
Critical Points Based Register-Concurrency
Autotuning for GPUs

Ang Li∗, Shuaiwen Leon Song†, Akash Kumar‡, Eddy Z. Zhang§, Daniel Chavarrı́a-Miranda† and Henk Corporaal∗
∗Eindhoven University of Technology, The Netherlands. Email: {ang.li, h.corporaal}@tue.nl

†Pacific Northwest National Laboratory, USA. Email: {shuaiwen.song, daniel.chavarria}@pnnl.gov
‡Technische Universität Dresden, Center for Advancing Electronics Dresden, Germany. Email: akash.kumar@tu-dresden.de

§The State University of New Jersey, USA. Email: eddy.zhengzhang@cs.rutgers.edu

Abstract—The unprecedented prevalence of GPGPU is largely
attributed to its abundant on-chip register resources, which allow
massively concurrent threads and extremely fast context switch.
However, due to internal memory size constraints, there is a
tradeoff between the per-thread register usage and the overall
thread concurrency. This becomes a design problem in terms of
performance tuning, since the performance “sweet spot” which
can be significantly affected by these two factors is generally
unknown beforehand.

In this paper, we propose an effective autotuning solution to
quickly and efficiently select the optimal number of registers per-
thread for delivering the best GPU performance. Experiments on
three generations of GPUs (Nvidia Fermi, Kepler and Maxwell)
demonstrate that our simple strategy can achieve an average of
10% performance improvement while a max of 50% over the
original version without modifying the user code. Additionally,
to reduce local cache misses due to register spilling and further
improve performance, we explore three optimization schemes (i.e.
bypass L1 for global memory access, enlarge local L1 cache
and spill into shared memory) and discuss their impact on
performance on a Kepler GPU.

I. INTRODUCTION

The extraordinary emergence of general-purpose Graphic
Processing Units (GPGPUs) is well-known for their massive
thread-level-parallelism (TLP). To accommodate such amount
of active threads, GPU has to encapsulate a large register file.
Moreover, to mitigate the negative impact from the memory
wall, GPU adopts the “latency hiding” technique by keeping
the contexts of all the active threads in the register files, which
enables fast switching when stalls are encountered. Although
the GPU register files are quite large compared to those on
CPUs, such utilization can still impose great pressure on
them. As the limited registers are evenly distributed among the
active threads, the performance tradeoff between the per-thread
register usage and the overall thread volume appears: for the
applications that are bounded by the limited register resource,
although more registers per thread indicate superior single-
thread performance without register spills, fewer registers per
thread could increase thread concurrency, which may eventu-
ally result in aggregated performance improvement. Therefore,
finding the optimal per-thread register usage that delivers
the best performance becomes an important issue for GPU
software developers. Efficient register usage management is
also considered as one of the biggest remaining issues of the
current CUDA toolchain [7].

Figure 1 illustrates an example to describe the problem. It
shows the execution time of Fdtd3d with respect to per-thread

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Registers per Thread

12.4

13.3

14.3

15.3

16.2

17.2

18.2

19.1

20.1

21.1

22.0

23.0

24.0

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
)

Fdtd3D on Maxwell

Execution Time

Fig. 1. Profiling for different register number for Fdtd3d on Maxwell GPU.

register usage for a Maxwell GPU1. On the left, the execution
time decreases with a higher register utilization. However, the
curve is interrupted at r = 33 and r = 44 with a sudden and
significant increase. The task is to find the r that corresponds
to the shortest execution time. Although in this example, it is
obvious that ropt = 32, it is impractical to plot such figure for
every application we study, since the register range can be very
large (e.g. 1 to 255 for Maxwell GPUs) and the position of
the optimal point may also be input-dependent. Furthermore,
not all applications show such an ideal curve, as will be seen
later. Therefore, the problem is how to find an effective way
to shrink the search space for ropt and then efficiently locate
it. This paper thus makes the following contributions:
• We study the underlying relationship between register count,

concurrency and performance, based on which we propose
the idea of critical points (Section III).

• We propose an efficient autotuning scheme to find the
optimal register usage per thread. It is tractable, effective,
and general for benefiting all GPU generations (Section III).

• We explore three optimizations to further improve perfor-
mance and reduce local cache conflicts due to register spills
(Section V).

II. BACKGROUND

In this section, we briefly introduce the GPU thread orga-
nization and the local memory access.

A GPU kernel, which is a device function executed on
the GPU hardware, contains thousands or tens of thousands
concurrent threads that are primarily partitioned into mul-
tiple thread blocks (TBs). When a kernel is launched, all

1This paper only focuses on Nvidia GPUs as AMD GPUs do not provide
the compiler option required (i.e. -maxrregcount) to tune the register bound.



the TBs are distributed the streaming multiprocessors (SMs).
It is possible that several TBs are distributed to the same
SM simultaneously, depending on the size of SM on-chip
resources, such as the registers and the scratchpad memory (i.e.
shared memory). These resources are evenly divided among
the concurrent TBs. The threads of a TB are further grouped
into a number of execution vectors, called warps, that perform
the same operations on different data in a lockstep manner.
A warp is the basic unit for instruction issuing, executing,
L1 cache access and so on. The utilization of the warp-slots
is defined as occupancy of an SM, which is proportional to
the thread concurrency that describes the number of active
threads of an SM.

In addition to the register file, a GPU thread has several
types of memory to access, including global (off-chip, the
GPU main memory, L1 and L2 cached), local (off-chip, L1
and L2 cached), shared (on-chip, shared in a TB), texture (on-
chip, read-only and cached) and constant (on-chip, read-only
and cached). The local memory is not essentially a physical
memory but rather an abstraction of the global memory. Its
scope is thread-private, the same as for the register file. It is
generally used for temporal spilling when there are insufficient
registers to hold all the required variables or the arrays that are
declared inside the kernel but the compiler cannot resolve the
indexing. It is also L1- and L2-cached, for both read and write.
Register spilling in local memory may hurt the performance as
it introduces extra instructions and memory traffic, especially
for cache miss (i.e. long access latency to the global memory).

III. METHODOLOGY

In this section, we present our critical points (CP) based
autotuning method. We call it “auto” because the entire
tuning process can be accomplished automatically without user
intervention. All the required information can be extracted
from the output of the CUDA compiler and the profiler. The
method is based on the following key observations:
1) On one hand, a GPU kernel requires at least a number of

registers to be successfully compiled (i.e. the lower bound
of the register usage: rmin). On the other hand, a GPU
kernel needs at most a number of registers so that all the
intermediate data are located in registers (i.e. the upper
bound of the register usage: rmax). Beyond rmax, allocating
more registers is wasteful.

2) For a single GPU thread, more register contributes to
spill reduction and locality exploitation. Therefore, more
registers can lead to better single thread performance.

3) For the massive TLP on GPUs, the concurrency or oc-
cupancy may impact performance significantly. Although
more threads generally lead to better latency hidding and
pipeline utilization thereby a higher performance, it is
not always true under certain scenarios: if a subsystem is
already saturated (e.g. the scalar processors (SPs) are fully
leveraged by exploiting instruction-level-parallelism (ILP)
[11]), adding more threads brings no further performance
gains. Even worse, excessive threads to an overloaded
system may lead to dramatic conflicts and contention,
degrading the overall performance [5].

Obviously, there is a performance tradeoff between register
usage per thread and thread concurrency: can the benefits
from higher thread concurrency (i.e. fewer registers assigned

to each thread) offset the drawbacks from register spills? To
answer this question, we first discuss the relationship between
register usage and performance. We denote r as the number
of registers per thread, and based on observation-(1) we have

rmin ≤ r ≤ rmax (1)

We label this region [rmin, rmax] as the Register Effective
Region (RER). Based on observation-(2), with a larger r, more
spill loads and stores can be avoided, which contributes to a
higher performance. If we use g(r) to denote the performance
function with respect to the per-thread register count, then

Performance = g(r) ∝ r (2)

Note that g(r) is continuously increasing as every one more
register eliminates a fraction of spills until all spills are
eliminated.

Now let us turn to thread concurrency and explore why the
change of r can lead to concurrency drop. Since the number
of registers per TB is fixed, the only factor that can directly
impact concurrency is the maximum number of TBs that
can be dispatched simultaneously on an SM at runtime.
This TB number is limited by the hardware restrictions and
availability of on-chip resources, one of which is just the
amount of registers. Therefore, if we use w to denote the
number of warps per TB, then the number of TBs that can
be dispatched simultaneously on an SM is:

N = min{ dAll TBs
SMs

e, NTBs/SM, b
Nwarps/SM

w
c,

b
Nregs/SM

dNregs/TB

unitreg
e ∗ unitreg

c, b Nsmem/SM

dNsmem/TB
unitsmem

e ∗ unitsmem
c}

(3)

The five terms in the function are number of TBs per kernel,
GPU restricted amount of TBs per SM, GPU restricted amount
of warps per SM, register limitation and shared memory
limitation per SM. The ceiling in the last two items are because
a GPU allocates registers/shared memory to TBs by a unit size,
which is 64/128B for Fermi and 256/256B for both Kepler and
Maxwell. In general, a kernel includes thousands of TBs, so
the first term is very large. NTBs/SM is 8 for Fermi, 16 for
Kepler and 32 for Maxwell. If here we temporarily assume
that the shared memory is not the bottleneck, then the formula
becomes:

N = min{NTB/SM, b
Nwarps/SM

w
c, b

Nregs/SM

d 32∗w∗runitreg
e ∗ unitreg

c}

in which NTB/SM, Nwarps/SM, Nregs/SM and unitreg are constants
while w is predefined by the application. The only variable
left in the equation is the register number (r). If we use
f(concurrency) to denote the performance function with re-
spect to to thread concurrency, then

Performance = f(concurrency) = f(Nthds/TB ∗NTB/SM)

= f(Nthds/TB ∗ b
Nregs/SM

d 32∗w∗runitreg
e ∗ unitreg

c) (4)

Based on observation-(3) that a higher concurrency in general
contributes to a better performance, we have

Performance ∝ 1/r (5)



Kernel code

upper_bound

lower_bound
launch_boundLocate CPs Evaluate CPs

shared-mem

local-mem
-max_reg=255

warp_num

CPs configProfiler

nvcc

nvcc

Profiler

-max_reg=1

dynsmem+stasmem

threadblocksize

smem_usage
Spill on

Spill on Config L1

Fig. 2. Autotuning Framework

When observing Eq.2 and Eq.5, there is a clear conflict.
Note that, unlike g(r), the correlation between f(concurrency)
and r shows only a few discrete steps due to the floor() func-
tion in Eq.4. In fact, with the floor() function, an increment of
r does not necessarily lead to a decrement of b Nregs/SM

d 32∗w∗r
unitreg

e∗unitreg
c.

But once the increment of r triggers a drop of b Nregs/SM

d 32∗w∗r
unitreg

e∗unitreg
c,

the concurrency degrades by a significant factor of Nthds/SM.
We label the last points (i.e. register usage) before such drops
as the critical points (CPs). These significant changes in
concurrency or occupancy may lead to drastic variations in
performance, which forms a series of stages (we label them
concurrency levels). Such a performance curve is the result
of a typical combination of effects from g(r) and f(1/r).

Therefore, the basic idea for the CP-based autotuning is:
In the range of RER, different concurrency levels separate
the performance curve with respect to the register count into
several regions. Within each region, the performance at the
CP is likely the optimal or very close to the optimal (see next
section for details). Since a different concurrency level impacts
performance but not necessarily leads to a better performance,
we need to evaluate all the CPs to locate the global optimal
in the autotuning process.

Our proposed autotuning framework is shown in Fig.2. First,
we need to decide the boundaries of RER. This information
can be extracted from the GPU compiler nvcc when passing the
-maxrregcount=1 and -maxrregcount=max reg per thd (the
values shown in Table I) flags respectively. The compiler will
output the minimum and maximum registers required (i.e. rmin
and rmax). We then profile the kernel to obtain the warp number
and shared memory usage per TB. Together with the hardware
information, we are able to locate the CPs for a specific
application based on Eq.3. After that, the framework measures
the execution time of each CP and reports the optimal point.

IV. EXPERIMENT

In this section, we validate the CP-based autotuning method
on three generations of GPUs: Fermi, Kepler and Maxwell.
The platform information is listed in Table I. We selected
12 representative applications from the Rodinia [1], SDK [9]
and Parboil[10] benchmarks, as listed in Table II. We also
show the number of warps and amount of shared memory
allocated per TB in each application to compute the CPs.
As discussed in Section III, the flags –maxrregcount=1 and
–maxrregcount=255 (63 for Fermi) are passed to the nvcc
compiler to acquire the lower (rmin) and upper bound (rmax)
for the register usage of an application. We also obtain
the default register usage chosen by the compiler as the
“Baseline” for performance comparison. The results for Fermi,
Kepler and Maxwell are shown in Fig.3, 4 and 5 respectively.
“Proposed” is the performance achieved by CP-based autotun-
ing. “Optimal” is the performance improvement upper-bound
given by exhaustive searching within the RER region. We also

show the occupancy change, the register usage points that
have to be searched and the geometric mean for performance
improvement across all applications in the figures. As can
be seen, our autotuning approach achieves 7.9%, 8.8% and
5.5% speedup on average for Fermi, Kepler and Maxwell
GPUs over the baseline, while the optimal results reported
by exhaustive searching are 9%, 10% and 7%, respectively.
However, compared with exhaustive searching, our CP-based
method reduces the search space for ropt by a factor of 15x,
20x and 13x on geometric average, which corresponding to
time reduction from 53s, 337s and 150s to 3.5s, 17s and 11.2s
respectively, when using the dataset in Table II. (Note, the
exhaustive searching here is within the RER region, which
has already reduced the search space substantially. A complete
exhaustive search takes 85s, 1449s and 650s otherwise).

CFD HOT LEU MYO NBO PAR RAY DXT FDT DCT MRG SGM G-M
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

5
4
7 4

2
0 3

4
6 1

4
8 7

4
8 5

3
6 4

3
6 1

4
8 3

4
0 1

2
7 1

4
7 5

4
8

7
.9

%
9

.4
%

Performance/Occupancy on Fermi GPU

Baseline Proposed Optimal Occupancy

Fig. 3. Performance Improvement on Fermi GPU. The black numbers on top
of the application bars indicate the size of search space.

CFD HOT LEU MYO NBO PAR RAY DXT FDT DCT MRG SGM G-M
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

5
5
9 2

2
3 1

4
6 3

2
0
5 7

2
3
7 5

3
8 4

4
0 4

7
5 3

3
5 1

2
2 1

4
7

1
2

1
6
0

8
.8

%
9

.9
%

Performance/Occupancy on Kepler GPU

Baseline Proposed Optimal Occupancy

Fig. 4. Performance Improvement on Kepler GPU.

CFD HOT LEU MYO NBO PAR RAY DXT FDT DCT MRG SGM G-M
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

6
6
0 2

2
1 2

4
8 9

2
1
0 7

2
4
0 4

3
7 4

4
1 8

7
8 3

3
8 2

2
0 5

4
5

1
0

1
4
9

5
.5

%
6

.5
%

Performance/Occupancy on Maxwell GPU

Baseline Proposed Optimal Occupancy

Fig. 5. Performance Improvement on Maxwell GPU.



TABLE I
EXPERIMENT PLATFORMS. DRI/RTM MEANS THE CUDA DRIVER VERSION AND TOOLKIT VERSION. M(TBS/SM) INDICATES THE MAXIMUM

ALLOWABLE NUMBER OF THREAD BLOCKS PER SM. M(THDS/SM) IS THE MAXIMUM NUMBER OF THREADS PER SM. M(REGS/THD) IS THE MAXIMUM
NUMBER OF REGISTERS PER THREAD. (SHARED+L1)/SM IS THE VOLUME OF SHARED MEMORY AND L1 CACHE PER SM.

GPU Arch Dri/Rtm SMxSP M(TBs/SM) M(Thds/SM) Regs/SM M(Regs/Thd) (Shared+L1)/SM
GTX570 Fermi-2.0 6.5/6.5 15x32 8 1536 32K 63 (48+16)KB

Tesla K40 Kepler-3.5 6.0/6.0 15x192 16 2048 64K 255 (48+16)KB
GTX750Ti Maxwell-5.0 6.5/6.5 5x128 32 2048 64K 255 (64+0)KB

TABLE II
EXPERIMENT APPLICATIONS. U/L/D INDICATES THE REGISTER UPPER- AND LOWER-BOUND PER THREAD AS WELL AS THE DEFAULT REGISTER

NUMBER CHOSEN BY THE COMPILER ON A SPECIFIC ARCHITECTURE. FM STANDS FOR FERMI. KP STANDS FOR KEPLER. MX STANDS FOR MAXWELL.
SHARED IS THE CONSUMPTION OF SHARED MEMORY PER SM.

Application Abbr. Kernel Warps Shared U/L/D (FM) U/L/D (KP) U/L/D (MX) Source
cfd CFD cuda compute flux() 8 0 62/16/62 74/16/68 75/16/70 Rodinia[1]

hotspot HOT calculate temp() 8 3072B 35/16/35 38/16/38 36/16/35 Rodinia[1]
leukocyte LEU IMGVF kernel() 10 14586B 61/16/52 61/16/61 63/16/63 Rodinia[1]
myocyte MYO solver 2() 1 0 63/16/63 220/16/149 225/16/133 Rodinia[1]
nbody NBO integrateBodiesIf 8 4096B 63/16/24 252/16/38 255/16/37 SDK[9]

particles PAR collideD() 8 0 51/16/51 52/16/52 52/16/52 SDK[9]
ray-tracing RAY render() 4 0 51/16/50 55/16/49 56/16/56 SDK[9]

dxtc DXT compress() 2 2048B 63/16/63 90/16/89 93/16/90 SDK[9]
fdtd3d FDT FiniteDifferencesKernel() 16 3840B 55/16/45 50/16/40 53/16/45 SDK[9]
dct8x8 DCT CUDAkernel2IDC() 3 3136B 42/16/35 37/16/33 35/16/34 SDK[9]

mri-gridding MRG gridding GPU() 2 1536B 62/16/56 62/16/62 60/16/59 Parboil[10]
sgemm SGM mysgemm() 4 512B 63/16/33 175/16/53 164/16/48 Parboil[10]

One interesting observation is that not every application’s
thread concurrency or occupancy increases after the optimiza-
tion (e.g. NBO and SGM), which indicates that a higher occu-
pancy does not necessarily lead to a better performance. It also
confirms the necessity to evaluate each different concurrency
level (i.e. each CP). Also note that CFD shows very different
behaviors on the three architectures (i.e. CFD shows significant
performance improvement on Kepler, but very little on Fermi
and Maxwell).

To further explore why in certain applications the CP set
cannot capture the optimal (e.g. MYO and MRG in Fig.4) and
why in NBO, the performance of CP is even worse than the
baseline, we plot the execution time with respect to register
number and concurrency level for the 12 applications on Ke-
pler, shown in Fig.6. We also draw the curves for normalized
spilled loads & stores reported by compiler and the cache hit
rate for local access (see Section II) measured by profiler.
Regarding this result, we have the following observations:

(1) Though we only plot the figures in the range of RER
(using the lower- & upper-bound in Table II), we can clearly
observe that the point at which the spilled-load and store dis-
appears (also the point where the local cache hit rate reduces
to zero) is always less than the upper-bound of RER. We call
this point the spill-disappear-point (SDP). Although at this
point, no spill occurs, there is still some rematerialization,
because the compiler is able to reduce the register usage by
recomputing the values of some intermediate variables based
on the alternative registers. Nonetheless, such rematerialization
incurs unnecessary computation overhead. Only beyond the
RER upper-bound, all the intermediate data is stored in the
registers, and there is neither spill nor redundant computation.

(2) The trends that execution time drops with more threads
confirm the Observation-(1). However, not all the applications
are concurrency sensitive, e.g. MYO and SGM. Meanwhile,
some applications such as LEU, DCT and MRG are limited by

other on-chip resources, changing the register usage does not
impact occupancy or concurrency. For example, LEU and DCT
are limited by the shared memory usage. As each TB in LEU
requires 14586B shared memory space (see Table II), 48KB
shared memory can afford up to 3 TBs. With 10 warps per TB,
the occupancy keeps constant at 3 ∗ 10/64 ≈ 0.47. For DCT,
each TB counts 3136B, 48KB thus is theoretically sufficient
for 15 TBs. However, as shared memory is allocated in a unit
of 256B on Kepler (see Eq.3 in Section III), eventually only 14
TBs are initiated per SM, which contributes to an occupancy
of 14 ∗ 2/64 ≈ 0.44. On the other hand, MRG is restricted by
the maximum number of TBs per SM (hardware limitation),
which is 16 for Kepler (see Table I). The occupancy thus stays
at 0.5. From Kepler to Maxwell, as an SM supports more TBs
(from 16 to 32), we can observe that the occupancy changes
as expected and the performance increases for MRG in Fig.5.

(3) The baseline point, or the default register usage number
imposed by the compiler is neither the SDP nor the upper-
bound of RER. It is calculated by an unknown algorithm of the
compiler. Additionally, the number of CPs for each application
is generally around 5, which is much smaller than the RER
range. The optimal point for performance is mostly captured
by our approach for each application. The exceptions are MYO,
MRG and NBO. It can be observed that dramatic performance
oscillation occurs within a concurrency level (especially MRG).
This may due to the variation of register bank conflict degree
from different register allocation strategies adopted by nvcc.

(4) Although in general the normalized spill LD&ST curves
drop with increased number of registers until the SDP, the
curves for local cache hit rates are far more intractable. They
commonly start at lower hit rate because there are many
variables that have to be spilled due to significant shortage of
registers. At the same time, a higher occupancy also implies
more inter-TB conflicts in the L1 cache. As more registers are
allocated and less TBs share the cache, the hit rates increase,



16 21 26 31 36 41 46 51 56 61 66 71
Registers per Thread

156.7

223.7

290.7

357.7

424.7

491.7

558.7

625.7

692.7

759.7

826.7

893.7

960.7

E
xe

cu
ti

on
T

im
e

(u
s)

Cfd on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

32

40

48

64

74

16 18 20 22 24 26 28 30 32 34 36 38
Registers per Thread

0.8
0.9

1.1
1.2
1.3
1.4

1.6
1.7
1.8
1.9

2.1
2.2

E
xe

cu
ti

on
T

im
e

(m
s)

Hotspot on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

32

38

16 20 24 28 32 36 40 44 48 52 56 60
Registers per Thread

14.8
16.8
18.8
20.8
22.8
24.8
26.8
28.8
30.8
32.8
34.8
36.8
38.8

E
xe

cu
ti

on
T

im
e

(m
s)

Leukocyte on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

61

16 36 56 76 96 116 136 156 176 196 216
Registers per Thread

1.01.01.0

1.11.11.11.1

1.21.21.21.2

1.3

E
xe

cu
ti

on
T

im
e

(s
)

Myocyte on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

128
168

220

16 39 62 85 108 131 154 177 200 223 246
Registers per Thread

2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5
20.5

E
xe

cu
ti

on
T

im
e

(m
s)

Nbody on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

32

40

48

64

80

128

252

16 19 22 25 28 31 34 37 40 43 46 49 52
Registers per Thread

155.6

215.6

275.6

335.6

395.6

455.6

515.6

575.6

635.6

695.6

755.6

815.6

875.6

E
xe

cu
ti

on
T

im
e

(m
s)

Particles on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

32

40

48

52

16 19 22 25 28 31 34 37 40 43 46 49 52 55
Registers per Thread

9.9
12.9
15.9
18.9
21.9
24.9
27.9
30.9
33.9
36.9
39.9
42.9
45.9
48.9
51.9
54.9

E
xe

cu
ti

on
T

im
e

(m
s)

Ray on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

32

40

48
55

16 23 30 37 44 51 58 65 72 79 86
Registers per Thread

3.3
4.3
5.3
6.3
7.3
8.3
9.3
10.3
11.3
12.3
13.3
14.3
15.3
16.3
17.3
18.3
19.3
20.3

E
xe

cu
ti

on
T

im
e

(m
s)

Dxtc on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

64
72

80
90

16 19 22 25 28 31 34 37 40 43 46 49
Registers per Thread

6.6
7.6
8.6
9.6
10.6
11.6
12.6
13.6
14.6
15.6
16.6
17.6
18.6

E
xe

cu
ti

on
T

im
e

(m
s)

Fdtd3D on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

32

40

50

16 18 20 22 24 26 28 30 32 34 36
Registers per Thread

15.2
16.2
17.2
18.2
19.2
20.2
21.2
22.2
23.2
24.2
25.2
26.2
27.2

E
xe

cu
ti

on
T

im
e

(u
s)

Dct8X8 on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

37

16 20 24 28 32 36 40 44 48 52 56 60
Registers per Thread

20.5
24.5
28.5
32.5
36.5
40.5
44.5
48.5
52.5
56.5
60.5
64.5
68.5

E
xe

cu
ti

on
T

im
e

(m
s)

Mri-Gridding on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

62

16 31 46 61 76 91 106 121 136 151 166
Registers per Thread

0
3
6
9
12
15
18
21
24
27
30
33
36

E
xe

cu
ti

on
T

im
e

(m
s)

Sgemm on Kepler

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
cc

up
an

cy
/S

pi
lls

/H
it

R
at

e

32

40

48
56

64
72

80
96

128
175

Execution Time Occupancy Critical Points Spill LD&ST Local Hit Rate Baseline Optimal

Fig. 6. Detailed Application Profiling on Kepler GPU. Local hit rate is only for local cache hit rate of L1 not the overall L1 hit rate.

and drop to zero at the SDPs because there is no local memory
access any more. Additionally, some steep fluctuation in NBO
and SGM can be observed. This is because with different
register numbers, the compiler algorithm may occasionally
enforces some 4B to 16B local memory spills, which translate
to a very high hit rates. Thus, the curves oscillate sharply
within certain regions (e.g. register range between 90-110 for
SGM). Also note that the local cache hit rates may suffer from
global memory accesses, as they are sharing the same cache
storage.

V. DISCUSSION

Shown in Figure 6, overall the local cache hit rates for
the applications are not quite high. Possible reasons include
compulsory misses (i.e. first-time spill), capacity misses (i.e.
many registers from multiple active threads need to spill to a
very small cache size of 16KB per SM), and conflict misses

(i.e. shared by multiple TBs and meanwhile shared with the
global accesses). To mitigate or further eliminate the latter
two, we apply the following three optimizations:
• We configure a larger L1 cache (e.g. 32KB or 48KB, instead

of 16KB) upon kernel invocation.
• We apply software-level strategies [4] to spill in the shared

memory instead of the local memory .
• We bypass the L1 cache to avoid possible conflicts from

global memory access by setting “-dlcm=cg”.
The results are shown in Fig.7. As can be seen, a larger
L1 cache size enhances local cache hit rate for CFD, RAY,
DXT and FDT, which improves performance for CFD, RAY
and FDT. The scenario for DXT is interesting, as a 32KB
L1 increases performance but a larger 48KB L1 degrades
performance drastically. This is because, although a 48KB
entirely avoids L1 cache miss, the larger L1 cache capacity
is achieved at the expense of a smaller shared memory (L1



CFD HOT LEU MYO NBO PAR RAY DXT FDT DCT MRG SGM G-M
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

2
.0

6
8

6
4

6
4

6
4

7
4

6
4

3
8

3
2

3
2

3
8

3
8

3
2

6
1

6
1

6
1

6
1

6
1

6
1

1
4

9
1

2
8

1
2
8

1
2
8

2
2

0
1

2
8

3
8

4
8

4
8

8
0

3
2

4
8

5
2

4
8

4
8

4
8

4
8

4
8

4
9

4
8

4
8

4
8

3
2

4
8

8
9

7
2

7
2

9
0

6
4

7
2

4
0

3
2

3
2

3
2

5
0

3
2

3
3

3
7

3
7

3
7

3
7

3
7

6
2

6
2

6
2

6
2

6
2

6
2

5
3

9
7

9
7

9
7

4
8

9
7

8
.8

%
4
.0

%
-5

.5
%

-7
.7

%
8

.9
%

Performance on Kepler GPU

Baseline

16KB-L1

32KB-L1

48KB-L1

Spill smem

Bypass L1

Occupancy

Local hit rate

Fig. 7. Test different L1 cache configurations, the design of spilling on shared memory and bypassing global access at L1 on Kepler GPU. The numbers on
top of the histograms are the obtained register number by each scheme.

cache and shared memory share the same storage in an SM).
The reduced shared memory capacity limits the number of
TBs that can be allocated simultaneously per SM (see Eq.3 in
Section III), which eventually degrades the concurrency and
performance. Besides, spill on shared memory is not shown to
be a good solution in our test, as it always delivers the lowest
performance. Finally, bypassing global access does not impact
local cache hit rate or performance (watch that the time and
local hit rate for “16KB-L1” and “Bypass L1” are the same);
this is because on Kepler, all global memory access bypass L1
by default [8]. However, this is not the case for Fermi. In fact,
we observed performance improvement for every applications
except MYO on Fermi with L1 cache being bypassed for global
memory access.

VI. RELATED WORK

Previous work related to GPU register file mostly focuses
on architectural improvement, seeking to reduce chip area and
energy consumption [2], [12], [3], [6]. Gebhart et. al. [2]
placed a small register cache on top of GPU’s main register
file so that the small register cache can filter a large portion
of the accesses before going to the main register file. In this
way, significant power consumption can be avoided. They
also combined their register cache with a novel two-level
warp scheduler for further energy reduction. Yu et. al. [12]
integrated eDRAM into the SRAM based GPU register file
to reduce energy. Later, Gebhart et. al. [3] combined register
file, L1 cache and scratchpad memory of GPU as a unified
storage space and dynamically tuned the partitioning among
them. Recently, Lee et. al. [6] found that values written by
threads in the same warp show great similarity therefore can
be compressed to reduce power.

The work that most related to ours is proposed by Hayes
and Zhang [4]. Their work also concentrated on the tradeoff
between register usage and concurrency while wrapped the
on-chip scratchpad memory as a supplementary register file.
A metric based on computation/memory interleaving degree
is proposed to predict the best concurrency level at compile-
time. However, their design is concurrency-centric. The cal-
culation of the predicted concurrency (i.e. the metric) requires
complicated parsing and analysis of the binary while some of
the input parameters are architecture-dependent and are very
difficult to measure (e.g. the dispatch interval). Their work also
presumed that local memory access is detrimental and should
be all eliminated. However, migrating the latency sensitive data
from L1&L2-cached local memory to the shared memory with
extra software management overhead may not be beneficial
eventually (see Fig.7 in Section V).

VII. CONCLUSION

In this paper, we proposed an autotuning approach to resolve
the conflict between concurrency and register usage for GPUs.
We discovered that the performance impact from register is
continuous but from concurrency is discrete. The tradeoff
between the two factors forms a special relationship such
that a series of critical points can be precomputed. These
CPs denote the best performance of each concurrency level,
and the global optimum is then selected among them. Our
approach is tractable, effective and general. It leverages the
existing features of the hardware and demonstrates immediate
speedup for all three generations of GPUs over a dozen of real
applications. The improvement is very close to the optimal
one achieved by exhaustive searching. Our method reduces
the search space for the optimal register usage by up to 20x
and enhances the overall GPU performance by up to 1.5x
without changing the user code. More importantly, our tuning
method is fully automatic and can be easily integrated into the
compiler toolchain.

ACKNOWLEDGMENT

This work is supported in part by the German Research
Foundation (DFG) within the Cluster of Excellence Center
for Advancing Electronics Dresden (cfaed).

REFERENCES

[1] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC. IEEE, 2009.

[2] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for man-
aging thread context in throughput processors,” in ISCA. ACM, 2011.

[3] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J.
Dally, “Unifying primary cache, scratch, and register file memories in
a throughput processor,” in MICRO. IEEE, 2012.

[4] A. B. Hayes and E. Z. Zhang, “Unified on-chip memory allocation for
SIMT architecture,” in ICS. ACM, 2014.

[5] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: optimizing thread-level parallelism for GPGPUs,” in PACT. IEEE,
2013.

[6] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram,
“Warped-compression: enabling power efficient GPUs through register
compression,” in ISCA. ACM, 2015.

[7] M. Murphy, “NVIDIAs Experience with Open64,” in Open64 Workshop
at CGO, 2008.

[8] C. Nvidia, “CUDA Programming Guide,” 2015.
[9] C. Nvidia, “SDK Code Samples,” 2015.

[10] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, 2012.

[11] V. Volkov, “Better performance at lower occupancy,” in GTC, 2010.
[12] W.-K. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and G. E. Suh,

“SRAM-DRAM hybrid memory with applications to efficient register
files in fine-grained multi-threading,” in ISCA. ACM, 2011.


