Adaptive and Transparent Cache Bypassing for GPUs

Ang Li*t, Gert-Jan van den Braak”, Akash Kumar*, and Henk Corporaal

“Eindhoven University of Technology, Eindhoven, The Netherlands

*National University of Singapore, Singapore
#Technische Universitat Dresden, Dresden, Germany
{ang.li, g.j.w.v.d.braak}@tue.nl, akash.kumar@tu-dresden.de, h.corporaal@tue.nl

ABSTRACT

In the last decade, GPUs have emerged to be widely adopted
for general-purpose applications. To capture on-chip locality
for these applications, modern GPUs have integrated multi-
level cache hierarchy, in an attempt to reduce the amount
and latency of the massive and sometimes irregular mem-
ory accesses. However, inferior performance is frequently
attained due to serious congestion in the caches results from
the huge amount of concurrent threads. In this paper, we
propose a novel compile-time framework for adaptive and
transparent cache bypassing on GPUs. It uses a simple yet
effective approach to control the bypass degree to match the
size of applications’ runtime footprints. We validate the de-
sign on seven GPU platforms that cover all existing GPU
generations using 16 applications from widely used GPU
benchmarks. Experiments show that our design can signifi-
cantly mitigate the negative impact due to small cache sizes
and improve the overall performance. We analyze the perfor-
mance across different platforms and applications. We also
propose some optimization guidelines on how to efficiently
use the GPU caches.

CCS Concepts

eComputer systems organization — Multiple instruc-
tion, multiple data; eSoftware and its engineering —
Source code generation;

Keywords
Cache bypassing; GPUs; Thread throttling

1. INTRODUCTION

Graphics Processing Units (GPUs), the coprocessor orig-
inally designed predominantly for graphic rendering, nowa-
days has been proven unexpectedly successful in the domain
of general-purpose applications (GPGPU) [1, 2, 3]. A cru-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
© 2015 ACM. ISBN 978-1-4503-3723-6/15/11...$15.00
DOL: http://dx.doi.org/10.1145/2807591.2807606

Table 1: Threads vs Caches.
L1 Cache | Thd/Core | Cache/Thd

Processor

AMD Warsaw 16 KB 1 16 KB
Intel Haswell 32 KB 2 16 KB
Intel Xeon-Phi 32 KB 4 8 KB
Oracle M5 16 KB 8 2 KB
Nvidia Fermi 48 KB 1536 32 B
Nvidia Kepler 48 KB 2048 24 B
Nvidia Mazwell 24 KB 2048 16 B
AMD Radeon-7 16 KB 2560 6.4 B

cial issue that confines the peak performance delivery, how-
ever, is the vast and sometimes irregular memory accesses
from massively concurrent threads. This enforces consider-
able pressure on the bandwidth and efficiency of the memory
system [4]. To reduce memory traffic and latency, modern
GPUs have widely adopted hardware-managed cache hierar-
chies [5, 6]. However, traditional cache management strate-
gies are mostly designed for CPUs and sequential programs;
replicating them directly on GPUs may not deliver expected
performance, as GPUSs’ relatively smaller caches can be eas-
ily congested by thousands of threads, causing serious con-
tention and thrashing. Table 1 lists the L1 cache! capacity,
thread volume and per-thread L1 cache share for the state-
of-the-art multithreaded processors. As can be seen, the
per-thread cache share for GPUs is much smaller than for
CPUs, which indicates that the useful data fetched by one
thread is very likely to be evicted by other threads before
actual (re-)usage. Such thrashing condition destroys locality
and impairs performance. Moreover, the excessive incoming
memory requests, particularly in an accessing burst period
(e.g. the starting and ending phases of a kernel) if concern-
ing the SIMT execution model [7] (see Section 2.1), can lead
to significant delay when threads are queuing for the lim-
ited resources in caches, e.g. miss buffers, MSHR entries, a
certain cache set, etc. [8, 9].

A naive response is to extend the cache capacity. How-
ever, it sacrifices the valuable die area that may otherwise
be dedicated for more computation facilities. Therefore, in-
stead of prototyping “big-cached” GPUs, designers are more
prone to throttle the thread volume in order to reach a good
balance between multithreading degree and cache efficiency
[10, 11].

Traditional thread throttling mechanisms either advise

'In this paper, L1 cache refers to L1 data cache only.

users to refine their code using an ideal multithreading de-
gree predicted from parsing the source code [12, 13], or sug-
gest hardware modifications in the thread scheduler to limit
active thread count, so as to match access footprints with
the cache capacity [11, 14, 15]. However, the thread number
from the user part is often determined by the underlying
algorithm; altering it is not straightforward and may lead to
the reformation of the algorithm, which demands tremen-
dous user efforts. On the other hand, restricting threads
according to cache capacity in the scheduler may diminish
the utilization of the computation units and off-chip memory
bandwidth [16]. Besides, the smart scheduler often requires
either a brilliant compile-time analyzer or a powerful run-
time detector. Further, the orchestrated hardware modifi-
cations can only be implemented in future products; it can-
not benefit existing platforms anyway. Both of the above
approaches are costly, from either application or hardware
perspectives.

Thus the challenge is, can we design a throttling mecha-
nism that is transparent to the users and the hardware, but
is still adaptive and efficient? In this paper, we give a so-
lution: during compilation, we can add a threshold so that
only a limited number of threads can access the cache.

This paper makes the following contributions:

e We propose a novel and simple compile-time frame-
work to do adaptive and transparent cache bypass-
ing for global memory read in all three types of GPU
caches: L1, L2 and read-only caches (Section 4.2).

e We propose a static and a dynamic approach to acquire
the ideal bypass threshold (Section 4.4).

e We evaluate the bypassing framework on seven GPU
platforms that covers all GPU generations with gen-
eral caches inside: Fermi, Kepler and Mazwell with
compute capability 2.0 to 5.2 (Section 5).

e We propose two software methods (Section 6.1) and
investigate a hardware implementation (Section 6.2)
to reduce the overhead of cache bypassing.

e Finally, we propose several optimization guidelines on
the utilization of GPU caches (Section 5.3).

2. BACKGROUND

In this section, we first briefly introduce the execution
model of GPUs and explain why the granularity for the pro-
posed bypassing framework should be a warp. We then de-
scribe the three different datapaths for global memory read
operations which are the main target of this paper.

2.1 GPU Execution Model

Evolved from SIMD, the execution model of GPUs is named
single-instruction-multiple-threads or SIMT [7, 17]. A ker-
nel, which is a function that runs in the GPU part, includes
thousands of threads that are primarily grouped into mul-
tiple thread blocks (TBs, also known as cooperative thread
arrays (CTAs)). When a kernel launches, its TBs are dis-

patched to several streaming multiprocessors (SMs)?. Threads

inside a TB are further organized as a number of execution
groups that perform the same operations on different data in

2 Although we focus on Nvidia GPUs and use CUDA termi-
nology in the paper, the concepts also apply to AMD GPUs.

Fermi SM Kepler SMX Maxwell SMM

L1 Cache

l L1 Cache l lReadOnIy Data Cachel

ReadOnly Data Cache

Type-1 Type-2

(Interconnection Network]
T TType-3
[Shared L2 Cache]

f |

(Global Memory)

Figure 1: Global Memory Read Datapaths

a lockstep manner. Such execution groups are called warps.
In an SM, a warp is the basic unit in terms of scheduling, exe-
cuting and accessing memory. If threads in a warp diverge at
a point (e.g. upon if-else), all the branches will be executed
alternatively and sequentially, with threads not belonging to
the present branch being masked off, until divergent threads
consolidate at a convergent point and continue the lockstep
execution. If a warp is obstructed by a long latency opera-
tion, an off-chip global memory read for example, the warp
scheduler will switch-in another ready warp instantly with
no cost [17]. How to establish an orchestrated scheduling for
good overlapping, especially considering the positive/nega-
tive impact on the memory system, recently becomes a hot
research topic [14, 15, 18, 19].

2.2 GPU Memory Access Datapath

As shown in Figure 1, the GPU memory system con-
tains registers, L1 cache, read-only data cache (via texture
pipeline), interconnection network, L2 cache and off-chip
global memory. Registers are private to threads. The L1
and read-only caches are shared by all resident TBs in an
SM. SMs are connected to a unified L2 cache by an intercon-
nection network. The L2 cache is generally partitioned into
several banks, each of them being a buffer for a particular
GDDR memory channel.

As GPUs have thousands of concurrent threads, to con-
serve the limited memory bandwidth and improve efficiency,
simultaneous memory requests from threads in the same
warp are usually combined as a group request for a cache-
line sized chunk before accessing L1 cache, provided there
is spatial locality across the warp. Such coalesced memory
accessing pattern is often viewed as the primary step to-
wards harvesting the performance of GPUs [20]. The L1
cache shares the same on-chip storage with the shared mem-
ory of an SM. Their relative sizes are reconfigurable (16/48
or 48/16 KB in Fermi and 16/48, 32/32 or 48/16 KB in
Kepler). The L1 cache line is 128B. It caches both global
memory read and local memory access (read and write) and
is non-coherent. The local memory is generally utilized for
register spilling, function calls and automatic variables [17].
Comparatively, the L2 cache is much larger with, however, a
smaller cache line size of 32B. The L2 cache serves all types
of memory accesses (i.e. constant access, texture access, etc)
and is coherent with CPU memory.

Since the majority of memory accesses are from/to global

WV Cache Insensitive (Cl)
4@ Moderate Cache Sensitive (MCS)

Cache Peak * Highly Cache Sensitive (HCS)

Memory Throughput Bound

Memory System Throughput

Cache Valley

Thread Volume

é
i

é
| T

Figure 2: Plots for three types of GPU applications
using the valley model.

memory, the machine performance is much more sensitive to
memory load than store (because load is often in the critical
path as computation has dependence on the loaded data
which is not the case for store). Therefore, in this paper
we focus on global memory read operations only. Regarding
such operations, from Fermi to Kepler to Maxwell, there are
three different datapaths with cache involved (see Figure 1):

e L1 datapath (Type-1 in Figure 1): from intercon-
nection network to register files via L1 cache in both
Fermi and Kepler® GPUs.

e Read-only datapath (Type-2): from interconnec-
tion network to register files via read-only cache in
Kepler* and Maxwell GPUs.

e L2 datapath (Type-3): from global memory (GDDR)
to interconnection network via L2 cache in Fermi, Ke-
pler and Maxwell GPUs.

Accordingly, there are three possible approaches for cache
bypassing during global memory read: L1 cache bypassing,
read-only cache bypassing and L2 cache bypassing.

3. VALLEY MODEL

In this section, we use a visual analytic model to intu-
itively describe why cache bypassing can be effective for im-
proving GPU performance.

We first characterize all GPU applications into three cate-

gories: cache insensitive (CI), moderate cache sensitive (MCS)

and highly cache sensitive (HCS) [14, 22]. In [23], Guz
et. al. proposed a visual analytic model to address the
interaction between thread volume and shared cache for a
multithreaded-manycore (MT-MC) machine. We use a re-
fined version of their model (labeled as valley model) to show
the variation of memory hierarchy throughput with respect
to the thread volume accessing the memory. Figure 2 illus-
trates the general curves for the three application categories
based on the valley model:

e Cache insensitive (CI) applications (blue curve)
exhibit little data locality for global memory access.
As thread volume expands, a higher utilization of the
memory bandwidth is expected because the memory

latency is increasingly hidden by context-switching among

30nly a fraction of Kepler GPUs support the L1 cache mode
such as Tesla K40, K80, etc. [21].

40nly Kepler GPUs with compute capability larger or equal
to 3.5 have the read-only cache.

Cache Peak

Memory Plateau

Thread Volume

| Memory System Throughput

n

Figure 3: Climbing the cache peak from the front
face via prefetching and from the back face via by-
passing.

the extra threads. The memory hierarchy throughput
curve increases monotonically with thread count until
it approaches the bandwidth bound (denoted as mem-
ory plateau in Figure 3).

e Moderate cache sensitive (MCS) applications (green
curve) contain moderate data locality. As thread vol-
ume increases, more cache storage is leveraged. Mean-
while, the cache hit rate also goes up. However, when

the aggregated working set exceeds cache capacity, thrash-

ing occurs, which leads to a throughput degradation.
The performance rising and dropping forms a peak
(denoted as cache peak). Since the per-thread cache
share for GPUs is much smaller than CPUs (see Ta-
ble 1), the GPU cache peak is more to the left in the
figure, implying that it is more easily congested. With
further increased threads, the cache effect becomes ob-
scure and throughput remains consistent on the mem-
ory plateau. The thread volume that shows the best
cache performance is the ideal thread volume, labeled
as .

e Highly cache sensitive (HCS) applications (red curve)

the cache is even more crucial for performance. Due to
ample data locality, the cache hit rate function demon-
strates a super-linear behavior with increased thread
count. However, beyond the cache peak, the effect of
cache thrashing is also more prominent than MCS ap-
plications. This explains why beyond the cache peak,
a performance valley exists (denoted as cache valley).

We use the MCS curve as a general case (the shape is con-
firmed by [14] and validated in Section 4.3) to describe why
cache bypassing can benefit performance for cache sensitive
applications (MCS+HCS). As shown in Figure 3, in order
to attain the best performance, the thread volume (n) has
to be pushed towards the ideal thread volume (7). We label
this tuning process as climbing the cache peak. As dis-
cussed, tuning thread volume is difficult from the user part
and hardware part. To develop a transparent design that
operates at compile time, there are two strategies:

e (Cache Prefetching: If the thread-level-parallelism is
insufficient to fully exploit the memory hierarchy, we
can add extra memory prefetching requests to saturate
the cache, which corresponds to climbing cache peak
from the front face (Figure 3).

e (Cache Bypassing: If there are too many memory re-
quests that congest the cache, some of them can be
bypassed from the cache, which corresponds to climb-
ing cache peak from the back face (Figure 3).

In this paper, we focus on cache bypassing. One can refer
to [24, 25] and other references for GPU cache prefetching.

4. CACHE BYPASSING

The proposed adaptive bypassing designs are presented in
this section: we first describe the cache operators provided
by the hardware. We then propose the horizontal bypassing
design and compare it with the conventional vertical design.
After that, we provide a case study. Finally, we show how to
acquire the ideal bypass degree via a static and a dynamic
approach.

4.1 Cache Operators

Nvidia PTX ISA [26] introduces per-access cache opera-
tors for global memory read:

1d.global{.cop}{.nc} %reg, [addrl];

“ld.global” stands for global memory read. “reg” is the tar-
get register. “[addr]” is the source memory address. “.cop”

is the cache operator which has different configurations:

e .ca: cache at both L1 (if available) and L2 with default
LRU replacement policy.

e .cg: bypass L1 and cache at L2 with default LRU re-
placement policy.

e .cs: streaming cache at both L1 (if available) and L2.
It assumes that the fetched data will be accessed only
once so that evict-first replacement policy is adopted.
This option is chosen to prevent the streaming data
from polluting the useful cache lines.

e .va: cache as volatile. For global memory read, it is
the same as .cs.

In addition, “.nc” has two options:
e Without .nc: normal memory load.
e With .nc: load from L2 to register via read-only cache.

Therefore, for a specific global memory read access, we can
set up the following combinations for cache bypassing corre-
sponding to Type-1,2,3 global memory read datapaths shown
in Figure 1:

e For L1 cached access, it is ld.global.ca; for L1 bypassed
access, it is Id.global.cg.

e For read-only cached access, it is ld.global.nc; for read-
only bypassed access, it is ld.global. cg.

e For L2 cached access, it is ld.global.cg; for L2 bypassed
access, since there is no particular L2 bypassing opera-
tor offered while the .cs option that adopts eviction-first
policy reduces the impact on the original cache content,
due to recent data accesses, to the smallest extent, we
use ld.global.cs as an “imperfect substitution” for L2 by-
passing if there is no L1 cache. Even with L1 available,
streaming-style load at both L1 and L2 is the type of load
that is the closest to L2 bypassing.

// ============ Bypass Header ============
mov.u32 %r0, %tid.x; //Thread index
shr.u32 %r0, %r0, 5; //Warp index

%p0, %r0, pi; //Set Threshold

// ============== L1 Cache ==============
@%p0 1ld.global.ca.s32 %r9, [%rd6l; //Cache
@'!'%p0 1ld.global.cg.s32 %r9, [%rd6l; //Bypass

// =========== Read-only Cache ===========
@%p0 1ld.global.nc.s32 %r9, [%rd6]; //Cache
@!%p0 1ld.global.cg.s32 %r9, [%rd6l; //Bypass

)] ============== L2 Cache ==============
@%p0 1ld.global.cg.s32 %r9, [%rd6]l; //Cache
@!'%p0 1d.global.cs.s32 %r9, [%rd6]l; //Bypass

Listing 1: Adaptive cache bypassing

4.2 Horizontal Cache Bypassing

With the three configurations as a preamble, we can set
up the horizontal cache bypassing framework. We define a
bypassing threshold: then for warps with indez less than
the threshold, they perform cached read; for warps with index
larger or equal to the threshold, they do cache bypassing.

The design is shown in Listing 1. We first use the thread
index to locate the warp it belongs to (by dividing index with
the warp size 32). Here, it should be noted that the PTX
predefined identifier %warpid [26] cannot be leveraged be-
cause it returns the physical warp-slot index, not the one de-
fined in the user-program context. Since the physical warp-
slot is dynamically bound to the warps, using it may destroy
intra-warp locality, which is the major resource for potential
data-reuse in HCS applications [14]. Note, it is also possible
to embed PTX into the CUDA program using intrinsic func-
tions. However, working at PTX level is easier for parsing
and is transparent to the users.

Depending on whether the warp index is less than the by-
passing threshold m, a predicate register p0 is configured.
Then all the global loads in the PTX program are converted
to conditional accesses: if p0 is true, cache; otherwise, by-
pass. Listing 1 shows the conditional statements for the
three types of GPU caches. We use warp rather than thread
here as the granularity for conditional bypassing to avoid
the expensive warp divergence overhead (see Section 3.1)
and conserve coalesced accessing patterns (see Section 3.2).

Such a design is quite clear yet efficient: overall, only a
1-bit predicate register is required per thread as the space
cost. The general register used for calculating warp index
is only required inside the bypassing header block (see List-
ing 1). Since the header block is always placed at the begin-
ning of a kernel, this register can be recycled immediately
after usage. Regarding the time cost, except one shift oper-
ation and one predicate register setting, the major overhead
is the instruction issuing delay for the one additional load
(two load instructions are issued, but only one is executed).
Although such overhead becomes noticeable (see Section 4.3)
when there are large amounts of memory accesses, it could
be reduced by merging them together since the decision for
bypassing or not is constant throughout the warps’ lifetime.
We discuss how to reduce this overhead in Section 6.

There are three reasons for cache bypassing to be ben-
eficial to performance: first, it mitigates cache congestion

All Warps

EWarE 0
Warp 1
———
EWarp 2

.

.

.

—>| op0 bypass; op0;| [op0;] [op0;
—>| opl cache; o|opPL;| o]opL;]a]opl;
—>| op2 cache; Slop2;] S[op2;| &fop2:
—> op3 bypass; Slop3;|9op3;|&]op3;| - .-
—>| op4 cache; <|op4;| <|op4;|Z |op4;
—.) op5 bypass; op5;| [op5;] [op5;
Vertical Design Horizontal Design

(Bypass based on Operations) (Bypass based on Warp Index)
Figure 4: Bypass design approaches: vertical vs.
horizontal.

so that the thread volume can match the cache capacity. In
this way, the warps to be cached do not have to worry about
their useful data being evicted before usage. Since the cache
space per warp is sufficient to cover the accessing footprints,
inner-thread and inner-warp locality are preserved and cap-
tured. Second, while the remaining warps bypass the cache,
they do not need to wait for the shared resource in the cache
(e.g. MSHR entry, an associative set entry, etc.) to be avail-
able before entering the memory pipeline. Last but not the
least, the parallelism for the computation system is not sac-
rificed as we maintain the number of dispatched threads in
the machine.

We would like to compare our proposed bypass design
(marked as horizontal approach) with the existing cache op-
erator based schemes (such as [10, 27], denoted as vertical
approach):

e The vertical approach follows the conventional CPU’s

design paradigm that operates within a single thread scope.

As shown in Figure 4, all threads/warps execute the same
instruction stream while inside the stream, for each global
memory read, one has to decide whether to bypass or not.
The design spectrum is along the vertical instruction di-
rection. Since every read instruction fetches different data,
if there are m read, the design complexity is O(2™), for
which m can be very large. Such a broad design space is
quite difficult to traverse. Moreover, as all threads follow
the same execution path, they tend to access the cache
at the same time, which is more likely to congest the
cache. However, this vertical design does not incur any
extra time/space overhead at runtime. If assisted by a
smart scheduler, it can distinguish and abolish data with
little locality thus avoiding detrimental cache pollution.

e The horizontal approach on the other hand focuses
on the most prominent characteristic of GPUs — multi-
threading. As shown in Figure 4, for each different warp,
one has to decide if it belongs to the bypass group or
cached group. However, as soon as the decision is made,
all the global memory read in that warp follow. The de-
sign spectrum is along the horizontal warp direction. As
warps in a TB are identical, the design complexity for n
warps is O(n), where n is less than or equal to 32. (This
is true for all existing Nvidia GPUs [17]). In fact, for all
applications we tested in Table 3 and all benchmarks in
Rodinia [28], n < 16. Still, the memory requests may
come in a burst, but bypassing enforces the number of

warps that access the cache, which significantly mitigates
the pressure on the cache. The drawbacks, however, are
the small time and space cost.

There is no clear conclusion on which approach is better.
They are orthogonal to each other: one focuses on code
property and one focuses on concurrency. The horizontal
design sees the kernel code as a blackbox, therefore, cannot
distinguish those loads with little reuse. Caching such loads
can be detrimental even with horizontal bypassing adopted.
So a more attractive approach is a hybrid design: first by-
pass loads with little locality via vertical approach; then
apply horizontal bypassing on the remaining loads if cache
thrashing remains. We set this as a future work.

4.3 BFS Case Study

To make a clear explanation about how cache bypassing
can benefit performance, a detailed case study is provided.
We focus on Breadth-First-Search (BFS) in Table 3. The
testing platform is Fermi (Platform-1 in Table 2). To avoid
possible interference due to insufficient data size, we use
the largest dataset (graph-1MW_6.tzt) in the benchmark.
Except inserting the bypassing header and converting global
memory read in the PTX routine (as in Listing 1), we do not
make any other modifications to the kernel code or kernel
configurations (i.e. threadgrid, threadblock, shared memory
allocation, etc.). We vary the threshold value from 0 to
the number of warps defined in the application (16 in this
example). Also, the results for bypass-all (denoted as bpa)
and cache-all (denoted as cha) are shown for reference. All
result figures are the average value for 5 execution runs.

Figures 5, 6 and 7 illustrate the kernel execution time with
respect to the increased bypassing threshold on L1, L2 and
L1-L2 together with 16KB L1. Figures 8, 9 and 10 show the
time with 48KB L1. There are two L2 bypassing results with
different L1 configurations. The reason is that the L2 by-
passing does not actually bypass L2 but accesses the L1 and
L2 in a streaming fashion on Fermi (see Section 4.1). That’s
why the L1 configuration affects 1.2 bypassing performance.
Besides, Figures 7 and 10 show the L1-L2 combining bypass
effects. Comparing the six figures, we have the following
observations:

First, the shapes of the curves confirm the valley model
described in Section 3.1. As can be seen, m marks the po-
sition of the cache peak. In Figure 5, # = 3 indicates
that the footprint for one warp is slightly more than 5KB
(16KB/3) which is confirmed by m = 9 (48KB/9) in Figure 8.
Meanwhile, the cache valley is quite obvious in Figure 5,
as the performance degrades significantly beyond the cache
peak, to a degree that is even much worse than no caching
at all. A larger L1 alleviates the valley effect (from Figure 5
to Figure 8), but still, no clear gain is attained (bpa and cha
are similar in Figure 8). As a comparison, for both cases
bypassing filters out the excessive requests which leads to a
more efficient utilization of the L1 cache.

Second, regarding L2 (Figures 6 and 9), cha performing
better than bpa implies that the valley effect mitigates in L2.
Also, the fact that the bypassing benefit is larger for L2 than
L1 implies that the overall machine performance is more
sensitive to L2 cache than L1. However, it should be noted
that the best bypassing performance is always attained on
L1 cache (compared with Figures 5 and 8). This means
bypassing on L2 only is not sufficient.

Third, we also evaluate bypassing on both L1 and L2 at

11_16 for bfs on Fermi

12_16 for bfs on Fermi

11_16_12 for bfs on Fermi

1110-

1040-

©
N
I=)

©
o
=3

830

760

1110 1110t
1040 1040}
g 970 ¥ o70f
o Q
E 900 E 900}
F F
S 830 S 830-
B b=
2 2
g 760) g 760t
“ 600 T “ 690
620t 620
550 550

GO > 23 A5 61 % 004342 dyh 15100

Figure 5: BFS cache bypassing on

> GPO >3 A5 61 % 0 0NAIIAN50 @
Figure 6: BFS cache bypassing on

12_48 for bfs on Fermi

Execution Time (us)

690+

620+

PO ¥ 22 55 61 2 0O\ R90y (o

Figure 7: BFS cache bypassing on
16KB L1 and L2 simultaneously.

11_48_12 for bfs on Fermi

1110

1040

Execution Time (us)

s

16KB L1. L2 with 16KB L1.
11_48 for bfs on Fermi
1110| 1110
1040 1040
g 970 E 970
e [
€ 900 £ 900
F F
§ 830 5 8301
s -
3 =
g 760 g 7600
X X
w w
690 690
™
620 i
550 550

GO > 22 A5 61 % 004342 dyh 1500

Figure 8: BFS cache bypassing on
48KB L1.

the same time (Figure 7 and 10). This approach is equivalent
as if cache, then cache at both L1 and L2; otherwise, bypass
them all. Note, unless using additional thresholds for L.1 and
L2 respectively, this is the only combining approach. As can
be seen, the performance is worse than bypassing on L1 and
L2 alone, which means the bypassing benefit on L1 and
L2 are not cumulative.

Finally, about the execution overhead for bypassing. Re-
call that the decision boundary for caching or bypassing is
“less than”, the threshold value equals to zero thus has the
same context meaning as bpa, but additionally contains the
space and time overhead of the bypassing framework. There-
fore, the small discrepancies between bpa and m = 0, cha and
m = 16 in the figures are such overhead. However, it should
be noted that in Figure 8, the overhead appears to be “neg-
ative” (m = 0 is less than bpa), this is because in the added
bypassing operations (and bypassing head) may alter the
original warp scheduling decision at runtime, which leads to
such “rare” effect.

4.4 Acquire Ideal Bypassing Threshold

There is one question left: how to acquire the ideal thresh-
old w ¢ In this paper, we propose a static and a dynamic
approach.

4.4.1 Static Approach

The static approach is straightforward: just erhaustively
assess all the selective values for the threshold. Here, it high-
lights the advantages of horizontal bypassing over the ver-
tical one: we only need to test 32 times at most. In fact,

G0 323 K5 61 ® 00434234k 5401] o

Figure 9: BFS cache bypassing on
L2 with 48KB L1.

s

ﬂmimﬁﬂfﬂ
L

R A N I RN P P SN S Y

Figure 10: BFS cache bypassing on
48KB L1 and L2 simultaneously.

to reach acceptable SM occupancy, most applications have
less than 16 warps in their thread block configurations. As
discussed, this is true for all the applications in Rodinia and
the ones we tested in Table 3. As a comparison, with only
10 loads in the kernel, a vertical scheme would have 1024
different configurations (see Section 4.2).

The advantage of the static approach is that it always re-
turns the optimal threshold for the current dataset. Mean-
while, as GPUs normally run fast, executing a kernel 16
times is a not significant overhead. This makes the static
approach a good option for program auto-tuning. The draw-
back, however, is that the attained threshold may correlate
with the testing dataset. To overcome this “over-fitting”
problem, people could use a more representative dataset or
profile with multiple datasets to confirm the trend (see Sec-
tion 5.2 and the supplementary file).

4.4.2 Dynamic Approach

The dynamic approach is a runtime voting method. As
shown in Figure 11, we assume that there are 1024 TBs in
total for the kernel and each TB has six warps based on the
application logic. The kernel is then amended to generate
the sampling procedure in three steps: first, seven TBs (in-
stead of 1024) are initiated with consecutive bypass values,
from 2z = 0 to = 6. Then, for each TB, a thread (e.g.
tid=0) is enforced to measure the execution time of the en-
tire TB with the associated threshold level. The timing
result is submitted atomically to a global-scope bypassing
threshold 7. Finally, if the eventual value of 7 equals to zero
or six, the runtime manager discards the conditional state-

Normal Kernel:

Threadblocksize=192 (6 warps)
Gridsize = 1024 thread blocks

Sampling Procedure:

| Threadblocksize=192 (6 warps)

Gridsize = 6+1 blocks

if tid = 0: t0 = time();

execute with bypass degree x;
sync thread block;

if tid = 0: t1 = time();

update t(x)=t1-t0 to m;

m= aOr =QQ=iE‘(t(X))

Figure 11: Sampling and voting for optimal bypass-
ing threshold =.

ment and uses bpa or cha instead. Again, with maz(w) < 32,
we can assess all selective options with a few sampling TBs.
The sampling procedure can be integrated into the runtime
library to avoid user involvement.

This approach is practical and easy to implement. How-
ever, it has its drawbacks: first, it works only for L1 cache
bypassing. Second, it cannot handle inter-TB unbalancing
(i.e. irregular applications may have different workload for
different TBs). Third and most importantly, during the
sampling phase only one TB is allocated per SM, so this
TB essentially occupies the entire L1 cache. But in a real
execution, this is not the case; generally multiple TBs are
sharing the L1 cache simultaneously. Therefore, the sampled
threshold may not be accurate. Regarding this problem, as
we cannot alter the TB scheduling policy via software ap-
proaches, a possible solution would be (Note, this is moti-
vated by the latest SM-Centric programming [29]): allocate
sufficient TBs to saturate all SMs. Instead of profiling dif-
ferent m with different TBs (as in Figure 11), we now profile
in different SMs: before setting the timer, the pilot thread
first acquires the sm_id of the resident SM from the spe-
cial register %smid. Then, with different sm_id, a different
7 is assessed. In this way, the sampling phase simulates the
actual execution more accurately.

S. EVALUATION

In this section, we validate the proposed bypassing frame-
work. In order to evaluate the general effectiveness of the
framework, we use seven GPU platforms that covers ALL
existing Nvidia GPU generations with general cache inte-
grated, say from compute capability (CC) 2.0 to 5.2°, as
shown in Table 2. We take 16 cache sensitive (HCS+MCS)
applications from the Rodinia [28], Parboil [30], Mars [31]
and Polybench [32] benchmarks. Since all the applications
in the Mars benchmark share the common Map-Reduce ker-
nel library, we only use one application (SSC). Besides, the
Mars applications cannot compile properly on other plat-
forms, so we only show the results of SSC for Fermi with
CC-2.0. We use Normalized IPC as the performance met-
ric since cache hit rate does not necessarily lead to better
overall performance for GPUs [14, 33]. The normalized IPC
here is simply the reciprocal of the execution time; we do not
count the added bypass instructions when calculating IPC.
Again, except inserting the bypassing header and converting
global memory read in the PTX routine (as in Listing 1),
we do not make other modifications to the kernel code or

5C(C-3.2 and 5.3 are for embedded systems only.

6.80
6.80

3.00

B bpa
2.75{|{EE cha
3 bypass
3 opt

2.50

o
3

Normalized IPC
[o R .]
S

o
8
1
1
il
1
—
1
—
1
1

A Mol
I 1

e
S
&

b4
o
-3

o
N
]

0.00

BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK SSC G-M

Figure 12: 16KB L1 cache bypassing on Fermi GPU.

390 (gl bpa

275/ | cha

2.50 3 bypass

[opt

2.2!
g 200
T 1. =g -
o ul
] -
T B .
£ B m.n f
2 1.00{ m

0.75]

0.50

0.25

©%°—BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK

Figure 13: 48KB L1 cache bypassing on Fermi GPU.

v o e it mew
qal LR i o
oa o iy o

200 "o o ;

2.75{{ E cha - :

2.50 3 bypass L 3

= opt :

2.25 - : y
g2] m - '
= |l -
3 il
& :

'-U 1. :

§ 1. H

o '

Z 109 M =
073 :
0.50
0.25
©%—BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK

Figure 14: L2 cache bypassing on Fermi GPU.

kernel configurations. Note, for read-only caches, we only
apply bypassing to loads that are accessing the “read-only”
variables or arrays as the read-only caches are non-coherent.
In this paper, due to page limitation, we only show the re-
sults for Platform 1 to 3. For other results, please refer to
the supplementary document.

Platform-1 — Fermi: The results for 16KB L1, 48KB L1
and L2 on Fermi with CC-2.0 are shown in Figures 12, 13 and
14. For comparison purposes, we normalize the performance
to bpa®. G-M is the geometric-mean-value. Similar to the
case study in Section 4.3, the differences between bypass and
opt imply the bypassing overhead.

As can be seen in Figure 12, the 16KB L1 cache is far from
sufficient to cover the data footprints, which leads to the in-

Sbpa is the default behavior for L1 and read-only caches of
Kepler and Maxwell GPUs. However, on Fermi L1 and all
L2 caches, the default is cha.

Table 2: Experiment Platforms

Plat. GPU Arch-Code | CC. Cores GPU Freq | Mem Band | Dri./Rtm. CPU gce
1 GTX570 Fermi-110 2.0 15 SMx32 1464 MHz 152 GB/s 6.5/4.0 Intel Q8300 4.4.7
2 Tesla K80 Kepler-210 3.7 13 SMXx192 824 MHz 240 GB/s 7.0/7.0 Intel E5-2690 | 4.4.7
3 GTX750Ti | Maxwell-107 | 5.0 5 SMMx128 1137 MHz 86.4 GB/s 6.5/6.5 Intel i7-4770 | 4.4.7
4 GTX460 Fermi-104 2.1 7 SMx32 1400 MHz 88 GB/s 6.5/6.5 Intel 17-920 4.6.3
5 GTX690 Kepler-104 3.0 8 SMx192 1020 MHz 192 GB/s 7.0/6.5 Intel i7-5930K | 4.8.4
6 Tesla K40 Kepler-110 3.5 | 15 SMXx192 876 MHz 288 GB/s 6.0/6.0 Intel E5-2620 | 4.4.7
7 GTX980 Maxwell-204 5.2 16 SMMx128 1216 MHz 224 GB/s 6.5/6.5 Intel 13-4160 4.8.2
Table 3: Benchmark Characteristics
Application Description abbr. | Warps Input dataset Source
bfs Breadth First Search BFS 16 graph1MW_6.txt Rodinia[28
backprop Back Propagation BKP 8 65536 Rodinia|28
b+tree B+ Tree Operation BTE 8 mil.txt-command.txt Rodinia[28
kmeans K-means Clustering KMN 8 kdd_cup Rodinia[28
stencil 3-D Stencil STE 4 128x128x32.bin-128-128-32-100 Parboil[30]
particlefilter Particle Filter PTF 16 128x128x10, np:1000 Rodinia[28]
spmu Sparse Matrix-Vector Multiplication SPV 6 Dubcova3.mtx - vector.bin Parboil[30]
streamcluster Stream Cluster STC 16 10-20-256-65536-65536-1000 Rodinia|28
srad Speckle Reducing Anisotropic Diffusion | SRD 16 100-0.5-502-458 Rodinia[28
bicg BiCGStab Linear Solver BIC 8 default Polybench|[32
atax Matrix Transpose Vector Multiply ATX 8 default Polybench[32
gesummu Scalar Vector Matrix Multiply GES 8 default Polybench|[32
mut Matrix Vector Product Transpose MVT 8 default Polybench[32
syrk Symmetric Rank-K Operations SYR 8 default Polybench[32
syr2k Symmetric Rank-2K Operations SYK 8 default Polybench|[32
similarityscore | Similarity Measure between Documents | SSC 16 256-128 Mars[31
ferior performance of cha compared with bpa (11% worse). ["opa
2.75{ {0 cha
Therefore, using the L1 cache naively is detrimental. How- 5.50||H Dypass

ever, this situation is effectively improved by the proposed
bypassing scheme, which leads to 24% speedup over bpa and
39% over cha. The serious thrashing problem of 16KB L1
has been significantly mitigated by extending the cache size
to 48KB. As shown in Figure 13, cha is 17% better than
bpa now. Nonetheless, the effect of cache bypassing is more
prominent: it demonstrates 45% speedup over bpa and 24%
over cha. Regarding L2 in Figure 14, the fact that cha is
much better than bpa indicates that caching in a stream-
ing fashion (in both L1 and L2) is much worse than caching
normally in L2 for most cases (except BKP and SSC). Also,
our scheme achieves 1.12x speedup over bpa and 20% over
cha in L2 cache. Besides, it should be noted that for all the
three tests on Fermi with CC-2.0, the overhead introduced
by the bypassing framework is quite small (1%, 2% and 4%).

Platform-2 — Kepler: Next we validate cache bypass-
ing on a Kepler platform with CC-3.7 — the latest Tesla-K80
GPU. The results for 16KB, 32KB, 48KB L1, read-only and
L2 caches are shown in Figure 15, 16, 17, 18 and 19, respec-
tively.

Unlike Fermi, the L1 cache in Kepler is harmful in all con-
figurations albeit the degree is declining (24%, 20% and 10%
worse for 16KB, 32KB and 48KB). Meanwhile, the effective-
ness of cache bypassing also remains evident, with a speedup
of 8%, 9%, 16% over bpa and 42%, 36%, 29% over cha. The
scenario for read-only cache is, however, completely differ-
ent. As shown in Figure 18, the benefit of exploiting the
read-only cache is 2.03x speedup of cha over bpa. In addi-
tion, the bypassing framework leads to 2.16x speedup over
the default bpa approach. The condition of L2 is similar to
Fermi.

Platform-3 — Maxwell: Lastly, we run the experiments

Normalized IPC

BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK G-M

Figure 15:
GPU.

16KB L1 cache bypassing on Kepler

1 bpa
3 cha
HEEE bypass
I opt

Normalized IPC

BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK G-M

Figure 16:
GPU.

32KB L1 cache bypassing on Kepler

on the Maxwell architecture with CC-5.0. Since Maxwell
completely discards L1 cache and uses the entire on-chip
storage for shared memory, we can only establish read-only

[bpa
2.75{{@ cha
Il bypass
EEN opt

»
o
&

e o opoN N

)
]

Normalized IPC

o ¢
n
8

o
B
&

a

:
:

.

0.00

BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK G-M

Figure 17: 48KB L1 cache bypassing on Kepler
GPU.

mmmmmm ne omm oon
e B 9T Raa NS
BES iBion ee i mds

1 bpa
2.75{| 3 cha
HEEE bypass —‘ I

T |- opt

2.

2.00)

1.75]

1.

1. oy |
1.00

0.75

0.50

0.25|

0.00

BFS BTE KMN BKP PTF SPV STC SRD BIC \TX GES MVT SYR

i2.16

Normalized IPC

Figure 18:
GPU.

Read-only cache bypassing on Kepler

[bpa
2.75{{@ cha

I bypass
[| opt
1.00f
0.75
0.50
0.25
0.00

BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK G-M

~
o
&

~

BoroN

,ﬂ
N
&

Normalized IPC

Figure 19: L2 cache bypassing on Kepler GPU.

3 bpa
275t cha
B bypass
B opt

Normalized IPC

BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK G-M

Figure 20: Read-only cache bypassing on Maxwell
GPU.

cache and L2 cache bypassing. The results are shown in
Figures 20 and 21.

3.00

[bpa
2.75{{ @ cha
B bypass
B opt

Normalized IPC
[

o
]

BFS BTE KMN BKP PTF SPV STC SRD BIC ATX GES MVT SYR SYK G-M

Figure 21: L2 cache bypassing on Maxwell GPU.

Different from Kepler, the read-only cache for Maxwell
is not that beneficial, which exhibits a 9% speedup. More-
over, cache bypassing brings only 15% better performance
than bpa for read-only cache bypassing and almost none for
L2 cache. In addition, it should noted that the overhead
for cache bypassing is more significant on Maxwell: 13% for
read-only cache. We explain the reasons for L2 bypassing re-
sults in Section 5.1 and the overhead problem in Section 6.1.

5.1 Performance Analysis Across Platforms

Figure 22 summarizes the geo-mean performance gains for
all the applications with all possible caches & cache config-
urations for the seven GPU platforms in Table 2. As can
be seen, for Fermi CC-2.0 and 2.1, cache bypassing is quite
effective, especially on large L1 caches and L2 caches. Note
that cha with 16KB L1 degrades performance by 11% and
15% respectively compare to bpa. This explains why from
Kepler, L1 cache no longer remains the default datapath for
global memory access.

For Kepler CC-3.0, the bars are identical (Kepler-3.0 L1-
16K /32K /48K in Figure 22). This is because in Kepler CC-
3.0, the L1 cache is only for local memory access [17]. There-
fore, bypassing L1 or not does not impact global memory
access. For CC-3.5 and 3.7, bypassing works perfectly for
read-only caches and L2 caches. Again, L1 cache is detri-
mental while the bypassing framework eliminates such neg-
ative effects effectively.

Regarding Maxwell CC-5.0 and 5.2, bypassing improves
performance for read-only cache. However, there is no per-
formance gain on L2. This is because in Maxwell, the “.cs”
suffix has been abandoned. Therefore, bypass or not gener-
ate exactly the same code. We validate this by checking the
SASS code — .cs and .ca produce identical binary file.

5.2 Performance Analysis Across Applications

For applications, regarding their behaviors against thresh-
old variation, we can characterize them into five categories:

bypass-favorite, cache-favorite, cache-congested, cache-insensitive

and irregular. For bypass-favorite applications, the perfor-
mance continuously degrades with a higher bypass thresh-
old. This may be due to the rapidly increased L2 traffic
induced by the larger L1 cache-line size [33]. bpa is the best
choice for these applications. Conversely, for cache-favorite
applications, the performance keeps increasing with a higher
threshold. These applications have good locality while the
footprints are small enough to be effectively captured by the
cache. This condition occurs mostly on L2 and cha is the
optimal choice. Cache-congested applications are those with

Geo-Mean of Normalized IPC for All Applications across All Platforms

bpa

cha

bypass

o }=g -1 = O0pH OO
8832 883 8833 8832 S
2aq

Sor HogH HegH AdgH

Fermi-2.0
L2-384K
Fermi-2.1
L2-640K
Kepler-3.0
L2-512K

Kepler-3.5
L2-1536K
Maxwell-5.0
L2-2048K
Maxwell-5.2]
L2-2048K

Figure 22: Performance for all applications across all platforms. For the x-ticks, the left column is the major
architecture and compute capability of the platform while the right column is the cache type and size.

good locality but experience congestion due to insufficient
cache size, such as bfs in the case study. The shapes of
these applications are convex while the optimal threshold
attains in the middle. These applications are the best can-
didates for cache bypassing. Cache-insensitive applications
(e.g. stencil) have little locality while the overhead from
the bypassing framework is quite obvious in the figures. Fi-
nally, irregular applications show an irregular shape that has
no clear trend (e.g. syrk). This may be due to the irregular-
ity of the algorithms or datasets. To view the typical figures
for each category discussed, please refer to the supplemen-
tary file. Note, for the first four regular categories, the
trend is not very sensitive with the variation of the dataset.
Therefore, if we can determine the trend by profiling on a
typical dataset, the same option (i.e. bpa, cha or a certain
threshold value) may be applied to other datasets.

5.3 Optimization Suggestions

In addition to the bypassing analysis, we propose several
optimization suggestions for general cache utilization:

e In Fermi, if there is no big pressure on shared mem-
ory usage, always adopt the 48KB L1 configuration.
Otherwise, bypass L1 via ptxas option “dlcm=cg” if
no bypassing is applied.

e In Kepler, try to use the read-only cache instead of the
L1 unless you know it will be beneficial.

e In Kepler and Maxwell, apply the read-only cache by-
passing just on the data that are “read-only” in the
kernels. Otherwise, you may suffer from performance
degradation (e.g. about 6% for Maxwell in our exper-
iments).

e In all architectures, using “_restrict__ const” on read
only data reduces register usage (up to half in our ob-
servation) and improves code generation quality [21]
(e.g. about 16% performance gain for Maxwell L2).

6. DISCUSSION

In this section, we discuss the possibility to reduce by-
passing overhead (i.e. predicate register checking per load)
via software and hardware approaches. We also clarify why
the proposed cache bypassing design incurs more overhead
on Kepler and especially Maxwell than on Fermi.

6.1 Software Approach

The major reasons for the larger overhead in Kepler and
Maxwell than in Fermi, is that after we insert the bypass
branches into the PTX program, when converting PTX into
binary, the ptras assembler performs aggressive optimiza-
tions, which attempts to combine the many “small diver-
gence” together. In our observation of the SASS code, in-
stead of being divergent only at the load operations, the op-
timized code diverges in much larger code sections and uses
completely different registers. This leads to higher register
usage and poor instruction cache performance. However,
such case is not observed in the code generation for Fermi.
Therefore, a direct reaction for reducing overhead is to mod-
ify the SASS code directly rather than PTX. However, there
is no official SASS assembler available till now and ptzas is
not open-source. A homemade assembler such as “mazas”
may help, but is out of the scope of the paper.

Another simple software method is to replicate the whole
kernel so that a warp branches from the beginning: if bypass,
a warp executes the copy of kernel with bypassing; otherwise,
executes the copy without bypassing. However, we did not
apply this optimization in this paper because: first, it dou-
bles the static code size of the kernel. Second, it may lead
to thrashing in the SMs’ instruction caches. Please refer to
the discussion about “code overlaying” in [34]. Finally, one
has to carefully handle the possible interplay between warp
branching and TB-wise synchronizations. Nonetheless, we
would evaluate this optimization as a future work.

6.2 Hardware Approach

The hardware method is to realize the judging process of
bypassing in the cache controller. We use a 5-bit register (32
warps at most). to conserve the bypassing threshold. The
register is configured when the kernel is launched. Then,
for each memory request, upon it arrives at the cache, its
warp index is compared with the threshold register, if less,
it is appended to the cache waiting queue, otherwise, it is
forwarded to the request queue of the lower memory devices.
For example, if bypassing L1, the request is forwarded to
the MRQ [24] and is later injected into the interconnection
network.

Migrating the bypassing functionality into the hardware
eliminates the 1-bit predicate register cost per thread as
well as the corresponding assessment of it upon each time’s

memory access, which improves performance and reduces
power. In fact, we implemented this hardware design in
GPGPU-Sim [4] using GTX480 (Fermi) architecture with
16KB L1. The simulation results show that the hardware
implementation is slightly better than the software regard-
ing both performance and power (2% performance improve-
ment and 2% energy reduction). However, as GPGPU-Sim
does not perfectly mimic the behaviors of the real hardware
(e.g. based on our previous work [8], Fermi hardware uses
an XOR-based hashing in the L1 cache, but such module is
not implemented in GPGPU-Sim), there is a big mismatch
for some applications (e.g. SSC and BKP) between the sim-
ulation outcome and the real hardware measurement (i.e.
Figure 12). Therefore, we did not include the figures here
but put them in the supplementary file.

7. RELATED WORK

Recently warp-throttling and cache bypassing for enhanc-
ing the performance of GPU caches became hot topics [14,
15, 10, 27, 9, 22, 35, 36].

Rogers et al. [14] proposed a cache-conscious wavefront
scheduler (CCWS) to limit the number of active wavefronts
to be allocated when lost locality was detected. CCWS was
later refined as divergence-aware warp scheduling (DAWS)
[15], which used a divergence-based cache footprint predic-
tor to assess the L1 cache capacity that was able to capture
intra-warp locality within loops. Xie et al. [10] developed a
compiler framework to parse the application code and select
a set of load operations that bypassing them at L1 could
reduce the most L2 cache traffic, based on an ILP or a
heuristic optimizer. These operations were then appended
with the “cg” suffix for bypassing the L1 cache at runtime.
The design was tested on a Kepler GTX-680 platform. To
compare, their design was a vertical bypass design. The se-
lecting process for bypassing set, as proved in their paper,
was an NP-hard problem. Besides, their design was only
for L1 cache of Fermi and a small number of Kepler GPUs.
Further, L2 traffic reduction did not necessarily lead to the
shortest execution time. Very recently, Li et al. [27] pro-
posed another vertical design for GPU L1 cache bypassing.
By integrating a locality filter in the L1 cache, memory re-
quests with low reuse or long reuse distance can be excluded
from polluting L1. Jia el al. [9] proposed a dynamic hard-
ware approach that bypasses memory load requests when ex-
periencing resource unavailability stalls, particularly cache
associativity stalls. While their design might greatly reduce
stall waiting, blindly bypassing memory requests whenever
there were resource bound might be a bit aggressive, which
could hamper performance. The design was runtime re-
source based which had little relevance to the features of
the applications. Chen et al. [22] developed a hardware
bypassing mechanism to protect hot cache lines from early
eviction based on lost locality score detection. Meanwhile, as
cache bypassing may lead to congestion at NoC or DRAM,
a warp-throttling function for the warp scheduler was sup-
plemented to limit the number of active warps if necessary.
Such a design was also runtime hardware based. Mekkat et
al. [35] concentrated on CPU-GPU heterogeneous platforms
and observed that GPU applications with sufficient thread-
level parallelism could tolerate long memory access latency.
Therefore, memory requests from GPU threads could bypass
LLC while leaving the space for cache sensitive CPU appli-
cations. Li et al. [36] implemented a priority-token based

hardware design for L1 cache bypassing. In the design, each
active warp is allocated with “an additional scheduler status
bit”. Several “oldest” running warps are granted with high
priority while their status bits are set, meaning that only
these warps can access the L1 cache. The value of the bit is
then appended to each memory request so that the L1 cache
is notified.

Most of these schemes, however, concentrated on the ar-
chitectural design of the memory hierarchy and suggested
complicated hardware refinement, which required significant
efforts and were not able to bring instant performance
gain to the existing GPUs. Besides, the validation of
the schemes were performed on simulators. As a compari-
son, our design is purely software and is straightforward to
implement. It leverages the reconfigurability of the existing
hardware, thus is beneficial to most existing GPUs. Our de-
sign can be embedded into the compiler toolchain or encap-
sulated as a runtime library. Xie et. al. [10] adopted similar
cache suffix-based approach as ours. However, as discussed,
their bypassing scheme was vertical-based. The search space
is much larger. Besides, they focused on L1 only and val-
idated using a single platform GTX-680 (In fact, we are
confused about why a Kepler with CC-3.0 can exploit L1.).
The very recent work by Li et. al. [36] is a horizontal de-
sign. However, it is hardware based that significant area and
runtime overhead are introduced: e.g. the additional status
bit registers, the extended memory request length, the delay
of token management, etc. In addition, reassigning tokens
upon each barrier impairs intra-warp locality and may lead
to unnecessary inter-warp thrashing. Furthermore, they also
concentrated on L1 only and validated using the GPGPU-
Sim simulator. However, as discussed in Section 6.2 and the
supplementary file, the simulator does not accurately sim-
ulate the complete behavior of the GPU caches. Our work
confirms that cache bypassing can derive performance on
real hardware, in a much simpler software approach that is
transparent and adaptive.

8. CONCLUSION

In this paper, we proposed an adaptive cache bypassing
framework for GPUs. It used a straightforward approach
to throttle the number of warps that could access the three
types of GPU caches — L1, L2 and read-only caches, thereby
avoiding the fierce cache thrashing of GPUs. Our design is
purely software-based thus is able to benefit existing plat-
forms directly. It is easy to implement and is transparent to
both the users and the hardware. We validated the frame-
work on seven GPU platforms that covered all GPU gener-
ations. Results showed that adaptive bypassing could bring
significant speedup over the general cache-all and bypass-
all schemes. We also analyzed the performance variation
across the platforms and the applications. In addition, we
proposed software and hardware approaches to further re-
duce bypassing overhead and provided several optimization
guidelines for the utilization of GPU caches.

8.1 Acknowledgments

We would like to thank the anonymous reviews for their
extremely useful comments. Without these comments, the
paper could not be improved so significantly. We would also
thank Mr. Weifeng Liu from University of Copenhagen and
Mrs. Ivan Nosha from Novatte in Singapore for providing
some of the GPU platforms and assistance on tests.

References

1]

[12]

[13]

[14]

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kriiger, A. E. Lefohn, and T. J. Purcell. “A Survey
of general-purpose computation on graphics
hardware”. In: Computer graphics forum. Vol. 26. 1.
Wiley Online Library. 2007.

J. Sanders and E. Kandrot. CUDA by example: an
introduction to general-purpose GPU programming.
Addison-Wesley Professional, 2010.

W. H. Wen-Mei. GPU Computing Gems Emerald
Edition. Elsevier, 2011.

A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and
T. M. Aamodt. “Analyzing CUDA workloads using a
detailed GPU simulator”. In: ISPASS. IEEE. 2009.

P. N. Glaskowsky. Nvidia’s Fermi: the first complete
GPU computing architecture. 2009.

J. Nickolls and W. J. Dally. “The GPU computing
era”. In: IEEE Micro 30.2 (2010).

E. Lindholm, J. Nickolls, S. Oberman, and
J. Montrym. “Nvidia Tesla: A unified graphics and
computing architecture”. In: Teee Micro 28.2 (2008).

C. Nugteren, G.-J. van den Braak, H. Corporaal, and
H. Bal. “A detailed GPU cache model based on reuse
distance theory”. In: HPCA. IEEE. 2014.

W. Jia, K. A. Shaw, and M. Martonosi. “MRPB:
Memory request prioritization for massively parallel
processors”. In: HPCA. IEEE. 2014.

X. Xie, Y. Liang, G. Sun, and D. Chen. “An efficient
compiler framework for cache bypassing on GPUs”.
In: ICCAD. IEEE. 2013.

O. Kaywran, A. Jog, M. T. Kandemir, and C. R. Das.
“Neither more nor less: Optimizing thread-level
parallelism for GPGPUSs”. In: PACT. IEEE Press.
2013.

V. Volkov and J. W. Demmel. “Benchmarking GPUs
to tune dense linear algebra”. In: SC. IEEE. 2008.

Y. Zhang and J. D. Owens. “A quantitative
performance analysis model for GPU architectures”.
In: HPCA. IEEE. 2011.

T. G. Rogers, M. O’Connor, and T. M. Aamodt.
“Cache-conscious wavefront scheduling”. In: MICRO.
IEEE Computer Society. 2012.

T. G. Rogers, M. O’Connor, and T. M. Aamodt.
“Divergence-aware warp scheduling”. In: MICRO.
ACM. 2013.

Z. Zheng, Z. Wang, and M. Lipasti. “Adaptive Cache
and Concurrency Allocation on GPGPUs”. In: (2013).

Nvidia. CUDA Programming Guide. 2015.

V. Narasiman, M. Shebanow, C. J. Lee,

R. Miftakhutdinov, O. Mutlu, and Y. N. Patt.
“Improving GPU performance via large warps and
two-level warp scheduling”. In: MICRO. ACM. 2011.

A. Jog, O. Kayiran, N. Chidambaram Nachiappan,
A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das. “OWL: cooperative thread array
aware scheduling techniques for improving GPGPU
performance”. In: ACM SIGARCH Computer
Architecture News 41.1 (2013).

20]
21]
(22]

23]

(24]

25]

(26]
27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Nvidia. CUDA Best Practice Guide. 2015.
Nvidia. Kepler Tuning Guide. 2015.

X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv,

Z. Wang, and W.-M. Hwu. “Adaptive Cache
Management for Energy-Efficient GPU Computing”.
In: MICRO. IEEE. 2014.

Z. Guz, E. Bolotin, I. Keidar, A. Kolodny,

A. Mendelson, and U. C. Weiser. “Many-core vs.
many-thread machines: Stay away from the valley”.
In: Computer Architecture Letters 8.1 (2009).

J. Lee, N. B. Lakshminarayana, H. Kim, and

R. Vuduc. “Many-thread aware prefetching
mechanisms for GPGPU applications”. In: MICRO.
IEEE. 2010.

A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das. “Orchestrated
scheduling and prefetching for GPGPUSs”. In: ACM
SIGARCH Computer Architecture News 41.3 (2013).

Nvidia. PTX: Parallel Thread Ezecution ISA. 2015.

C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari,
and H. Zhou. “Locality-Driven Dynamic GPU Cache
Bypassing”. In: ICS. ACM, 2015.

S. Che, M. Boyer, J. Meng, D. Tarjan,

J. W. Sheaffer, S.-H. Lee, and K. Skadron. “Rodinia:
A benchmark suite for heterogeneous computing”. In:
IISWC. IEEE. 2009.

B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter.
“Enabling and Exploiting Flexible Task Assignment
on GPU Through SM-Centric Program
Transformations”. In: ICS. ICS '15. ACM, 2015.

J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid,
L.-W. Chang, N. Anssari, G. D. Liu, and

W.-M. Hwu. “Parboil: A revised benchmark suite for
scientific and commercial throughput computing”. In:
Center for Reliable and High-Performance
Computing (2012).

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. “Mars: a MapReduce framework on
graphics processors”. In: PACT. ACM. 2008.

S. Grauer-Gray, L. Xu, R. Searles,

S. Ayalasomayajula, and J. Cavazos. “Auto-tuning a
high-level language targeted to GPU codes”. In:
Innovative Parallel Computing (InPar). IEEE. 2012.

W. Jia, K. A. Shaw, and M. Martonosi.
“Characterizing and improving the use of
demand-fetched caches in GPUs”. In: IC'S. ACM.
2012.

M. Bauer, S. Treichler, and A. Aiken. “Singe:
leveraging warp specialization for high performance
on GPUs”. In: ACM SIGPLAN Notices 49.8 (2014).

V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai.
“Managing shared last-level cache in a heterogeneous
multicore processor”. In: PACT. IEEE Press. 2013.
D. Li, M. Rhu, D. R. Johnson, M. O’Connor,

M. Erez, D. Burger, D. S. Fussell, and S. W. Redder.

“Priority-based cache allocation in throughput
processors”. In: HPCA. IEEE. 2015.

