analyzed for an application in
isolation is not always achievable when the application runs together with other
applications. We see how different levels of information from other applications
affect analysis results in the next sub-section.

2.7.1 Performance Estimation

Let us consider a scenario of video-conferencing in a hand-held device. Figure 2.12
shows SDF graphs for both H263 encoding and decoding applications. The en-
coder model is based on the SDF graph presented in [OH04], and the decoder
model is based on [Stu07]4. The video-stream assumed for the example is of
QCIF resolution that has 99 macro-blocks to process, as indicated by the rates
on the edges. Both encoding and decoding have an actor that works on variable
length (VLC and VLD respectively), quantization (Quant and IQ respectively),
and discrete cosine transform (DCT and IDCT respectively). Since we are consid-
ering a heterogeneous system, the processor responsible for an actor in encoding
process is usually responsible for the corresponding decoding actor. When the en-
coding and decoding are done concurrently, the DCT and IDCT are likely to be
executed on the same processor, since that processor is probably more suited for
cosine transforms. This resource dependency in the encoder and decoder models
is shown by shading in Figure 2.12. Thus, the resource dependency in encoding
and decoding is exactly reversed. A similar situation happens during decoding
and encoding of an audio stream as well.

A simple example is shown in Figure 2.13 to illustrate the same behaviour as
presented above. The figure shows an example of two application graphs A and
B with three actors each, mapped on a 3-processor system. Actors a1 and b1 are

4The self-edges are removed for simplicity.
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Figure 2.12: SDF graphs of H263 encoder and decoder.

mapped on p1, a2 and b2 are mapped on p2, and a3 and b3 are mapped on p3.
Each actor takes 100 clock cycles to execute. While both applications A and B
might look similar, the dependency in A is anti-clockwise and in B clockwise to
highlight the situation in the above example of simultaneous H263 encoding and
decoding.

Let us try to add the resource requirement of actors and applications, and
try to reason about their behaviour when they are executing concurrently. Each
processor has two actors mapped; each actor requires 100 time units. If we limit
the information to only actor-level, we can conclude that one iteration of each a1

and b1 can be done in a total of 200 time units on processor P1, and the same holds
for processors P2 and P3. Thus, if we consider a total of 3 million time units, each
application should finish 15,000 iterations, leading to 30,000 iterations in total.
If we now consider the graph-level local information only, then we quickly realize
that since there is only one initial token, the minimum period of the applications
is 300. Thus, each application can finish 10,000 iterations in 3 million time units.
As it turns out, none of these two estimates are achievable.

Let us now increase the information we use to analyze the application perfor-
mance. We consider the worst-case response time as defined in Equation 2.1 for
each actor. This gives us an upper bound of 200 time units for each actor. If
we now use this to compute our application period, we obtain 600 time units for
each application. This translates to 5,000 iterations per application in 3 million
time units. This is the guaranteed lower bound of performance. If we go one
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Figure 2.13: Two applications running on same platform and s haring resources.
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Figure 2.14: Static-order schedule of applications in Figu re 2.13 executing concur-
rently.

stage further, and try to analyze the full schedule of this two-application system
by making a static schedule, we obtain a schedule with a steady-state of 400 time
units in which each application completes one iteration. The corresponding sched-
ule is shown in Figure 2.14. Unlike the earlier predictions, this performance is
indeed what the applications achieve. They will both complete one iteration every
400 time units. If we consider dynamic ordering and let the applications run on
their own, we might obtain the same order as in Figure 2.14, or we might get the
order as shown in Figure 2.15. When the exact execution order is not specified,
depending on the scheduling policy the performance may vary. If we consider a
first-come-first-serve approach, it is hard to predict the exact performance since
the actors have equal execution time and they arrive at the exact time. If we
assume for some reason, application A is checked first, then application A will
execute twice as often as B, and vice-versa. The schedule in Figure 2.15 assumes
application B has preference when both are ready at the exact same time. The
same behaviour is obtained if we consider round-robin approach with skipping.
Interestingly, the number of combined application iterations are still 15,000 – the
same as when static order is used.
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Figure 2.15: Schedule of applications in Figure 2.13 execut ing concurrently when
B has priority.

Table 2.3: Estimating performance: iteration-count for ea ch application in 3,000,000
time units

Appl. Only Only WC Analysis Static RRWS/FCFS
actors graph (both graphs) A pref B pref

A 15,000 10,000 5,000 7,500 10,000 5,000
B 15,000 10,000 5,000 7,500 5,000 10,000
Total 30,000 20,000 10,000 15,000 15,000 15,000
Proc Util 1.00 0.67 0.33 0.50 0.50 0.50

Table 2.3 shows how different estimating strategies can lead to different results.
Some of the methods give a false indication of processing power, and are not
achievable. For example, in the second column only the actor execution time is
considered. This is a very naive approach and would be the easiest to estimate.
It assumes that all the processing power that is available for each node is shared
between the two actors equally. As we vary the information that is used to make
the prediction, the performance prediction also varies. This example shows why
composability needs to be examined. Individually each application takes 300 time
units to complete an iteration and requires only a third of processor resources.
However, when another application enters in the system, it is not possible to
schedule both of them with their lowest period of 300 time units, even though the
total request for a node is only two-third. Even when preemption is considered,
only one application can achieve the period of 300 time units while the other of
600. The performance of the two applications in this case corresponds to the
last two columns in Table 2.3. Thus, predicting application performance when
executing concurrently with other applications is not very easy.
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Table 2.4: Properties of Scheduling Strategies
Static Dynamic

Property
Order Order

Design time overhead Calculating Schedules - - ++
Memory requirement - ++

Run-time overhead
Scheduling overhead ++ +
Throughput ++ - -

Predictability
Resource Utilization + -
Admission criteria ++ - -
Deadlock-free guarantee - ++New job admission
Reconfiguration overhead - +
Variable Execution time - +

Dynamism
Handling new use-case - - ++

2.8 Static vs Dynamic Ordering

Table 2.4 shows a summary of various performance parameters that we have con-
sidered, and how static-order and dynamic-order scheduling strategy performs
considering these performance parameters. The static-order scheduling clearly
has a higher design-time overhead of computing the static order for each use-case.
The run-time scheduler needed for both static-order and dynamic-order sched-
ulers is quite simple, since only a simple check is needed to see when the actor is
active and ready to fire. The memory requirement for static scheduling is how-
ever, higher than that for a dynamic mechanism. As the number of applications
increases, the total number of potential use-cases rises exponentially. For a sys-
tem with 10 applications in which up to 4 can be active at the same time, there
are approximately 400 possible combinations – and it grows exponentially as we
increase the number of concurrently active applications. If static ordering is used,
besides computing the schedule for all the use-cases at compile-time, one also has
to be aware that they need to be stored at run-time. The scalability of using
static scheduling for multiple applications is therefore limited.

Dynamic ordering is more scalable in this context. Clearly in FCFS, there is
no such overhead as no schedule is computed beforehand. In RRWS, the easiest
approach would be to store all actors for a processor in a schedule; when an
application is not active, its actors are simply skipped, without causing any trouble
for the scheduler. It should also be mentioned here that if an actor is required
to be executed multiple number of times, one can simply add more copies of that
actor in this list. In this way, RRWS can provide easy rate-control mechanism.

The static order approach certainly scores better than a dynamic one when
it comes to predictability of throughput and resource utilization. Static-order
approach is also better when it comes to admitting a new application in the
system since the resource requirements prior and after admitting the application
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are known at design time. Therefore, a decision whether to accept it or not is
easier to make. However, extra measures are needed to reconfigure the system
properly so that the system does not go into deadlock as mentioned earlier.

A dynamic approach is able to handle dynamism better than static order since
orders are computed based on the worst-case execution time. When the execution-
time varies significantly, a static order is not able to benefit from early termination
of a process. The biggest disadvantage of static order, however, lies in the fact that
any change in the design, e.g. adding a use-case to the system or a new application,
cannot be accommodated at run-time. The dynamic ordering is, therefore, more
suitable for designing multimedia systems. In the following chapter, we show
techniques to predict performance of multiple applications executing concurrently.

2.9 Conclusions

In this chapter, we began with motivating the need of having an application
model. We discussed several models of computation that are available and gen-
erally used. Given our application requirements and strengths of the models, we
chose the synchronous dataflow (SDF) graphs to model application. We provided
a short introduction to SDF graphs and explained some important concepts rele-
vant for this thesis, namely modeling auto-concurrency and modeling buffer-sizes
on channels. We explained how performance characteristics of an SDF graph can
be studied without considering hardware constraints.

The scheduling techniques used for dataflow analysis were discussed and clas-
sified depending on which of the three things – assignment, ordering, and timing
– is done at compile-time and which at run-time. We highlighted two arbiters
– static and dynamic ordering, which are more commonly used, and discussed
how application performance can be analyzed considering hardware constraints
for each of these arbiters.

We then highlighted the issue of composability – mapping and analysis of per-
formance of multiple applications on a multiprocessor platform in isolation, as far
as possible. We demonstrated with a small, but realistic example, how predicting
performance can be difficult when even small applications are considered. We
also saw how arbitration plays a significant role in determining the application
performance. We summarized the properties that are important for an arbiter in
a multimedia system, and decided that considering the high dynamism in multi-
media applications, the dynamic-ordering is more suitable.



CHAPTER 7

Conclusions and Future Work

In this chapter, the major conclusions from this thesis are presented, together
with several issues that remain to be solved.

7.1 Conclusions

The design of multimedia platforms is becoming increasingly more complex. Mod-
ern multimedia systems need to support a large number of applications or func-
tions in a single device. To achieve high performance in such systems, more and
more processors are being integrated into a single chip to build Multi-Processor
Systems-on-Chip (MPSoCs). The heterogeneity of such systems is also increasing
with the use of specialized digital hardware, application domain processors and
other IP (intellectual property) blocks on a single chip, since various standards
and algorithms are to be supported. These embedded systems also need to meet
timing and other non-functional constraints like low power and design area. Fur-
ther, processors designed for multimedia applications (also known as streaming
processors) often do not support preemption to keep costs low, making traditional
analysis techniques unusable.

To achieve high performance in such systems, the limited computational re-
sources must be shared. The concurrent execution of dynamic applications on
shared resources causes interference. The fact that these applications do not al-
ways run concurrently only adds a new dimension to the design problem. We
defined each such combination of applications executing concurrently as a use-
case. Currently, companies often spend 60-70% of the product development cost
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in verifying all feasible use-cases. Having an efficient, but accurate analysis tech-
nique can significantly reduce this development cost. Since applications are often
added to the system at run-time (for example, a mobile-phone user may down-
load a Java application at run-time), a complete analysis at design-time is also
not feasible. Existing techniques are unable to handle this dynamism, and the
only solution left to the designer is to over-dimension the hardware by a large
factor leading to increased area, cost and power.

In Chapter 3 of this thesis, a run-time performance prediction methodology
is presented that can accurately and quickly predict the performance of multiple
applications before they execute in the system. Synchronous data flow (SDF)
graphs are used to model applications, since they fit well with characteristics of
multimedia applications, and at the same time allow analysis of application per-
formance. Further, their atomic execution requirement matches well with the
non-preemptive nature of many streaming processors. While a lot of techniques
are available to analyze performance of single applications, for multiple applica-
tions this task is a lot harder and little work has been done in this direction. This
thesis presents one of the first attempts to analyze performance of multiple ap-
plications executing on heterogeneous non-preemptive multiprocessor platforms.

Our technique uses performance expressions computed off-line from the appli-
cation specifications. A run-time iterative probabilistic analysis is used to esti-
mate the time spent by tasks during the contention phase, and thereby predict
the performance of applications. The average error in prediction using iterative
probability is only 2% and the maximum error is 3%. Further, it takes about four
to six iterations for the prediction to converge. The complexity and execution
time of the algorithm is very low – it takes only 3ms to evaluate the performance
of ten applications on a 50MHz embedded processor. This also proves the suit-
ability of the technique for design space exploration on a regular desktop running
at about 3GHz where the same analysis takes just 50 microseconds.

Further, we presented a design-flow for designing systems with multiple appli-
cations in Chapter 4. A hybrid approach is presented where the time-consuming
application-specific computations are done at design-time, and in isolation from
other applications, and the use-case-specific computations are performed at run-
time. This allows easy addition of applications at run-time. Further, a run-time
mechanism is presented to manage resources in a system. This ensures that no
application starves due to another application. This mechanism enforces bud-
gets and suspends applications if they achieve a higher performance than desired.
This allows other applications to also achieve their desired performance. A re-
source manager (RM) is presented to manage computation and communication
resources, and to achieve the above goals of performance prediction, admission
control and budget enforcement. A case-study done with two application models
– H263 and JPEG, shows the effectiveness of budget enforcement in achieving the
desired performance of both applications.

With high consumer demands the time-to-market has become significantly
lower. To cope with the complexity in designing such systems, a largely automated
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design-flow is needed that can generate systems from a high-level architectural
description such that they are not error-prone and their design consumes less
time. A highly automated flow – MAMPS (Multi-Application Multi-Processor
Synthesis) is presented in Chapter 5, that synthesizes multi-processor platforms
for multiple applications specified in the form of SDF graph models. The flow has
been used to implement a tool that directly generates multi-processor designs for
Xilinx FPGAs, complete with hardware and software descriptions. A case study
done with the tool shows the effectiveness of the tool in which 24 design points
were explored to compute the optimal buffer requirements of multiple applications
in about 45 minutes including FPGA synthesis time.

One of the key design automation challenges that remain is fast exploration
of software and hardware implementation alternatives with accurate performance
evaluation, also known as design space exploration (DSE). A design methodology
is presented in Chapter 6 to generate multiprocessor systems in a systematic and
fully automated way for multiple use-cases. Techniques are presented to merge
multiple use-cases into one hardware design to minimize cost and design time,
making it well-suited for fast DSE of MPSoC systems. Heuristics to partition
use-cases are also presented such that each partition can fit in an FPGA, and all
use-cases can be catered for. A case study with mobile-phone applications shows
an 11-fold reduction in DSE time.

7.2 Future Work

While this thesis presents solutions to various problems in analysis, design and
management of multimedia multiprocessor systems, a number of issues remain to
be solved. Some of these are listed below.

1. Hard-real time support: While the analysis techniques presented in
this thesis are aimed towards multimedia systems that do not require a
hard-bound on performance, they can easily be extended to support hard-
real time applications as well. However, as has been mentioned earlier,
that generally translates to a poor resource utilization. Techniques that
can achieve high utilization and provide hard-bounds on performance still
need to be developed. One option is to consider joining multiple application
graphs with very few edges – only the minimum number needed to achieve
rate-control – and then derive a static-order for that graph. This would
achieve high-utilization and provide hard-bounds on performance. However,
a potential drawback of this scheme is that for every possible use-case, a
static order has to be stored, and care has to be taken that the system does
not go into deadlock while switching between use-cases.

2. Soft-real time guarantee: The analysis technique presented in Chap-
ter 3 is very accurate and fast. However, it does not provide any guarantee
on the accuracy of the results. Even for soft-real time applications like video
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and audio processing, some sort of measure of accuracy of results is desir-
able. Extending the probabilistic analysis to support this would increase
the potential of this analysis technique. The designer wants to know how
the applications would perform with the given resources, and accordingly
increase or decrease the resources needed for system design.

3. Model network and memory: In this thesis, we have often ignored
the contention for memory and network resources. Even though, in theory,
this contention can be naturally modeled in SDF graph as well, it remains
to be seen how well the technique applies, and how does it affect the per-
formance of multiple applications. With a complete design-flow where the
memory and network contention are also modeled, a designer will be able
to make choices about the distribution of memory and network resources in
the system, and about the allocation to different applications.

4. SDF derivation: Throughout this thesis, we have assumed that an SDF
model of application has already been derived. In practice, this task can be
very time consuming, and mostly manual. Automated extraction of parallel
models from a sequential specification of an application is still an open
problem. While a lot of tools are available to help in this derivation, most
of them require extensive human interaction. This makes the design space
exploration very time-consuming. The extraction of worst-case execution-
times needed for each task is also very difficult. While static code analysis
can provide very high estimates for task execution-time, profiling is only as
accurate as the input sequence. This makes the compromise between an
accurate and reasonable model rather difficult.

5. Other models: In this thesis, we have used synchronous dataflow for
modeling applications. While these models are very good in expressing
streaming behaviour, they are not always the best for expressing the dy-
namism in the applications. A number of other models are available that
allow for dynamic behaviour in the model, e.g. CSDF, SADF and KPN.
While CSDF is still static, it allows for different channel rates during dif-
ferent iterations of the actors. Developing analysis techniques for those
models would help provide predictability to dynamic applications as well,
and satisfy both the designers and the consumers.

6. Achieving predictability in suspension: In Section 4.3, a technique
has been suggested to achieve predictability by using suspension. This tech-
nique is very powerful as it allows the designer to specify the desired applica-
tion performance. By varying the time the system spends in each state, the
performance of applications can be changed. While the basic idea has been
outlined, the size of the time-wheel affects the performance significantly.
The technique can also be adapted to support hard-real time tasks by using
a conservative analysis, such as worst-case waiting-time analysis.
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7. Design space exploration heuristics: In this thesis, we have concen-
trated on enabling design space exploration. Various techniques are pro-
vided for performance analysis of multiple applications to give feedback to
the designer. Further, hardware design flow for rapid prototyping and per-
formance evaluation is provided. However, we have not focused on heuristics
to explore mapping options for optimizing performance and generating de-
signs that satisfy the constraints of area and power.

8. Optimizing the use-case partitions: The use-case partitioning algo-
rithm can be adapted to consider the relative frequency of the use of each
use-case. The use-cases can first be sorted in the decreasing order of their
use, and then the first-fit algorithm can be applied. The algorithm can there-
fore first pack all the most frequently used use-cases together in one hard-
ware partition, thereby reducing the reconfiguration from one frequently
used use-case into another. However, for an optimal solution of the par-
tition problem, many other parameters need to be taken into account, for
example reconfiguration time and average duration for each use-case. More
research needs to be done in this to verify the suitability and effectiveness
of this approach.

The above are some of the issues that need to be solved to take the analysis,
design and management of multimedia multiprocessor systems into the next era.
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Glossary

Acronyms and abbreviations

ASIC Application specific integrated circuit
ASIP Application specific instruction-set processor
BDF Boolean dataflow
CF Compact flash
CSDF Cyclo static dataflow
DCT Discrete cosine transform
DSE Design space exploration
DSP Digital signal processing
FCFS First-come-first-serve
FIFO First-in-first-out
FPGA Field-programmable gate array
FSL Fast simplex link
HSDFG Homogeneous synchronous dataflow graph
IDCT Inverse discrete cosine transform
IP Intellectual property
JPEG Joint Photographers Expert Group
KPN Kahn process network
LUT Lookup table
MAMPS Multi-Application Multi-Processor Synthesis.
MB Microblaze
MoC Models of Computation
MCM Maximum cycle mean
MPSoC Multi-processor system-on-chip
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POOSL Parallel object oriented specification language
QoS Quality-of-service
RAM Random access memory
RCSP Rate controlled static priority
RISC Reduced instruction set computing
RM Resource manager
RR Round-robin
RRWS Round-robin with skipping
RTL Register transfer level
SADF Scenario aware dataflow
SDF Synchronous dataflow
SDFG Synchronous dataflow graph
SMS short messaging service
TDMA Time-division multiple access
VLC Variable length coding
VLD Variable length decoding
VLIW Very long instruction word
WCET Worst case execution time
WCRT Worst case response time
XML Extensible markup language

Terminology and definitions

Actor A program segment of an application modeled as a vertex
of a graph that should be executed atomically.

Composability Mapping and analysis of performance of multiple applica-
tions on a multiprocessor platform in isolation, as far as
possible.

Control token Some information that controls the behaviour of actor. It
can determine the rate of different ports in some MoC (say
SADF and BDF), and the execution time in some other
MoC (say SADF and KPN).

Critical Instant The critical instant for an actor is defined as an instant at
which a request for that actor has the largest response time.

Multimedia sys-
tems

Systems that use a combination of content forms like text,
audio, video, pictures and animation to provide information
or entertainment to the user.

Output actor The last task in the execution of an application after whose
execution one iteration of the application can be said to
have been completed.

Rate The number of tokens that need to be consumed (for input
rate) or produced (for output rate) during an execution of
an actor.
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Reconfigurable
platform

A piece of hardware that can be programmed or reconfig-
ured at run-time to achieve the desired functionality.

Response time The time an actor takes to respond once it is ready i.e. the
sum of its waiting and its execution time.

Scenario A mode of operation of a particular application. For exam-
ple, an MPEG video stream may be decoding an I-frame or
a B-frame or a P-frame. The resource requirement in each
scenario may be very different.

Scheduling Process of determining when and where a part of applica-
tion is to be executed.

Task A program segment of an application that is executed atom-
ically.

Token A data element that is consumed or produced during an
actor-execution.

Use-case This refers to a combination of applications that may be
active concurrently. Each such combination is a new use-
case.

Work-
conserving
schedule

This implies if there is work to be done (or task to be ex-
ecuted) on a processor, it will execute it and not wait for
some other work (or task). A schedule is work-conserving
when the processor is not idle as long as there is any task
waiting to execute on the processor.
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