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Abstract—Single Event Upsets (SEUs) inadvertently change
the logic memory and thereby the configuration of the Field
Programmable Gate Arrays (FPGAs), leading to their incorrect
functioning. Traditional methods to tolerate such faults include
Triple Modular Redundancy (TMR). However, such method has a
high overhead in terms of power and area. Moreover, the inexact
methods used in ASICs to overcome this problem are not efficient
when applied in FPGAs. Therefore, this paper proposes a novel
technique based on heuristic to tolerate faults in SRAM-based
FPGAs by using inexact modules in conjunction with TMR, thus
reducing the area and power overhead of the design. Experiments
run on various MCNC benchmark circuits show the accuracy of
the proposed technique. They also show that the design solutions
found through this technique only differ 0.52% on average from
the optimal ones and savings up to 84.4% in terms of computation
time can be reached on average.

I. INTRODUCTION

Commercial Off-The-Shelf (COTS) Static-RAM (SRAM)
based Field Programmable Gate Arrays (FPGAS) have been
increasingly adopted in the field of satellite and space tech-
nology since they provide rapid prototyping capabilities and
quick reconfiguration ability, associated with a low cost price.
However, in space the radiation from high energy particles,
such as protons and neutrons, can strike the FPGA device and
may upset one or more bits in the user design. These upsets,
called Single Event Upsets (SEUs), inadvertently change a
single or a group of bits in the FPGA, leading to an erroneous
output. SEUs are traditionally masked or mitigated through
a variety of techniques. One such technique is the Triple
Modular Redundancy (TMR) [1] [2]. This technique triplicates
the user design and the outputs of these three modules are
voted upon to ensure that the errors are masked in case one
of the modules fails. The primary disadvantage of TMR is the
area and power overhead as it uses at least three times more
area and power of the original user design, as described in
Figure 1. Such high overhead might not be suitable in space en-
vironments, where both area and power are very constrained. In
order to deal with these concerns, inexact computing has been
considered an ideal alternative mechanism to TMR. However,
the current techniques based on this mechanism are targeted
to Application Specific Integrated Circuits (ASIC) technology.
When they are applied to FPGAs, they may not provide the
optimal solution in terms of implementation area overhead
and masking factor, since the method of logic implementation
differs in both. ASICs are based on logic gates and FPGA’s in
Look-Up-Tables (LUTs).

Key contributions: Following are the main contributions
of this paper: 1) An Inexact-TMR (ITMR) technique to protect
the combinatorial circuits implemented on SRAM-FPGAs; 2)
A scalable heuristic that is not directly dependent on the size
of the original circuit and gives the inexact circuit solution
close to the optimal one.

Experiments ran on a various benchmarks show that the
proposed heuristic only differs on average 0.14% from the
Pareto front. Regarding the SER reduction, the experiments
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Fig. 1. TMR. Module G represents the original circuit. Modules F and H
are exact replications of G.

show that the design provided by the proposed heuristic only
differs 0.52% on average from the optimal. Moreover, the
saving of computation time can reach up 84.4% on average.

II. RELATED WORK

TMR [1] [2] is one of the most common fault-tolerant
techniques used in COTS FPGAs. TMR triplicates the entire
system and votes on the majority output. Though this technique
is really good at SEU detection and fault masking, it requires
a very large area and power overhead. For example, TMR
requires at least thrice the area (and power) of a normal system.
Various techniques have been proposed to overcome the high
area and power overhead of TMR. One paper by Mohanram
et al. [3] exploited the asymmetric soft error susceptibility
of nodes in a logic circuit by applying two heuristics—
cluster sharing reduction and dominant value reduction—to
reduce the area overhead due to TMR. However, this technique
modifies the synthesis of the original circuit, and still applies
the conventional TMR to the clustered part of the circuit.
Sierawski et al. [4] proposed a technique to mask faults in
ASICs through the use of approximate modules and TMR.
The approximate modules were generated by the Short-Path
subsetting [5] and a good reduction of the area overhead was
obtained. Similarly, Choudhury et al. [6] proposed a concurrent
error detection based on approximate logic circuits to obtain
fine-grained trade-offs between area overhead and the error
coverage. Another paper by Sanchez et al. [7] has focused on
both SEUs and Single Event Transients (SETs), the latter more
prone to occur in ASICs. They have proposed the use of unate
functions to approximate a given logic circuit. Though these
methods are able to achieve a good fault masking and area
overhead reduction, they are primarily targeted for ASICs and
not FPGAs. From the discussion of the above related work, it
can be concluded that TMR has inherent disadvantages when
implemented in an FPGA. Moreover, the inexact computing
methods used in ASICs cannot directly be applied to FPGAs
since the method of logic implementation differs in both. The
current inexact computing methods for ASICs try to reduce
the size of the inexact circuits as much as possible, but at the
same time maximizing the error output masking. In FPGAs, the
circuit logic gates are implemented in LUTs. An FPGA LUT
is characterized by a number of inputs and one output. It works
like a block of memory that is indexed by the LUT’s inputs.
The output is the value stored in LUT location indexed by
the inputs combination. Therefore, the number of LUTs (area
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Fig. 2. Left: Inexact TMR. Module G represents the original circuit.
Module F and H represent the approximate circuits. Right: Representation
of the relationship among the function G, F and H . Function F is under
approximated function of G. Function H is an over approximated function.

overhead) required to implement a given circuit is dependent
on the number of inputs and not on the number of logic
gates. In this sense, reducing the size of the circuit as much
as possible in terms of logic gates, may not reduce FPGA
implementation area in terms of LUTs. Bearing this in mind,
a new inexact TMR (ITMR) technique is proposed in this
paper. This technique based on a heuristic overcomes the area
overhead of the regular TMR and it also gives better flexibility
to the user to choose the inexact circuits that maximize the soft
error rate reduction or according to a target (area overhead
or masking factor). Moreover, it provides the inexact circuits
which are closer to the optimal solution.

III. CIRCUIT MODEL AND MEASURED PARAMETERS

As referred, in TMR (Figure 1), the modules F and H are
copies of G and hence can be considered an exact copy of it.
The circuit approximation technique converts circuits F and
H into inexact copies of G, in such way that the outputs from
the inexact modules, combined with the outputs of G would
be able to effectively mask any error that occurs in F and H
and some errors of G (Figure 2 – Left). With this technique,
a considerable reduction in terms of implementation area and
power may happen, but keeping a high level of reliability.

A. Circuit Model

Definition 1. (BOOLEAN FUNCTION) A boolean function with
n inputs can be defined as a function f : Bn → B, where
B = {0, 1}.

Given the boolean function G : Bn → B, the inexact
functions F and H can be defined as the subset and the
superset of G respectively, i.e., F ⊆ G and G ⊆ H . This
means that if an input vector ~x is a minterm of F , it must be
a minterm of G by inclusion. Similarly, if ~x is a maxterm of
H , it must be a maxterm of G by exclusion. This relationship
is further illustrated in Figure 2 – Right. As expressions F
and H tend to be closer and closer to G, the more exact the
expressions become. TMR can be considered as the extreme
case of this, where F and H are exactly the same as G. The
voter shown in Figure 1 is replaced by the following function:

Ĝ = F + (G.H). (1)

Since the OR and AND gates are asserted by the minterms
of F and maxterms of H respectively, the output Ĝ of this
expression masks the faults that might occur in G.

B. Area Overhead Factor

The logic in SRAM-based FPGAs is implemented in LUTs.
Thus, the area overhead can be defined as follows.

Definition 2. (AREA OVERHEAD FACTOR – A) Area Overhead
factor is a metric that defines the ratio of area used by the
approximate circuits (F , H) and the original circuit G.

Therefore, A can be represented as follows:

A = (LUT(F ) + LUT(H))/LUT(G), (2)
where LUT(X) corresponds to the number of LUTs occupied
by the circuit X after synthesis and mapping.

C. Masking Factor

When inexact circuits for F and H are used, instead of
exact circuits of G, there are some input vectors in the presence
of an SEU that may not produce the right value, i.e., they are
not masked.

Definition 3. (MASKING FACTOR – M) Masking Factor is a
metric that defines the fraction of input vectors masked by the
approximate functions F and H .

Therefore, M can be represented as follows,

M = (|F |+ |H|)/2n, (3)
where |F | expresses the number of minterms of the approx-
imate logic function F and |H| represents the number of
minterms of the disjoint function of H . Moreover, n denotes
the number of inputs in the exact logic function G : Bn → B.

D. Soft Error Rate (SER) Reduction

Definition 4. (SOFT ERROR RATE OF A CIRCUIT) Soft Error
Rate SER(G) of a circuit G is a metric that defines the
probability of G failing.

Based on this, the SER of the Ĝ which results from the
aggregation of the inexact circuits F and H to G is given by:

SER(Ĝ) = (A× SER(G)) + (1−M)× SER(G). (4)

When the inexact circuits F and H are implemented, they will
generate an extra implementation area A, which can also be
affected by an error. Therefore, the SER for the inexact circuits
can be approximated by A × SER(G). On the other hand,
when the circuits F and H are implemented, the fault rate on G
is reduced by the factor (1−M). Moreover, the SER reduction
(R) of the overall logic circuit Ĝ after the implementation of
F and G, when compared to the initial SER of G is given by:

R = 1− SER(Ĝ)/SER(G), (5)

Combining Equation 4 and Equation 5, the SER reduction
(R) can be further defined as:

R = M −A. (6)
Please note that for the computation of R, the number of

LUTs are used to measure the area overhead. This approach is
one of the fairest, since the probability of the bits stored in the
LUT being affected by an SEU is much smaller, comparing to
the probability of the routing and control bits. For more details
please refer to [8].

IV. ILLUSTRATIVE EXAMPLE AND PROBLEM DEFINITION

Assuming the logic function G = x1.x2 + x1.x3 + x1.x4,
also presented in [4], the optimal implementation of the
function with 1/2-input gates in the ASIC technology requires
8 gates. From the analysis of the function in the BDD format,
as well as using the mechanism that preserves the shortest
paths and pruning the longest, the optimal solution for the
approximation functions F and H are respectively, F = x1.x3
and H = x1 (Figure 3). This solution generates a masking
percentage of 75%, but requires 4 logic gates to be imple-
mented, which implies an increase on the implementation area
of 50%, considering the original circuit. Regarding the FPGAs
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Fig. 3. Example – Karnaugh map of the logic function G.
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Fig. 4. Search space for the benchmark Alu4, ouput 3. It includes 78,400
different design points.

technology, we consider for this example a 3-input LUT. In this
scenario, the function G requires 2 LUTs to be implemented.
The inexact functions F and H can be also implemented
using 2 LUTs, one for each of them. This implementation also
achieves 75% of masking percentage as the previous. However,
F only uses half of the space available in its corresponding
LUT. Therefore, this free space can be used to increase the
masking factor. For instance, F ′ = x1.x3 +x1.x4 (Figure 3) is
the optimal solution that does not increase the area overhead
in terms of LUTs, but increases the masking percentage of
the logic function G. For this particular case the masking
percentage reaches 87.5%.

Problem: Finding the solutions for the circuits F and
H , which minimize the implementation area overhead factor
and at the same time maximize the masking factor (as a
result maximize the SER reduction) may be difficult and
not accurate, when using the current heuristics for ASICs.
Therefore, another mechanism is required for FPGAs.

V. PROPOSED MECHANISM

Determining the inexact circuits F and H that maximize
the SER reduction, through the examination of all combina-
tions of F and H is neither practical nor scalable. For instance,
Figure 4 describes the search space for the benchmark alu4
output 3. There are around 78,400 different inexact designs
just for this particular output. Synthesizing and mapping each
of these designs for FPGA require more than 3 minutes
of CPU time (note this time does not include the access
to the memory and I/O). In order to faster determine the
optimal inexact circuits F and H , a heuristic is required. The
proposed heuristic is focused on reducing the search space,
in particular to restrict it to the Pareto front that identifies
the optimal designs in terms of area overhead/masking factor.
The proposed heuristic/algorithm receives as inputs the logic
circuit G in the BDD format and the variation ∆. It provides
as outputs the inexact circuits F and H that maximize the
SER reduction (R). Note that the proposed heuristic can be
easily reused to receive as input both a target area overhead or

a masking factor, and provide as outputs the inexact design
that maximizes the masking factor or minimizes the area
overhead, respectively. In this proposed heuristic four steps
can be identified and highlighted. The first step implements
the necessary functions to obtain the main parameters that
characterize the original circuit G. For that, functions provided
by CUDD framework [9] are used to compute the maximum
number of BDD nodes (gNodes), the number of inputs and the
area in terms of LUTs used by the circuit G after being synthe-
sized and mapped using the ABC Logic Synthesis Tool [10].
The second step, instead of synthesizing and mapping all the
possible circuit combinations between F and H , synthesizes
and maps independently both inexact circuits and for the
sequence of nodes [1..gNodes] with an interval variation given
by d∆/100 × gNodese. Smaller ∆s give a better range of
nodes. For the obtained sequence of nodes, the circuits F
and H are computed by applying the short path subsetting
method to the BDD of the original circuit G. F is obtained
by under approximation of G and H by over approximation.
Both inexact circuits are then synthesized and mapped in order
to obtain the area overhead percentage in terms of LUTs. The
third step combines the all obtained designs for F and H in
the previous section. All combinations that return unique area
overhead numbers are stored. For the ones that have the same
area, only the one that maximizes the number of minterms
is stored. At the end of this step, the best inexact designs
for the range area overhead factor (0, 2] are computed. These
designs are then called key designs. Finally, the fourth step
selects among the key designs the one that maximizes the SER
reduction (R). Then the corresponding F and H designs are
returned. Please note that the proposed heuristic/algorithm can
be easily changed to return the inexact circuit that maximizes
the masking factor, according to a given target area overhead
factor or, on the other hand, that minimizes the area overhead,
according to a given target masking factor. For instance, this
feature can be very useful if the user does not have enough
space to implement the optimal solution that maximizes R.
In this case, the user should choose one inexact design that
maximizes the masking factor, according to the available area.

VI. EXPERIMENTS AND RESULTS

This section describes the conducted experiments in order
to better evaluate the proposed heuristic. They were run on
Linux operating system, using a machine consisting of 8-core
Intel(R) Xeon(R) processor running at a constant speed of
2.40 GHz and 8-GB of memory. The proposed heuristic was
implemented in C++ and the CUDD framework was used. The
logic circuits were synthesized and mapped using the ABC
Logic Synthesis Tool [10] for a 6-input LUT. The feasibility of
the proposed heuristic is shown based on the LGSynth93 [11]
combinatorial MCNC benchmarks.

A. Heuristic Evaluation

This subsection evaluates the inexact key designs found by
the proposed heuristic comparing them to the optimal ones
identified by the Pareto front. Please assume the Pareto front
as the optimal solution computed by the exhaustive search
approach for areas overhead factor (0,2], with an interval
variation equal to 0.01. Also for the same sequence of areas,
the heuristic solutions are generated based on the key designs.
Figure 5 presents the Pareto front (optimal points) and the
points generated by the heuristic with ∆ = 1 and ∆ = 10.
Note that in order to improve the readability, the Figure 5
only shows the points for the interval A = (0.75, 1.25). Note
also that the proposed heuristic with ∆ = 1 almost completely
overlaps the Pareto front, highlighting its quality. For all the
sequence points, the difference between the masking factor of
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Fig. 5. Comparison between the Pareto front and the proposed heuristic for
∆ = 1 and ∆ = 10, regarding the interval A = (0.75, 1.25).

TABLE I. HEURISTIC BEHAVIOUR FOR DIFFERENT ∆S (HEURISTIC
APPLIED TO ALU4-OUTPUT 3).

Heuristic Avg. Dif.(%) Max. Dif. T ime (sec.)

∆ = 1 0.36 0.027 0.65
∆ = 2 0.84 0.039 0.37
∆ = 5 2.01 0.061 0.12
∆ = 10 3.39 0.083 0.10

the optimal designs and the designs given by the proposed
heuristic is computed. Table I shows these detailed results
for each variation (∆ = 1, 2, 5 and 10) of the proposed
heuristic. Column Avg. Dif. shows the average of the masking
factor difference between the optimal designs (Pareto front)
and the designs provided by the proposed heuristic, considering
the sequence of areas overhead described before. Column
Max. Dif. shows the maximum measured absolute difference.
Column Time introduces the time required for each heuristic
variation (∆) to compute the key designs. The proposed heuris-
tic with ∆ = 1, differs on average 0.36% than the optimal
Pareto front. Please note that the heuristic only requires 0.65
seconds of CPU time to compute the key designs. Contrarily,
the exhaustive search consumes several minutes to produce the
optimal solutions. Also for the heuristic variation ∆ = 1, the
maximum measured difference on the masking factor is 0.027.
As shown in Figure 5, the proposed heuristic with ∆ = 1
almost completely overlaps the Pareto front. Regarding the
proposed heuristic with ∆ = 10, it performs 3.39% worse
when compared to the optimal Pareto front, but only takes 0.1
seconds to be computed. It is 6.5 times faster than the one with
∆ = 1. The proposed heuristic was also applied to different
benchmarks for a more comprehensive assessment. Table II
shows the results, for the scenario described above. Similarly
to the previous table, column Avg. Dif. shows the average
of the masking factor difference between the optimal design
solutions (Pareto front) and the design solutions provided by
the proposed heuristic with ∆ = 1. Column Max. Dif.
also shows the maximum measured difference. On average the
proposed heuristic with ∆ = 1 performs 0.14% worse than the
exhaustive search, which gives the Pareto front. Note that the
worst difference was measured for seq benchmark which can
generate more then 1.2M inexact circuit combinations.

B. SER Reduction

For a set of benchmarks, Table III compares the SER
reduction (R) achieved by the circuit solution provided by the
heuristic (Heur.) and the optimal one given by the exhaustive
search (E.S.). Column Dif. R shows the SER reduction
difference between both. The last column (Time) shows the
computation time improvement regarding the proposed heuris-
tic when compared to the exhaustive search. Please observe
that in terms of SER reduction (R) the circuit given by the
heuristic only differs 0.52% on average from the optimal one.
Please also note that the proposed heuristic is on average
84.4% faster than the exhaustive approach.

TABLE II. HEURISTIC BEHAVIOUR APPLIED TO DIFFERENT MCNC
BENCHMARKS (∆ = 1).

Benchmark Avg. Dif.(%) Max. Dif.

alu4− o3 0.36 0.027
clip− o0 0.05 0.040
duke2− o5 0.00 0.001
exp4− o63 0.00 0.000
cps− o35 0.00 0.000
pdc− o35 0.01 0.016
seq − o0 0.60 0.060

Average : 0.14 0.020

TABLE III. SER REDUCTION OF THE OPTIMAL DESIGN FOR SEVERAL
MCNC BENCHMARKS.

Benchmark E.S. R(%) Heur. R(%) Dif. R(%) Time(%)

alu4− o3 15.0 13.5 1.5 99.6
clip− o0 14.8 14.1 0.7 79.6
duke2− o5 67.9 67.7 0.2 87.6
apex4− o63 35.9 35.9 0.0 73.3
cps− o35 76.9 76.9 0.0 86.1
pdc− o35 73.1 72.3 0.8 65.2
seq − o0 76.3 75.8 0.5 99.9

Average : - - 0.52 84.4

VII. CONCLUSION

This paper proposes a novel technique to tolerate faults in
SRAM-based FPGAs by using inexact modules in conjunction
with TMR. Experiments were run using MCNC benchmarks
and show that the key designs provided by the heuristic
only differ 0.14% from the Pareto front. Regarding the SER
reduction, the design solution provided by the heuristic only
differs on average 0.52% from the optimal one. Moreover,
the proposed heuristic is on average 84.4% faster than the
exhaustive search mechanism.
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