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Field Programmable Gate Arrays (FPGAs) are increasingly susceptible to radiation-induced single event
upsets (SEUs). These upsets are predominant in space environment, however, with increasing use of Static
RAM (SRAM) in modern FPGAs, these SEUs are gaining prominence even in terrestrial environment. SEUs
can flip SRAM bits of FPGA, potentially altering the functionality of the implemented design. This has mo-
tivated FPGA designers to investigate on techniques to protect the FPGA configuration bits against such
inadvertent bit flips (soft-error). Traditionally, triple modular redundancy (TMR) is used to protect the FPGA
bit flips. Increasing design complexity and limited battery life motivate for alternative approaches for soft-
error tolerance . In this paper, we propose a technique to improve autonomous fault-masking capabilities
of a design by maximizing the number of zeros or ones in lookup tables (LUTs). The technique analyzes
critical configuration bits and utilizes spare resources (XOR gates and carry chains) of FPGAs to selectively
manipulate the logic implemented in LUT using two operations – LUT restructuring and LUT decomposi-
tion. We implemented the proposed approach for Xilinx Virtex-6 FPGAs and validated the same with a wide
set of designs from MCNC, IWLS 2005 and ITC99 benchmark suites. Results demonstrate that the pro-
posed logic restructuring maximizes logic 0 (or 1) of LUTs by an average 20%, achieving 80% fault-masking
with no area overhead. The fault-rate of the entire design is reduced by 60% on average as compared to the
existing techniques. Furthermore, the logic decomposition algorithm provides incremental fault-tolerance
capabilities and achieves an additional 5% fault-masking with an average 7% increase in slice usage.

The complete methodology is implemented into a tool for Xilinx FPGA and is made available online for
the benefit of the research community. The algorithms are lightweight and the whole design flow (including
Xilinx Place and Route) was completed in 75 minutes for the largest benchmark in the set.

Categories and Subject Descriptors: B.7.0 [Hardware]: Programmable Logic Elements; B.7.0 [Hardware]:
System Level Fault-Tolerance; B.7.0 [Hardware]: Transient Errors and Upsets; B.7.0 [Hardware]: Circuit
Optimization

General Terms: FPGA, Fault-tolerance

Additional Key Words and Phrases: FPGAs; soft-errors; SRAM Configuration bits; LUTs

1. INTRODUCTION
Radiation-induced single event upsets (SEUs) in the configuration memory are the
major cause of faults in static RAM (SRAM)-based field programmable gate arrays
(FPGAs). These SEUs cause bit flips (also known as soft-errors), potentially altering
an implemented logic and rendering the device useless, unless the affected bits are
re-programmed. These errors are predominant in space environment, however, the
increasing use of SRAM cells in modern FPGAs (constituting around 90% of all se-
quential logic elements on a device) is leading to a growing prominence of soft-errors
even in terrestrial environment. This has attracted significant attention in industry
as well as in academia to investigate on fault-tolerance of FPGA configuration bits.
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Traditionally, soft-errors are tolerated using triple modular redundancy (TMR) [Kas-
tensmidt et al. 2005]. However, growing design complexity and limited battery life
are restricting the use of TMR to only safety-critical design components. Towards this
end, periodic reprogramming of FPGA (known as scrubbing) has also been studied.
Although this technique has negligible area overhead, it is often associated with high
reconfiguration delay limiting the speed of operation. Furthermore, errors due to SEUs
cannot be prevented, only the effect can be mitigated using scrubbing. Some of the low
overhead solutions to the aforementioned problem include fault masking [Srinivasan
et al. 2004; Lee et al. 2010b; Lee et al. 2010a; Feng et al. 2009; Huang et al. 2011; Cong
and Minkovich 2010] and information redundancy [Lima et al. 2003].

1.1. Scope of the work
Given an FPGA device and a design to be mapped on the same, we propose a technique
to analyze the critical configuration bits and maximize the number of zeros (or ones)
of lookup tables (LUTs) by logic restructuring, to maximize the autonomous fault-
masking capability of the design implemented on the FPGA. Furthermore, a technique
is proposed to provide incremental fault-tolerance by decomposing a given LUT into
component LUTs.

1.2. Contributions
Following are our key contributions1.

— Maximizing zeros or ones of LUT configuration bits through LUT restructuring.
— Controlled decomposition of LUTs for higher granularity of fault-tolerance.
— Considering critical configuration bits to minimize area overhead.
— A generic technique for combinatorial and sequential circuits.
— A design tool for Xilinx FPGA incorporating the decomposition and restructuring of

LUT. The tool is made online for the benefit of the research community.

The proposed techniques of LUT restructuring and decomposition are incorporated
in the tradition FPGA design flow and validated extensively with a diverse set of
benchmarks from MCNC, IWLS and ITC99 benchmark suite on Virtex-6 FPGA board
from Xilinx. Results demonstrate that the proposed technique maximizes the number
of zeros or ones in LUT by an average 20%. Fault-masking of 80% is achieved for the
entire set of benchmarks which is 22% better as compared to the state-of-art tech-
niques. Further, fault-masking can be increased by another 5%, with 7% increase in
the number of slices. Monte Carlo simulations with randomly injected faults show that
the proposed technique tolerates 60% more faults on average for the entire design for
all the benchmarks considered.

A tool has been generated for Xilinx-based FPGA and is tested on Virtex-6 FPGA
boards. The complete fault-tolerant bitstream generation takes 75 minutes (including
the conventional synthesis and, place and route step) for the largest benchmark in
the set of benchmarks considered. In addition to this tool, an easy-to-use GUI tool is
currently under development for Windows and Linux operating system.

1.3. Paper organization
The remainder of this paper is organized as follows. The related works are discussed
in Section 2 followed by a brief overview of the mainstream FPGA architecture and
fault masking of LUT in Section 3. The design flow is introduced in Section 4 with
description of the two key components – LUT decomposition and LUT restructuring.

1A subset of these contributions appeared in a recent work from the same authors [Das et al. 2013]
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Experimental results are discussed next in Section 6. Finally, the paper is concluded
in Section 7 along with scope for future enhancements.

2. RELATED WORKS
Fault masking of FPGAs have attracted significant attention in recent years as a light-
weight fault-tolerant approach for LUT configurations bit. A technique is proposed
in [Lee et al. 2010b] to AND or OR the dual outputs of modern FPGAs depending on
the logic masking effectiveness (ANDing for LUT with more zeros and ORing for LUTs
with more ones). The logic implemented in the LUTs are, however, not modified to
maximize the number of zeros or ones in the LUTs. This technique achieves high fault-
masking with small area overhead. As shown in Section 6, the technique proposed in
this paper modifies the logic implemented in an LUT to maximize the number of zeros
or ones in LUT to improve fault-masking by 20% using the spare FPGA resources.

Another technique is proposed in [Feng et al. 2009] to maximize the identical config-
uration bits for complementary inputs of an LUT, reducing the propagation of faults
seen at a pair of complementary inputs. The technique preserves the functionality and
the topology of the LUT network (in-place) while maximizing the fault masking. This
technique reduces the relative fault rate by 48% and increases the Mean Time To Fail-
ure (MTTF) by 1.94 times with no area overhead. An in-place decomposition technique
is proposed in [Lee et al. 2010a] where faults in SRAM bits are masked by decompos-
ing an LUT logic into 2 smaller LUT logic functions using the dual output feature of
modern FPGAs. The decomposed functions are then combined back to the initial logic
using unused carry-chains within a logic block. This technique improves MTTF of Xil-
inx Virtex 5 FPGAs by 1.43 times. One limitation of these two techniques is that they
are limited to combinatorial circuits only.

3. FPGA ARCHITECTURE AND AUTONOMOUS FAULT MASKING OF LUT
Xilinx Virtex-6 FPGA devices consist of 6-input LUTs. Each 6-input LUT is internally
composed of two 5-input LUTs as shown in Figure 3(a). This is the architecture for
other mainstream FPGAs from vendors such as Altera. The two outputs (designated
as o5 and o6) of a 6-input LUT can be used individually to implement two different
5-input functions in the two component LUTs. The 6-input LUT can also implement
one 6-input function, in which case the o5 output is unused. If not all inputs of the
LUT are used to implement a function, one of the component LUTs remains unused.
Specifically, if the used inputs of an n-LUT is less than n, the number of unused entries
in the LUT is at least 2n−1. This has motivated researchers to focus on free LUT entries
to provide autonomous fault-tolerance. An LUT is said to be autonomous fault-tolerant
if it is able to tolerate faults without system or user intervention.

Let the number of used inputs of an LUT be r, where r < n. If the same content is
duplicated in the two component LUTs of an n-LUT and the two outputs are ANDed,
any 0 → 1 faults in the 2r used entries can be tolerated. In a similar manner, if the
two outputs are ORed, any 1 → 0 faults can be tolerated. If n0 and n1 denotes the
number of zeros and ones respectively in the used entries then n0 + n1 = 2r. The total
number of faults possible in the entries is 2 ∗ 2r = 2r+1 (every entry can have a bit-
flip to 0 (BF0) and bit-flip to 1 (BF1) and therefore total number of BF0 faults and
BF1 faults are same and equal to 2r). The BF0 (and respectively BF1) faults for logic-
0 (and logic-1) entries are benign. The total number of faults which can impact the
circuit behavior is therefore 2r. If the two outputs of the component LUTs are ANDed
(respectively ORed), all BF1 faults of logic-0 entries (respectively BF0 faults of logic-
1 entries) can be tolerated. The total faults tolerated is therefore n0 (ANDing) or n1

(ORing). Assuming the possibility of ANDing or ORing, the maximum fault masking
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Fig. 1: Autonomous fault-tolerance design flow

possible for the LUT is given by

FM =
max(n0, n1)

2r
(1)

4. DESIGN FLOW
Figure 1 illustrates the proposed methodology as a part of the FPGA-based design im-
plementation flow. The conventional flow adopted by most FPGA vendors are marked
with the white boxes in the figure. The boxes in gray are the steps introduced for au-
tonomous fault-tolerance. The first step towards this is the extraction of the LUT and
its contents from the place and route netlist. For Xilinx-based design flow, this informa-
tion is available in the netlist circuit description (ncd) file generated during the LUT
mapping phase of the Placement and Routing step. The LUT extraction is performed in
the LUTXtract block of the proposed design flow. This is then followed by the identifica-
tion of the critical (essential) bits. This is performed using Xilinx Prioritized Essential
Bits and is indicated in the methodology as IdentifyCriticalBits. Following this step,
are the two operations – logic restructuring (LR) and logic decomposition (LD). The ef-
fectiveness of the two operations are evaluated in Section 6. Finally, the Resynth block
modifies the gate netlist by making necessary connections with the carry chain and
spare xor gates and prepares it for bitstream generation. The components introduced
in the design flow are introduced next.

4.1. LUT extraction
LUT extraction is widely studied in literature [Ziener et al. 2006]. In this work we
use RapidSmith tool [Lavin et al. 2011] to perform LUT extraction. The LUT extrac-
tion step is provided as pseudo-code in Algorithm 1. The algorithm takes a placed and
routed ncd file and generates a database of LUTs consisting of the following informa-
tion – support and composition. These are defined as follows:

DEFINITION 1. (SUPPORT OF AN LUT) The support of an LUT is the set of used
inputs of the LUT.

As an example, if a 6-LUT (with inputs A[5 : 0]) is used to implement a function
y = (A[0]⊕A[1])A[2], the support is the set {A[0], A[1], A[2]}.

The support of a logic function is the same as the support of the LUT used to imple-
ment the function.

DEFINITION 2. (COMPOSITION OF AN LUT) The composition of an LUT is a tuple
consisting of the indexed content of an LUT.

The composition of an n-LUT is represented as 〈a0, a1, · · · am−1〉, where m = 2n and
ai ∈ [0, 1]. If the input to the LUT is denoted by A[(n − 1) downto 0], then ai is the
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Algorithm 1 LUT extraction
Input: Netlist circuit description (ncd) file
Output: LUTDB
1: xdl = ncd2xdl(ncd)
2: [support composition] = RapidSmith(xdl)
3: LUTDB = [support composition]

Algorithm 2 Criticality aware LUT modification
Input: LUTDB, PEB
Output: LUTDBm

1: for all lut ∈ LUTDB do
2: lutt = lut and CritList = PEB(lutt) // Get the essential bits for the corresponding LUT
3: [n0 n1] = GetZerosOnes(CritList) // Calculate number of zeros and ones for the CritList
4: for all ai ∈ composition(lutt) \ CritList do
5: if n0 > n1 then ai = 0 else ai = 1
6: end for
7: LUTDBm.push(lutt)
8: end for

content of the LUT2 at location bin2dec(A), where bin2dec routine converts a binary
number to its equivalent decimal.

The first step in Algorithm 1 is the conversion of the ncd file to Xilinx Description
Language (xdl) [Beckhoff et al. 2011]. This is a proprietary format of Xilinx consisting
of clear-text representation of the implemented design allowing designers to get access
to a very low-level description of the FPGA’s internal state. The ncd2xdl() routine pro-
vided in the Virtex-6 tool chain is used to convert the same. The xdl file is then input
to RapidSmith [Lavin et al. 2011] tool to generate the support and composition. These
are then stored in the LUTDB database for use in the subsequent steps.

4.2. Identify Critical Bits
The next step in the design flow is the identification of the critical bits of an LUT.
Several definition exist in literature for the identification of critical bits. In [Ferron
et al. 2009], the authors classified the LUT bits as critical, transparent and suspect
bits. In this context, critical bits are defined as those which have the highest impact
of SEUs. In [Feng et al. 2009], the critical bits are defined as the bits which have the
highest fault-masking effectiveness. Finally, in the Xilinx Virtex-6 FPGAs, prioritized
essential bits [Patterson et al. 2008] are defined as bits causing functional failure, if
change state. According to [Patterson et al. 2008], only a subset of the LUT configu-
ration bits belong to this category. In our earlier work [Das et al. 2013], restructuring
is performed on an LUT to maximize the number of zeros or ones based on the logic
masking effectiveness within the LUT. In this work we incorporate the restructuring
of LUT considering the Xilinx prioritized essential bits (PEB). For this, an LUT modi-
fication algorithm is proposed shown as pseudo-code in Algorithm 2. For each LUT in
LUTDB, the algorithm first identifies the essential bits from the prioritized essential
bit file generated using Xilinx ISE. The number of ones and zeros amongst the essen-
tial bits are counted individually. If there are more ones than zeros, each non-essential
bit is converted to logic one. Similarly, if the number of zeros is more than the number
of ones, each non-essential bit is converted into logic zero. It is to be noted that chang-
ing the non-essential bit do not affect the logic functionality [Patterson et al. 2008].
However, this simplifies the logic restructuring and decomposition step. An example
is provided to demonstrate this. Let the composition of a 3-LUT implementing a two
input AND logic be [1 0 0 0 1 1 1 0]. The lower 4 bits of the LUT are non-essential.

2Content of an LUT is determined by the logic function it implements.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 A. Das et al.

Clearly, there are four zeros and four ones, implying that the fault-masking capability
of this LUT without any modification is 50%. Due to this low default fault-masking
capability of the LUT, the the amount of extra logic required (in terms of XOR gates or
extran LUTs) to increase its fault-masking to a satisfactory level (say, 75%) using logic
restructuring and decomposition is high. To overcome this limitation and to reduce the
area overhead, the composition of the LUT is modified according to the composition of
the essential bits. The four essential bits of the LUT are [1 0 0 0] and therefore there
are three zeros and one ones (more zeros than ones). Hence, the LUT is modified as
[1 0 0 0 0 0 0 0]. This LUT has a default-fault masking of 87.5% and therefore, depend-
ing on the fault-masking threshold, the next steps of the flow (i.e., logic restructuring
and decomposition) may be skipped. This reduces the overhead of our approach.

4.3. Restructuring of LUT
The restructuring of an LUT involves selective inversion of some entries of the LUT to
maximize the number of zeros or ones. The following definitions are provided for the
problem formulation.

DEFINITION 3. (0-SENSITIVITY OF A SUPPORT) The 0-sensitivity of a support of
an LUT is defined as the set of indices for which the value of the support is logic 0.

If the positions (indices) of a 3-LUT with inputs A[2 : 0] is the set {0, 1, 2, · · · , 7},
then 0-sensitivity of A(0) is the set {0, 2, 4, 6} and that for A(1) and A(2) are the sets
{0, 1, 4, 5} and {0, 1, 2, 3}, respectively. It is not difficult to see that the cardinality of the
0-sensitivity of any support of a n-LUT is 2n−1.

Similarly, the 1-sensitivity of an LUT support can also be defined. The 0,1 sensitivity
of a support i is denoted by S0

i and S1
i respectively.

The proposed logic restructuring technique involves determining a support of an
LUT and the corresponding sensitivity such that, logic inversion of the content of the
LUT at the positions specified in the sensitivity list maximizes the number of zeros or
ones in the LUT. Continuing with the same example as above, the 1-sensitivity of the
three inputs A(0), A(1) and A(2) are respectively {1, 3, 5, 7}, {2, 3, 6, 7} and {4, 5, 6, 7}.
The contents of LUT at positions specified by each of the 6 sets (0-sensitivity and 1-
sensitivity of the three inputs) are inverted one at a time and the fault-masking is
determined. The set that gives the highest fault-masking is recorded for the LUT.

Clearly, selectively inverting the LUT content leads to a different implemented func-
tionality than original. However, by using XOR or an XNOR gate, the original function
can be easily recovered3. Specifically, if f be the original output of an LUT (i.e. imple-
mented by the tool) and f ′ be the output of the LUT after inverting the LUT content
of S1

i , then, f = f ′ ⊕ i. Instead, if S0
i is used, then f = f ′ ⊕ i.

Algorithm 3 provides the pseudo-code for the logic restructuring technique. For each
support of the LUT, the 0/1 sensitivity are determined and the fault-masking is calcu-
lated. As output, a support is determined along with its sensitivity type.

Figure 2 illustrates an example of the logic restructuring. The two tables shown rep-
resent the support and LUT contents before and after the logic restructuring. When the
LR algorithm is run on the example, it determines a suitable support and sensitivity,
which when restructured, would provide the highest fault-masking. For this example,
restructuring support S0

2 increases the fault-masking from 50% to 75%. The original
function can then be obtained back by a simple boolean transformation as discussed
earlier in this section.

3The Xilinx FPGA slices contain spare XOR gates which is used for this purpose.
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Algorithm 3 LUT restructuring
Input: LUTDBm, T
Output: LUTDBn

1: for all lut ∈ LUTDB do
2: compute FM of lut according to Equation 1; FMbest = FM , supbest = ∅, senbest = ∅, lutbest = lut
3: for all i ∈ support(lut) do
4: for all j ∈ [0, 1] do
5: generate Sj

i ; ∀k ∈ Sj
i , lut(k) = lut(k); compute FM of lut

6: if FM > FMbest then FMbest = FM , supbest = i, senbest = j, lutbest = lut
7: end for
8: end for
9: LUTDBn.push(lutbest)
10: end for

Before LR                  After LR 
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Fig. 2: Logic restructuring of LUT

4.4. Decomposition of LUT
Synthesis of optimal boolean logic is a well studied research topic for FPGA technology
mapping [Mishchenko et al. 2001; Mishchenko et al. 2003; Sasao and Matsuura 2004].
One of the fundamental operations in logic synthesis is to minimize circuit routing
complexity by logic decomposition. This involves breaking down a large boolean func-
tion into smaller components, keeping the functionality unchanged. The following def-
initions are provided.

DEFINITION 4. (DECOMPOSABILITY OF LUT) Let f(X) be a function implemented in an
LUT. The LUT can be decomposed and represented as f(X) = h(g(X1, X2), X2) where X =
X1 ∪X2.

Figure 3 shows the decomposition of the logic function f .

DEFINITION 5. (MIN SET OF AN LUT) The min set of an LUT is the set of indices for which
the LUT contents are logic 1.

The min set is given by ms = {i|ai = 1, ∀1 ≤ i ≤ m}, where m is the number of LUT entries.

DEFINITION 6. (CUT OF A MIN SET) The cut of a min set is defined as the decomposition of
the min set into s smaller sets (ci, ∀1 ≤ i ≤ s) sharing the minterms.

Mathematically, this can be expressed as ms = ∪s
i=1ci. The cut can be overlapping (common

elements in cut sets) or non-overlapping.

DEFINITION 7. (ORDER OF A CUT) The order of a cut is defined as the maximum number of
cut sets formed from the decomposition of the corresponding min set.
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Fig. 3: Logic decomposition of LUT

Clearly, cut of order 1 is same as the min set. For this research, the order of a cut is restricted to
2 (i.e. s = 2). With the above definitions, the following lemma can be stated.

LEMMA 1. The decomposition of an LUT is equivalent to a order 2 cut of its min set.

The following notations are defined.
f n-input function implemented in an LUT
l total number of minterms of f
ms(f) 〈t1, t2, · · · , tl〉 = min set of f
c1, c2 cut sets of ms(f) with a cut of order 2
ϕi logic function represented by ci
ni support of ϕi

Using the notations defined, f = ϕ1+ϕ2 and n1, n2 ≤ n. Thus, three LUTs are required
to implement f (one LUT each to implement ϕ1 and ϕ2 respectively and one LUT
to implement the OR-operation). However, with a simple modification, the same
can be represented using two LUTs (as shown in Figure 3 (b)). Here, the first LUT
implements ϕ1 while the second implements ϕ2 and the OR-functionality. Denoting ϕ′2
as the functionality of the second LUT, the following Equation holds trivially.

f1 = LUT (ϕ1) and f = LUT (ϕ
′
2) where ϕ

′
2 = f1 + ϕ2

Since the second LUT requires one additional input (output of the LUT implementing
ϕ1), the support of the second LUT is n2 + 1 where n2 is the support of ϕ2.

The min set of LUT(ϕ1) is the set c1. The min set of LUT(ϕ′2) is calculated as follows.
The total entries of the truth table of ϕ′2 is 2n2+1. Half of these entries have f1 = 1
(since f1 is an input to the function ϕ′2). Further, for f1 = 1, the function ϕ′2(= f1 + ϕ2)
assumes logic-1. Thus the min set of ϕ′2 is c′2 = {(2n2 + 1), (2n2 + 2), · · · , 2(n2+1)} ∪ c2

Assuming the LUT faults are independent and identically distributed, the joint fault
masking of the two LUTs is calculated according to Equation 1 as shown below.

FM =
max(|c1|, 2n1 − |c1|)

2n1
+

max(|c′2|, 2
n2+1 − |c′2|)

2n2+1
(2)

The optimization problem is formulated as follows:

maximize FM subject to n1 ≤ n; n2 < n; ms(f) = c1 ∪ c2 (3)

Solution approach
A heuristic is proposed here to solve the above optimization problem. The vector Vmin

holds the minterms of the function f with two copies of each minterm to allow overlap-
ping of the min sets c1 and c2. A second vector (Vassign) is defined to indicate the min
set (c1 or c2) corresponding to the minterms in Vmin.

Vmin = 〈t1, t2, · · · , tl, t1, t2, · · · , tl〉;Vassign = 〈u1, u2, · · · , u2l〉 where ui ∈ [1, 2] (4)
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Algorithm 4 LUT decomposition
Input: LUTDBn, T
Output: LUTDBf

1: for all lut ∈ LUTDBn do
2: compute FMlut
3: if FMlut < T then
4: Vassign(i) = 1, ∀1 ≤ i ≤ 2l; fmbest = calculateFaultMasking(Vassign); Vbest = Vassign

5: while numIter < maxIter do
6: for i = 1 to 2l do
7: [fm1 ϕ1 ϕ′

2] = calculateFaultMasking(Vassign); Vassign(i) = [Vassign(i) (+) 1]
8: [fm ϕ1 ϕ′

2] = calculateFaultMasking(Vassign)
9: if fm < fm1 then Vassign(i) = [Vassign(i) (−) 1]; fm = fm1

10: end for
11: numIter ++
12: if fm > fmbest then fmbest = fm; Vbest = Vassign

13: end while
14: [fm ϕ1 ϕ′

2] = calculateFaultMasking(Vbest); [lut1lut2] = convertToLUT (ϕ1, ϕ′
2)

15: LUTDBf .push(lut1, lut2)
16: else
17: LUTDBf .push(lut)
18: end if
19: end for

Algorithm 4 reports the pseudo-code for the proposed heuristic. The algorithm in-
puts LUTDB (generated using Algorithm 1) and a user defined parameter (T ) indi-
cating the fault masking threshold. For every LUT of the LUTDB, the fault masking
is computed using Equation 1 (line 2). If this is higher than the threshold (T ), no
decomposition is performed on the LUT. If the fault masking is less than the thresh-
old, LUT decomposition is performed to maximize FM according to Equation 3 (lines
4-15). The first step towards this is the assignment of a set for all the minterms in
Vmin (line 4). For each of the minterms, the fault masking is computed using the cal-
culateFaultMasking() routine (line 7). The set assignment is changed and the value
is recalculated (line 8). The assignment is retained if this value is greater than the
previously calculated one, otherwise the move is discarded (line 9). The (+) and (−)
are modulo-2 addition and subtraction respectively. If the fault masking obtained is
greater than the best value obtained thus far, the best values are updated (line 12). To
enable the algorithm search for the global maximum, minterms are randomly assigned
to different sets and the steps are repeated. This is continued for maxIter number of
iterations, where maxIter is a user defined parameter governing the termination of
the algorithm and solution quality.

An essential component of Algorithm 4 is the calculateFaultMasking() routine,
which is provided as pseudo-code in Algorithm 5. The algorithm takes the minterm
vector Vmin and the assignment vector Vassign. The minterms are partitioned into two
sets c1, c2 according to the assignment. The corresponding truth tables are generated
with minterms in c1 and c2 respectively. The next step is the minimization of each truth
table according to the Quine McCluskey algorithm (lines 4-5). If the number of inputs
satisfy the constraints in Equation 3, the fault masking is calculated and returned.

An example is provided to better understand the proposed LUT decomposition al-
gorithm. Figure 4(a) plots the truth table of the function f = (A + B)C + C ′D. The
corresponding min set (ms) is indicated. Figure 4(b) plots the one possible cut of ms.
Here ms = c1∪c2 and c1∩c2 = ∅. Figure 4(c) represents the implementation of Figure 3
where the f1 output of the first LUT (implementing the function ϕ1) serves as one of
the inputs of the second LUT. The second LUT of Figure 4(c) indicates this. Finally,
Figure 4(d) plots the result after optimization of the second LUT of Figure 4(c) using
Quine McClusky algorithm.
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Fig. 4: Example of LUT decomposition

Algorithm 5 calculateFaultMasking(): calculate the fault masking
Input: Minterm vector Vmin and assignment vector Vassign

Output: Fault masking FM , logic functions ϕ1, ϕ′
2

1: c1 = {Vmin(i)| such that Vassign(i) = 1, 1 ≤ i ≤ 2l} and c2 = Vmin \ c1; Determine n2

2: c′2 = {(2n2 + 1), (2n2 + 2), · · · , 2(n2+1)} ∪ c2
3: tt1 = formTruthTabl(c1); tt2 = formTruthTabl(c′2)
4: [n1 ϕ1] = QuineMcCluskey(tt1) and [n′

2 ϕ′
2] = QuineMcCluskey(tt2)

5: if n1 ≤ n and n′
2 ≤ n then compute FM according to Equation 2 else FM = 0

6: Return [FM ϕ1 ϕ′
2]

Xilinx ISE RapidSmith

Proposed 
Tool

Xilinx ISE

Fig. 5: Proposed tool as part of the design flow

4.5. LUT re-synthesis
The LUT restructuring step of the flow involves implementing the AND and OR mask-
ing for each LUT of the implemented design. In [Lee et al. 2010b], the authors pro-
posed to merge the masking logic for an LUT in the LUT of its fanout. This can lead to
a reduction of the number of usable inputs of the fanout LUT. To avoid this problem,
this paper proposes to use the carry chain logic of the Virtex-6 FPGA. If o5 and o6 are
the dual-outputs of an LUT, then the carry chain logic implemented is given by the
equation

Cout = Cin.O5 + Cin.O6 + O5.O6 (5)

Clearly, setting Cin = 1, results in ORing of O5 and O6, while setting it to 0, results in
ANDing. The objective of the LUT re-synthesis step is to determine the value of cin to
maximize the logic masking effectiveness. In other words, for each LUT, if the number
of zeros is more than the number of ones, cin is set to 0 to mask 0→ 1 faults. Similarly,
for LUTs with more number of ones, cin is set to 1 to mask 1→ 0 faults.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Autonomous Soft-error Tolerance of FPGA Configuration Bits A:11

Table I: Slice and LUT usage of benchmarks considered
Suites Benchmarks Used slices Used LUTs % Free LUTs Suites Benchmarks Used slices Used LUTs % Free LUTs

MCNC

alu4 178 512 28

Opencores

aes 184 573 22

apex2 252 706 30 ethernet 1168 3179 32

apex4 198 618 22 i2c 80 200 37.5

bigkey 374 605 60 mem ctrl 503 1171 42

clma 4 7 56 pci 755 1695 44

des 366 564 61.5 spi 202 564 30.2

diffeq 227 526 42 tv80 577 1724 25.3

disp 555 683 69.2 usb phy 78 102 67.3

elliptic 61 133 45.5 vga lcd 132 251 52.5

exp5p 68 107 60.7 wb dma 386 779 49.5

ex1010 205 612 25.3

ITC99

b5 61 155 36.5

frisc 550 1905 13.4 b15 647 1877 27.4

misex3 236 500 47.03 b20 588 2049 13

pdc 138 276 50 b22 896 3165 11.7

s298 9 23 36.1
UMass RCG

ava 1035 2611 37

s38417 1235 2168 56.1 dct 8 15 53

s38584 1259 1944 61.4

VPR

mkSMAdapter 415 1064 36

seq 220 739 16 sha 400 1457 9

spla 199 449 43.6 steriovision0 1990 3099 61

tseng 208 539 35.2 or1200 855 2333 31.7

5. TOOL IMPLEMENTATION
We have implemented the proposed methodology as a tool. Figure 5 envisages the
proposed tool as a part of the FPGA design flow. The other tools required are also
highlighted in the same figure. The tool flow is implemented in C++ and Matlab. This
tool is made available online for the benefit of the research community [LDL 2013].
The complete fault-tolerant bitstream generation takes 75 minutes (including the con-
ventional synthesis and place and route step) for the largest benchmark in the set of
benchmarks considered. In addition to this tool, an easy-to-use GUI tools is currently
under development for Windows and Linux operating system.

6. RESULTS
The proposed algorithms are implemented in Matlab running on 2.1 GHz Intel Core
i5 PC with 8GB memory running Windows. The benchmarks used for analysis and the
slice usage of each benchmark are reported in Table I. All benchmarks are synthesized,
placed and routed using Xilinx ISE 13.1 with area minimization as the optimization
strategy. The target FPGA used for all experiments is Xilinx Virtex-6 where each con-
figuration logic block (CLB) consists of two slices with each slice consisting of four 6-
LUTs. As can be seen from the Table I, on average 40% of LUTs in the used slices are
unoccupied. This clearly motivates to exploit the unused resources for fault-tolerance.

6.1. Complexity analysis of proposed algorithms
There are three algorithms proposed in this work. However, Algorithm 1 is tool de-
pendent and not much insight is available on the exact complexity. Let N denote the
number of LUTs used in a given design. The complexity of Algorithm 3 is computed as
follows. For each LUT, the 0/1 sensitivity is generated for all the support. Fault mask-
ing is then computed after inversion of the LUT bits corresponding to the sensitivity
list. Assuming, n-LUT, the worst case complexity of Algorithm 3 is given by

O(C3) = O(N ∗ 2 ∗ n) = O(N ∗ n) (6)
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Fig. 7: Fault masking of different techniques

The complexity of Algorithm 4 is computed as follows. For each LUT with fault mask-
ing less than T , lines 7-25 are executed. The complexity of this section is dependent
on the complexity of the calculateFaultMasking() routine. Denoting this as O(C5), the
worst-case complexity of Algorithm 4 is given by O(C4) = N ∗ maxIter ∗ 2l ∗ O(C5).
The complexity of Algorithm 5 is dependent on the complexity of Quine-McClusky al-
gorithm. This is known to be NP-complete hard and a greedy heuristic is proposed to
solve the same [Safaei and Beigy 2007].

6.2. Maximization of logic 0 in LUTs
Figure 6 plots the average distribution of logic 0’s in the LUTs of some of the bench-
marks after applying the proposed technique (indicated by the bars titled Proposed).
For comparison, the distribution of 0’s in the LUTs after place and route (in the original
flow) is indicated with the bars titled Original. Results in the figure can be interpreted
as follows. The LUTs in the benchmark spi have on average 57% logic 0 (and 43% of
logic 1) after place and route stage. Post logic restructuring and decomposition, the
LUTs have on average 80% logic 0 i.e. 40% increase in the number of 0’s per LUT
for spi. Similarly, the results for other benchmarks can be interpreted. The numbers
quoted on the bars titled Proposed indicates the percentage increase as compared to
the original content. Although not explicitly shown here, on average for all 40 bench-
marks considered, the proposed technique improves number of 0’s by 20%.
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6.3. Fault-masking of LUT
Figure 7 plots the percentage fault masking of LUTs achieved using the proposed
technique in comparison with the TMR-based technique of [Kastensmidt et al. 2005]
(referred to as TMR in the figure), the AND-OR masking-based fault-tolerance tech-
nique of [Lee et al. 2010b] (referred as FMD) and the restructuring-based variant of
the same (referred as FMD-R). The technique proposed in this paper is referred as
LR+LD (based on logic restructuring and decomposition). Additionally, results after
logic restructuring LR are also reported in this figure. Since the techniques in [Lee
et al. 2010a] and [Feng et al. 2009] are based on fault-masking of entire circuit in-
stead of individual LUTs, they are not included for comparison here. These techniques
are compared with the proposed technique in terms of circuit-wise fault-masking in
Subsection 6.6.

As can be seen from the figure, TMR-based technique achieves the highest fault
masking of all the techniques. This is due to the triplication of LUT contents. A point
to note here is that, the fault-masking achieved by TMR is computed based on LUT
contents only. The voting logic is not included in the computation. Although, TMR
achieves 100% fault-masking, this is associated with high area and power penalties.
The proposed LR+LD achieves highest fault masking of all the techniques. On aver-
age for all the benchmarks considered, LR+LD achieves fault-masking of 85% which is
60% and 22% better with respect to FMD and FMD-R respectively. The fault-masking
achieved using LR is average 80% for all benchmarks. However, for some circuits such
as aes, the fault masking of LR is not significantly high (≈ 57%). Performing logic de-
composition (LD with a threshold set to 0.7) on the same improves LUT fault-masking
to 82%. From these results, it can be concluded that while LR achieves good fault-
masking for most circuits, a combination of the two (LR+LD) guarantees to provide
more than 80% fault-masking for all circuits.

Figure 8 plots the area overhead of the proposed fault-tolerant techniques in compar-
ison with the existing techniques for the same set of benchmarks. The area overhead
is measured in terms of slices used. The area of the base design (without incorpo-
rating fault-tolerant techniques) is normalized to 100 slices. As can be see from the
figure, FMD achieves minimum area overhead. However, only 50% faults are masked
as shown in Figure 7. The area overhead for FMD-R and LR are respectively 2% and
4%. The proposed LR+LD technique has an area overhead of 7% on average for all the
benchmarks considered.

6.4. Bit Criticality aware LUT modification
Table II reports the percentage use of the XOR gates needed to recover back the logic
after an LUT restructuring for the initial methodology [Das et al. 2013] and the one
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proposed in this paper. Ten benchmarks are considered for comparison. As can be seen
from the table, for smaller design (column 1), the reduction of XOR gates is negligible
(maximum 0.2%). However, for larger designs (column 4), considering the essential bits
leads to a reduction of upto 1% in the number of XOR gates. As a future modification,
the criticality determination using the technique of [Ferron et al. 2009; Feng et al.
2009] can be considered.

6.5. Performance with varying fault-threshold
Figures 9 and 10 plots the fault masking and the area of the proposed LD technique for
varying threshold (T). From Figure 9, we can see that the best fault masking for most
benchmarks is achieved when the threshold is set at 70. Moreover, at this threshold,
the area overhead is only 7% more on average as compared to a design with no fault
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Table II: Usage (%) of XOR Gates

Benchmark [Das et al. 2013] Proposed Benchmark [Das et al. 2013] Proposed

alu4 82.2 82.1 bigkey 66.2 65.7

apex4 88.7 88.6 disp 55.5 55.4

elliptic 92.5 92.5 s38417 81.0 80.6

exp5p 79.5 79.3 s38584 60.0 59.1

pdc 74.1 74.1 frisc 75.8 74.9

Table III: Fault-rate (%) of combinatorial benchmarks

Benchmark FMD IPD LR+LD Benchmark FMD IPD LR+LD

alu4 0.33 0.27 0.23 exp5p 0.62 0.52 0.07

apex2 0.26 0.21 0.17 misex3 0.49 0.38 0.29

apex4 1.10 0.99 0.13 pdc 0.83 0.63 0.2

des 1.41 1.27 0.65 seq 0.56 0.45 0.1

ex1010 1.05 0.72 0.08 spla 1.05 0.82 0.12

masking. However, if optimum area and fault masking is required, it can be seen from
Figure 11, that a threshold of 60 would give the best fault masking for the least area.
Since the optimum threshold varies with each design, it is left to the user to tune the
threshold according to the fault masking desired with affordable area overhead.

6.6. Fault-masking of entire circuits
Table III reports the circuit-wise (full chip) fault-rate obtained by Monte Carlo sim-
ulations with 50K input vectors. Faults are injected randomly into the circuit. The
fault-rate is measured by the number of observable faults. A fault is observable if the
observed primary output of the circuit differs from the reference output. Otherwise,
the fault is considered to be masked in the circuit. The fault-rate of proposed LR+LD
is compared with the FMD technique and the in-place decomposition technique of [Lee
et al. 2010a] referred as IPD. Our technique can be used for fault masking of both
combinatorial and sequential circuits since the faults are masked individually for each
used LUT. However, IPD uses an end-to-end fault masking technique that currently
only works for combinatorial circuits. Due to this, only combinatorial circuit bench-
marks are included for comparison. There are few trends to note from the table. Firstly,
the fault rate for entire circuit are generally lower than those obtained per LUT (refer
Figure 7). The circuit-wise fault-masking is measured from primary inputs to primary
outputs with some of the LUT bits getting masked in the subsequent LUT. Secondly,
the proposed LR+LD reduces the fault-rate significantly achieving 68% and 60% lower
fault-rate as compared to FMD and IPD respectively.

6.7. Algorithm overhead
Table IV reports the execution time of the different algorithms proposed in this paper
in comparison with the time taken by the synthesis and place and route steps of the
conventional flow using Xilinx ISE 13.1. A point to be noted here is that, by introducing
the extra XOR gate and extran LUT, the flop to flop delay is increased. This has an
impact on the maximum frequency supported for the design. In this version of the
work, the extran LUT or XOR gate in proximity of the original LUT were used to
minimize the routing delay. However, it is anticipated that in large design it might be

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 A. Das et al.

Table IV: Execution time (in secs) of algorithms

Benchmark PnR Alg 1 Alg 3 Alg 4 Total Benchmark PnR Alg 1 Alg 3 Alg 4 Total

wb dma 624.0 14.5 58.0 386.4 1082.8 bigkey 484.0 11.2 45.0 299.7 839.9

tseng 431.2 10.0 40.0 267.0 748.3 apex4 494.4 11.5 45.9 306.1 857.9

pci 1311.2 30.4 121.8 811.9 2275.3 apex2 564.8 13.1 52.5 349.7 980.1

ethernet 2584.0 60.0 242.5 1616.2 4502.7 alu4 409.6 9.5 38.0 253.6 710.8

elliptic 106.4 2.5 9.9 65.9 184.6 aes 460.0 10.7 42.7 3284.8 3798.2

possible to have no free LUTs or XOR gates in the vicinity of the LUT to be modified.
In this case, a trade-off analysis can be done between increased fault-masking and
increased circuit delay. This is reserved for future work.

7. CONCLUSIONS
In this paper we proposed a technique to maximize the fault-masking capabilities of an
LUT using logic decomposition and bit criticality aware restructuring. The proposed
methodology is validated experimentally with benchmarks from a wide range of bench-
mark suites on Xilinx Virtex-6 FPGA. Results demonstrate that 85% of the faults in an
LUT can be masked with only 7% increase in slice usage. The complete methodology is
implemented into a tool for Xilinx FPGA and is made available online for the benefit
of the research community.
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