ParaFRo: A Hybrid Parallel FPGA Router using
Fine Grained Synchronization and Partitioning

Chin Hau Hoo
Department of Electrical &
Computer Engineering
National University of Singapore, Singapore
chinhau.hoo@u.nus.edu

Abstract—Routing of nets is one of the most time-consuming
steps in the FPGA design flow. While existing works have de-
scribed ways of accelerating the process through parallelization,
they are not scalable. In this paper, we propose ParaFRo,
a two-phase hybrid parallel FPGA router using fine-grained
synchronization and partitioning. The first phase of the router
aims to exploit the maximum parallelism available by routing nets
while minimizing load imbalance. Instead of resolving contention
with expensive software transactional memory, synchronization
among threads is realized using lightweight spin mutexes. In the
case where the algorithm detects that convergence is not possible
in phase one, it transitions into phase two where convergence is
prioritized over maximum parallelism. To achieve convergence,
each thread in phase two routes only congested nets that have
been assigned to it by a partitioner. The partitioner aims to reduce
the contention among threads at the cost of an unbalanced load.
In addition, periodic rip up of the entire route tree is employed
to break the algorithm out from a local minimum. When only
congested nets are rerouted, ParaFRo with 8 threads achieves an
average speedup of 26.2X relative to VTR. In contrast, existing
works managed to obtain an average speedup of up to 9.42X
with 8 threads. Besides, ParaFRo is able to maintain the high
speedups while producing similar quality of result as VIR in
terms of critical path delay. Finally, the quality of result is
relatively independent of the number of the threads.

I. INTRODUCTION

Due to Moore’s law, routing, which is one of the most
time-consuming steps in the FPGA design flow, can take
hours or even days to complete for a complex state-of-the-
art design [11]. Therefore, there is a need for faster routing
algorithms to cope with the exponential increase in the number
of transistors per chip. Reducing the execution time of routing
algorithms allow for improved productivity due to the shorter
debug cycles. In addition, if routing is fast enough, it can be
integrated into the placement stage to provide more accurate
timing information, which leads to better placement quality.
Faster routing also helps in design space exploration.

With multicore processors being commodities nowadays,
parallelization is a promising way to accelerate routing al-
gorithms. Unfortunately, the Pathfinder algorithm [9], which
is the most commonly used algorithm for FPGA routing, is
inherently sequential and parallelizing it is non-trivial. The
routing resources that are available for the current net depends
on the routes that are taken by the previously routed nets.
Some existing works [5] partition the nets such that nets in
different partitions do not have overlapping bounding boxes.

Institute for Infocomm Research (I2R)
A*STAR, Singapore
ha-y @i2r.a-star.edu.sg

Akash Kumar
Technische Universitidt Dresden
Center for Advancing Electronics
Dresden, Germany
akash.kumar@tu-dresden.de

Yajun Ha

However, this approach is not scalable because it is not always
possible to have balanced partitions. Besides, there are always
nets with bounding boxes that overlap that of nets in other
partitions even after partitioning. To make matters worse, the
number of such nets increases as the number of partitions
increases. Another approach [10] to parallel routing is through
speculative multithreading where the algorithm routes nets
concurrently even if they have overlapping bounding boxes.
It is only when there is a contention on a shared resource that
the router rolls back to an earlier state and starts over. This
approach scales well with the number of threads only when the
possibility of contention is low because the rollback process
has a high overhead.

Recognizing the limitations of purely partitioning and
purely speculative based parallel router, we propose ParaFRo,
a hybrid parallel router that combines the advantages of
both. Our router has two phases. The first phase routes
nets and resolves routing resources (RRs) contention among
threads using lightweight and fine-grained synchronization.
The advantage of this approach is that maximum amount of
parallelism is exploited with very little overhead. In the second
phase where convergence is more important than maximizing
parallelism, each thread routes a subset of congested nets
where the RR dependency among the subsets is minimized.
In other words, ParaFRo’s first phase exploits speculative
multithreading without the overhead of rollbacks while its
second phase leverages on partitioning to achieve convergence
in case the first phase fails to do so.

Contributions. In summary, our contributions are as follows:

o A hybrid parallel FPGA detailed router that exploits the

best of both speculative and partitioning-based parallel
routers.

 Significant speedup of up to 26.2X relative to VIR [8]

while maintaining comparable critical path delay.

o Observation that parallel routers based purely on inde-

pendent bounding boxes are not scalable.

The rest of the paper is organized as follows. Section II
introduces the background of classical and parallel routing
problems. Section III describes the existing works on parallel
FPGA routers. Section IV motivates the need for a new
approach to parallel FPGA routing. Section V explains the
design of our hybrid parallel router. Section VI evaluates
our algorithm in terms of speedup and quality of result and

compares it to existing works. Section VII describes some
possible extensions to our current work. Finally, Section VIII
concludes our paper.

II. BACKGROUND

The routing problem is a classic problem in FPGA or
VLSI design. The problem is usually modeled using a graph,
G(V,E) where V is the set of vertices that represent the
RRs available on the silicon while E' is the set of edges that
represent the interconnections between the RRs. In the case of
FPGAs, the set V' contains prefabricated wires in the device
while the set ' contains programmable switches that connect
the prefabricated wires together. In addition, there is a set [NV
that represents all the nets to be routed using the RRs in the
graph G. The objective of the routing problem is to find a
tree for each net such that the union of all the trees results in
no overused RRs and other requirements such as critical path
delay are satisfied.

The parallel routing problem is an extension of the classic
routing problem. In addition to the aforementioned objectives
of the classic routing problem, the parallel routing problem
is concerned with the acceleration of the classic routing algo-
rithm when multiple processing elements (eg. processor cores)
are available. A parallel routing algorithm generally breaks
the classic routing problem down into smaller subproblems
and solves them concurrently. In the ideal case where every
subproblem is of the same size and there is no overhead,
the speedup of a parallel routing algorithm is equal to the
number of processing elements. However, in practice, the ideal
speedup is rarely achieved due to the need for synchronization
and communication when executing the parallel routing algo-
rithm. In addition, the parallel routing problem is irregular
[12]. The amount of parallelism is determined by the input
to the problem. Therefore, it is impossible to determine at
design time the optimal schedule to route the nets in parallel.
In contrast, regular algorithms such as matrix multiplication
can be parallelized easily.

Existing parallel routing algorithms can be broadly divided
into two groups. The first group of algorithms [2] [5] is based
on the independence of net bounding boxes. By restricting
nets to use only RRs within their bounding boxes, nets with
independent bounding boxes can be routed in parallel without
the need for synchronization. Unfortunately, as discussed in
Section IV-A, it is difficult to sustain the number of indepen-
dent nets at or above the number of processing elements. The
second group of algorithms [10] is the opposite of the first
where nets can be routed in parallel even if they do not have
independent bounding boxes. Instead, when a contention is
detected at runtime (due to overlapping bounding boxes), the
routing state up to the contended node is discarded and the
routing process is restarted. We have discovered empirically
that the second group of algorithms is more scalable, and our
algorithm is based on that.

III. RELATED WORKS

Gort and Anderson [5] parallelized VPR’s [1] Pathfinder
algorithm by spatially partitioning the FPGA. Nets that are

fully contained in different partitions are routed concurrently.
In Gort’s approach, the number of partitions was equal to
the number of processors executing the parallel router, and
a heuristic was introduced to minimize the number of nets
that cross the partition boundaries. Deterministic routing result
was also guaranteed by calling the blocking version of the
Message Passing Interface (MPI) receive function. However,
the blocking function calls increased stall time when there
was load imbalance among the processors, and the authors
introduced a greedy algorithm that considered three factors —
net fan-out, net bounding box and the number of visited rout-
ing resource nodes by a net when balancing the load among
processors. Unfortunately, this spatial partitioning approach
is not scalable as evident in the diminishing speedup as the
number of processors increases. The reason is that as the num-
ber of processors (and equivalently the number of partitions)
increases, the number of nets that cross partition boundaries
increases, requiring more inter-processor communication and
reducing speedup. Gort’s results agree with our findings in
Section IV, which motivates the need for another approach to
parallel FPGA routing.

Shen and Luo [13] also proposed a parallel FPGA router
based on MPI and recursive spatial partitioning where the
nets are split into three subsets: two consisting of potentially
overlap-free nets and one subset of potentially overlapping
nets. The former two subsets are routed in parallel before rout-
ing the latter subset. Shen and Luo’s parallel router achieved
a speedup of up to 7.02X with 32 processes but has the same
limitation as Gort’s parallel router.

Instead of spatially partitioning the FPGA, Cabral et al. [2]
leveraged on the routing resource independence property of
FPGAs with the disjoint switch box topology. In the disjoint
topology, the wires that are on the ¢-th track can only be
connected to other wires on the same track. This restric-
tion significantly simplifies the parallel routing algorithm by
allowing each processor to independently route a subset of
nets using a subset of the wires. As expected, the algorithm
achieves an almost linear speedup because there is minimal
inter-processor communication. However, the disjoint topology
provides limited routability and is no longer used in state-of-
the-art commercial FPGAs.

A fine-grained parallel router based on speculative paral-
lelism was proposed by Moctar and Brisk [10]. Instead of
relying on independent net bounding boxes and RRs like
the aforementioned approaches [5] [2], Moctar parallelized
the maze expansion step of the VPR router by using lock-
based expansion operator and software transactional memory
(STM) based priority queue. The approach has a good speedup
of 5.46X with 8 threads. However, the overhead of lock
acquisition and rollback due to STM reduces speedup as the
number of threads increases.

Hoo et al. [6] modeled the routing problem as a linear pro-
gram and identified that it can be decomposed into independent
subproblems through Lagrangian relaxation. As a result, the
nets can be routed in parallel, and high speedup of up to 7.05X
was achieved. However, the method was applied only to the
global routing problem, and it is unclear whether the method

FPGAy coordinate

3 E o G

2 a6 00 120
FPGA x coordinate X coordinate

(a) Heatmap of LU32PEEng(b) Heatmap of stereo_vision
benchmark from VTR 7 benchmark from Titan

can be extended to the detailed routing problem.

Chan et al. [3] analyzed how and when the congestion
cost of the Pathfinder routing algorithm should be updated
to increase parallelism and ensure convergence. They found
that the second order congestion cost need not be broadcasted
to other processors immediately after routing a net, and can
be delayed until the end of a routing iteration. Therefore, the
amount of inter-processor communication can be reduced, and
parallelism is increased. On the other hand, the first order
congestion cost must be broadcasted immediately.

IV. MOTIVATION

In this section, we explain why the first group of parallel
routing algorithms described in Section II is not scalable. To
support our claims, three different net statistics of some FPGA
benchmark circuits are considered. The statistics are bounding
box spatial distributions and overlaps, and bounding box areas.
They are illustrated in the following subsections.

A. Bounding Box Spatial Distributions and Overlaps

The heatmaps in Figures 1a and 1b show the spatial distribu-
tion of nets in large FPGA benchmarks — LU32PEEng (54217
nets) and stereo_vision (62824 nets), from VTR 7 [8] and Titan
[11] respectively. The x and y axis of the figures corresponds
to the = and y coordinates in the FPGA respectively. The
temperature at a point in the heatmap is the percentage of nets
whose bounding box covers the point. It can be observed that
the nets are uniformly distributed in the FPGA. The problem
with this is that there is no clear boundary at which the nets
can be partitioned. Therefore, the resulting partitions contain
a high number of nets with bounding boxes that span more
than one partition. These nets cannot be routed in parallel.

The number of overlaps was determined using the METIS
[7] tool for different values of ubvec. ubvec is the parameter
that controls the load balancing among partitions. It has a
minimum value of 1, and the higher the value, the more
unbalanced are the partitions. The output of METIS showed
that up to 30% of the edges are inter-partition edges when
all the partitions are totally load balanced (ubvec = 1). The
high percentage of inter-partition nets significantly reduces
the amount of parallelism. Therefore, algorithms that rely on
bounding box independence do not scale well.

B. Bounding Box Areas

Figure 2 shows the bounding box area of all nets in different
benchmarks. It can be seen that there is a significant number

Distribution of the bounding box area for all nets in a benchmark

10000

LU32PEEng (VTR) -+
9000 [stereovision2 (VTR) X
stereo,ision (Titan)

8000 -
7000
6000 -
5000 -
4000 -
3000 -

Bounding box area

2000
1000

o 2 %
Yy oy

Net index

T, Y
Fig. 2: Bounding box size distribution

Initialization
Sort nets in decreasing # of sinks

Processors route nets
from a common list, N

No

Yes

Partition congested nets

Phase two
Processor i routes nets in
partition P;

Update congestion costs

Congested?

Yes

Fig. 3: Flowchart of the overall algorithm flow

of nets with very large bounding boxes. These nets cannot be
routed in parallel because they overlap with one another. To
make matters worse, it has been shown that they dominate the
total routing time [4]. Therefore, relying only on independent
bounding boxes for parallel routing is not good enough.

V. HYBRID PARALLEL FPGA ROUTER

Before describing the details of the algorithm shown in
Algorithm 1, we start by highlighting its gist shown in Figure
3. The algorithm works in two phases. In the first phase,
we consider two different scheduling policies: static and
greedy. In the static policy, each processor/thread is allocated
a fixed set of nets to route while in the greedy policy, each
processor/thread continuously works as long as there are still
nets that are not routed. The algorithm transitions into the
second phase when the number of overused RR nodes stops
decreasing monotonically. To prepare for the second phase,
nets that use congested RR nodes are split into a number of
partitions that is equal to the number of threads. The nets in
each partition are then dispatched to a thread to be routed in
the second phase. It is important to note that in phase two,
only congested nets from phase one are routed.

Instead of imposing a strict requirement of net bounding
box independence for parallel routing found in existing works

Algorithm 1 ParaFRo

Algorithm 2 Parallel Router

function PARAFRO(NN)
: Input: List of nets to route, N
Output: Route trees of nets in NV

prev_n_overused <— oo

1:

2

3

4:

5: Build RR graph
6.

7 routed < false
8

: p_i<+ 0
9: phase +— PHASE_ONE
10: Sort N in decreasing order of number of sinks
11:
12: while i < max_iterations and !routed do
13: if phase == PHASE_ONFE then
14: parallel_route(V) > Algorithm 2
15: else
16: partitioned_parallel_route(P, p_i) > Algorithm 3
17: pi+pi+1
18: end if
19:
20: n_overused < get_n_overused_nodes()
21: if n_overused == 0 then
22: routed < true
23: else if phase = PHASE_TWO and n_overused >
prev_n_overused then
24: congested_nets < get_congested_nets()
25: P < partition(congested_nets) > Section V-D
26: phase < PHASE_TWO
27: p_t <0
28: end if
20: prev_n_overused < n_overused
30:
31: Update RR node congestion costs > [8]
32: i1+ 1

33: end while
34: if routed then

35: return Route trees of NV
36: else

37: return NULL

38: end if

39: end function

[5], both phases of our algorithm route nets concurrently even
if their bounding boxes overlap. Concurrent accesses to a RR
node are synchronized with the use of mutexes. Due to how
the route trees are updated, converging to a congestion-free
result is an issue. Therefore, we also introduce methods to
address this problem. The details of the methods are further
elaborated in the following subsections.

A. ParaFRo

With the previous overview in mind, we now explain the
pseudocode in Algorithm 1 in more detail. The algorithm starts
by generating a RR graph that corresponds to the input FPGA
architecture. Various variables (prev_n_overused, routed,
p_1) that keep track of the state of routing are also initialized.
Before the routing is started, the input list of nets, IV is sorted
in decreasing order of number of sinks. This is due to the fact
that nets with a large number of sinks are generally harder to
route when there is congestion.

Once the variables are initialized, the algorithm proceeds to
route the nets in a while loop (Line 12) until the configurable
maximum number of iterations or a congestion free state is

procedure PARALLEL_ROUTE(N)
: Input: List of nets to route, N

1:
2
3:
4: if GREEDY _POLICY then
5: cur_net < 0

6

7

8

else
cur_net < tid
: end if
9: parallel_while cur_net < sizeof(N)
10 net < N[cur_net]
11: Rip up congested parts of net > Section V-B
12: route_one_net(net) > Algorithm 4
13: if GREEDY_POLICY then
14: ++cur_net > Atomically increment cur_net
15: else
16: cur_net < cur_net + num_threads
17: end if

18: end_parallel_while
19: end procedure

reached. At the start of the loop, the variable phase determines
which phase the router is currently in. When the router is in
phase one, parallel_route is called to route the nets in list N.
When the router is in phase two, partitioned_parallel_route
is called to route the nets in all the partitions in P. p_i is also
passed into the function to keep track of how many iterations
have passed since phase two started. It is then used by the
function to determine whether to rip up all the nets in the
partitions regardless of their congestion state. Details of this
conditional rip up are explained in Section V-E. It is important
to note that once the algorithm is in phase two, it does not
transition back to phase one.

After routing with either parallel_route or parti-
tioned_parallel_route, the number of congested or overused
RR nodes is determined and stored into the variable
n_overused. Then, n_overused is checked and if it is equal to
zero, routed is set to true to indicate that routing is completed
because there are no congested RR nodes. On the other
hand, if n_overused is not zero, the condition highlighted
in red in Algorithm 1 is checked. Basically, the condition
checks whether the number of overused RR nodes has stopped
decreasing monotonically, which is a sign that the algorithm
is having difficulty converging. If the condition is true, the
algorithm transitions into phase two by partitioning the nets
into independent sets and setting phase to PHASE_TWO
and p_i to zero. The details of the partitioning are described
in Section V-D.

Finally, the first and second order congestion costs [9] are
updated in the same way as VTR [8] before moving on to the
next iteration.

B. Phase One

parallel_route is the main driver of phase one, which routes
the nets in N concurrently as shown by Line 9 of Algorithm
2. In our implementation, the threads responsible for routing
the nets are spawned using Intel Threading Building Block
(TBB) library’s parallel_for loop. The number of threads
can be controlled by using the task_scheduler_init class of

Algorithm 3 Partitioned Parallel Router

procedure PARTITIONED_PARALLEL_ROUTE(P, iter)
Input: Partitions of nets to route, P
Input: Number of iterations since the start of phase two, iter.

for all net € P; do
if iter is mulitple of RIP_UP_PERIOD then

1:
2
3
4:
5: parallel_for_all P; € P
6:
7
8 > Section V-E

: Rip up the entire net
9: else

10: Rip up congested parts of net > Section V-B
11: end if

12: route_one_net(net) > Algorithm 4
13: end for

14: end_parallel_for_all
15: end procedure

Algorithm 4 Net Router

: procedure ROUTE_ONE_NET(net)
: Input: Net to route, net

1
2
3
4: min_heap + {}

5: route_tree < {source of net}

6: for all sink € net.sinks do

7 Add route_tree to min_heap

8 while !min_heap.empty() and ! found_sink do

9: current <— min_heap.pop()
10: if current == sink then
11: found_sink < true
12: else if current.cost < state[current].cost then
13: state[current].cost <— current.cost
14: for all n € current.neighbors do
15: c_cost <+ get_congestion_cost(n)
16: t_cost < get_timing_cost(current, n)
17: n.cost <— get_total_cost(c_cost, t_cost)
18: min_heap.push(n)
19: end for
20: end if
21: end while
22: Add path to sink to route_tree
23: for all node € path to sink do
24: lock mutex of node
25: Update first order congestion cost of node
26: unlock mutex of node
27: end for
28: min_heap < {}
20: for all node € modified RR nodes do
30: state[node].cost < oo
31: end for

32: end for
33: end procedure

the TBB library. The main goal of this phase is to achieve
maximum parallelism by minimizing imbalance. We explored
two scheduling policies to achieve it: greedy and static. In the
greedy policy, each thread will try to get a net from the list
N as long as N is not empty. In this case, none of the threads
waste time idling. To allow lightweight acquisition of a net
from N, an atomic variable cur_net is used to keep track of
the first unrouted net in N. In the static policy, each thread
routes every (tid+ k*num_thread)-th net from N where tid
is the thread identifier, which ranges from 0 to num_thread—
1. This policy is a simple way of getting a reasonably balanced

o0
®

gl

Wap < Wae

L
(a) (b)

Fig. 4: (a) Bounding boxes (b) The associated dependency
graph

set of nets for each thread to route.

After an unrouted net is obtained and stored in net, its
route tree is traversed starting from the root. As soon as a
congested route tree node is found, the node and its leaves are
recursively ripped up. We have also considered the same rip up
mechanism as VTR [8] where the entire route tree is ripped
up regardless of the congestion state of the nodes. In fact,
we show empirically in Section VI-A that this mechanism is
necessary to achieve convergence under high-stress condition.

After ripping up the net, the function route_one_net is
called to route it. The function is also the place where
synchronization among threads is implemented.

C. Net Router

The route_one_net function shown in Algorithm 4 is essen-
tially the same as that of VTR’s [8] except for the differences
highlighted in red. Since multiple threads can write to the
congestion state of the same RR node at the same time,
the writes need to be protected by a mutex to prevent race
conditions. The choice of the type of mutex is important in
determining the scalability of the parallel router because the
introduction of a mutex basically serializes the execution of
the router, which reduces speedup.

In our implementation, the mutexes are realized using
TBB’s spin_mutex class, which allows for lightweight ac-
quisition and release of a lock. A spin_mutex, as its name
implies, only spins in a tight loop instead of transitioning into
kernel mode when the mutex cannot be locked. Therefore, in
the case where contention on the mutex is light, very little time
is wasted spinning and the overhead of transitioning into kernel
mode is avoided. However, when there is heavy contention,
spin_mutex is less scalable than other types of mutexes.
Fortunately, we have found empirically that the contention is
light in most of the benchmarks.

The spin_mutex is used in the red highlighted parts of
Algorithm 4 where synchronization among threads is required
because the shared RR congestion state is accessed by multiple
threads concurrently.

D. Transition to Phase Two

Since the congestion cost of the RR nodes are updated only
after finding a path to the sink (Line 25, Algorithm 4), it is
possible for the neighbor exploration stage to read outdated
congestion state (Line 15, Algorithm 4). This is especially the
case when nets with overlapping bounding boxes are being
routed simultaneously. As a result, converging to a congestion-
free state can be a problem.

TABLE I: Summary of benchmarks used in the experiments

TABLE II: Notations

Channel width Notation | Meaning
Benchmark ‘ Total nets | Total blocks | Min 120% 140% 120% Channel width is 20% higher than the VTR minimum
stereovision] 11,078 1,205 104 126 146 140% Channel width is 40% higher than the VTR minimum
LUSPEEng 16,276 2373 | 114 138 160 all All nets are rerouted regardless of their congestion status
stereovision2 34,473 2,939 154 186 216 cong. Only congested nets are rerouted
LU32PEEng 54,217 7,544 174 210 244
:ggivision g;ggi gfg; %gg 547‘2 §38 TABLE III: Execution time (in seconds) of VIR and single

When the number of overused nodes stops decreasing,
the congested nets are partitioned in such a way that the
bounding box overlap of nets that are in different partitions
are minimized, and the algorithm transitions into phase two.
Minimization of overlap has a direct impact on enhancing
convergence because it reduces the probability of reading
outdated congestion state.

Before partitioning starts, a bounding box dependency graph
is built. An example of the graph is shown Figure 4. The
vertices of the graph represent the congested nets while the
edges indicate bounding box overlaps between the associated
vertices. Each vertex has a weight that measures the amount of
work required to route the net, and it is used for a metric for
load balancing. Since load balancing is not the main priority
in phase two, the vertex weights are set to the bounding box
size to approximate the workload. Each edge also has a weight
that measures the size of overlaps between the bounding boxes
of the nets (vertices) that the edge connects to.

Partitioning is performed using the METIS tool [7]. As
explained in Section IV-A, METIS has a parameter ubvec
that sets the maximum amount of load imbalance among the
partitions. In our case, we set ubvec to be a large value of
10 to ensure that nets in each partition are as independent as
possible with respect to nets in other partitions albeit at the
cost of worse load balancing.

E. Phase Two

Phase two is executed by partitioned_parallel_route
shown in Algorithm 3 after the congested nets are partitioned.
It is similar to phase one but with two main differences. The
first difference is that it only routes nets that are the result of
partitioning described in Section V-D. The second difference
is in terms of how the nets are ripped up. In addition to ripping
up the route tree starting at the first congested node, the whole
route tree is ripped up every RIP_UP_PERIOD iterations.
The motivation behind this is to prevent a net from hogging
a path that is required by other nets to route successfully. In
other words, it allows the algorithm to break free from a local
minimum. Similar to phase one, we have also experimented
with ripping up the route tree unconditionally.

VI. RESULTS

Our experiments were performed on a machine with dual
Intel(R) Xeon(R) CPU E5-2670 v3 running at 2.3 GHz and
128 GB of RAM. The operating system is Ubuntu 14.04, and
the kernel version is 4.2.0-30. Our parallel router was written
in C++14 and compiled using gcc version 5.3.0 with the
optimization flag set to -O3. For comparison purposes, VIR

threaded ParaFRo for different benchmarks under different
configurations

VTR ParaFRo, all ParaFRo, cong.
Benchmarks 120% 140% | 120% 140% | 120% 140%
stereovision | 14 12 19 17 10 7
LUSPEEng 68 61 91 81 25 22
stereovision2 105 89 126 102 50 32
LU32PEEng 561 462 640 648 204 225
neuron 913 825 433 541 152 141
stereo_vision 473 486 351 397 108 118

[8] was compiled using the same gcc version and optimization
flag.

Table I shows a summary of the benchmarks used for the
experiments. They were circuits from VTR [8] and Titan
[11]. The chosen VTR benchmarks were among the biggest
in the package. MCNC [14] benchmarks were not evalu-
ated because even the largest MCNC benchmark took less
than a second to route. The architecture files used for VIR
and Titan circuits were k6_frac N10_mem32K_40nm.xml and
stratixiv_arch.timing.xml respectively. The benchmarks were
packed and placed using VTR before being routed by ParaFRo
and VTR with different routing parameters.

A. Speedup

In this subsection, we study the effect of four factors on
the speedup of ParaFRo: scheduling policy, channel width,
net reroute condition and number of threads. We refer to the
combination of the factors as a configuration, and the notations
used to specify it are summarized in Table II.

The channel width factor is specified relative to the mini-
mum channel width required to successfully route each bench-
mark with VTR. In our experiments, ParaFRo was executed
with channel widths that are 20% and 40% higher than the
minimum. Since ParaFRo is non-deterministic, five runs of
ParaFRo were executed for each configuration, and the average
was calculated. The results are shown in Table III, Figure 5
and 6. Since the execution times of ParaFRo for more than
one thread can be calculated easily from Figure 5 and 6, they
are not included in Table III.

1) Static scheduling: Figure 5 shows the normalized
speedup of ParaFRo when static scheduling is employed.
The speedups are normalized to the single threaded variant
of ParaFRo for each configuration. An interesting result is
that ParaFRo achieved super-linear speedup with certain con-
figurations. The most significant examples are neuron and
stereo_vision where super-linear speedup is achieved with 2
and 4 threads. This is due to the fact that these benchmarks are
more difficult to route, and ParaFRo transitions into phase two
earlier. As described in Section V-E, only congested nets from
phase one are routed in phase two. Therefore, the workload in

O Rk N WA U O N ®

120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%,

all cong. all cong. all cong. all cong. all cong.

stereovisionl LUSPEENg stereovision2

VTR 2 threads

all cong

4 threads

all cong. all cong. all cong. all cong. all cong. all cong

LU32PEENg neuron stereo_vision

8 threads

Fig. 5: Normalized speedups achieved by ParaFRo and VTR under different configurations with static scheduling. The results
are normalized to the their respective single threaded ParaFRo configurations.

later iterations of the ParaFRo when routing these benchmarks
is actually lower than that of single threaded ParaFRo. Due to
the same reason, stereo_vision is able to achieve a speedup of
close to 8X with 8 threads with the (120%, all) configuration.
However, there is no super-linear speedup because the increase
in the number of iterations required for convergence outweighs
the advantage gained from a lower workload.

In addition, it can be seen from Figure 5 that when only
congested nets are ripped up, the speedup of ParaFRo is
generally lower than when all nets are ripped up at the start of
every iteration. The reason is that routing only congested nets
causes higher load imbalance in later iterations of the router.

Some configurations of ParaFRo also fail to successfully
route larger benchmarks as indicated by speedup on 0 in Figure
5. It can be observed that when the channel width is 20%
higher than the minimum and only congested nets are rerouted,
the neuron and stereo_vision benchmarks fail to route with 4
and 8 threads. This is because some non-congested nets utilize
RR nodes that are critical to successfully route the congested
nets. The problem is resolved when the channel width is
increased to 40% higher than the minimum. In addition, the
same phenomenon is observed in Section VI-A2 when greedy
scheduling is employed. Therefore, we conclude that all nets
have to be rerouted in every iteration in order for ParaFRo to
converge in a high-stress condition where the number of wires
in the routing channel is limited.

The single threaded all variant of ParaFRo is algorithmi-
cally identical to VTR, and it can be seen in Figure 5 that
ParaFRo is slightly slower than VTR for smaller benchmarks.
On the other hand, the single threaded cong. variant of
ParaFRo is significantly faster than VTR especially for larger
benchmarks because not rerouting large and non-congested
nets in ParaFRo significantly reduces execution time.

Another observation that can be made from Figure 5 is
that the normalized speedup is relatively consistent across all
benchmarks.

2) Greedy scheduling: Intuitively, greedy scheduling would
achieve better speedup than static scheduling because of lower
load imbalance since the threads do not spend time idling.
However, as shown in Figure 6, this is generally not the
case. In fact, only some benchmarks such as stereovision2
and LU32PEEng have higher speedup than static scheduling
in certain ParaFRo configurations. This counter-intuitive ob-
servation can be explained with the result from [3] that the

nets have to be routed in the same order in every iteration
to achieve convergence. Greedy scheduling causes the order
in which the nets are routed to be different across iterations.
Therefore, the number of iterations required for convergence is
actually higher in greedy scheduling. As a result, even though
each routing iteration in greedy scheduling is shorter due to
better load balancing, this gain is canceled out by the higher
number of iterations required for convergence. An interesting
extension that will be addressed in future work is to combine
both greedy and static scheduling to obtain the best of both
policies.

Another observation that can be made from Figure 6 is that
in addition to the benchmarks that failed to route in Figure 5,
stereo_vision fails to route with 120%, cong., and 2 threads.
The reason behind this is the same as the aforementioned
reasons [3].

B. Critical Path Delay

ParaFRo’s critical path delay is also compared to VTR’s
to see if the quality of result is compromised as a result of
parallelization. The bar chart in Figure 7 and 8 show the
average critical path delay normalized to that of VIR’s for
static and greedy ParaFRo respectively. Anything that is below
the red line indicates an improvement over VIR and vice
versa.

It is clear from the figures that most benchmarks except
stereovisionl, neuron and stereo_vision have similar critical
path delay as compared to VTR. neuron is even routed
with a lower critical path delay than VTR. On average, the
normalized critical path delay is 1.0008. Unfortunately, Moctar
[10] and Shen [13] did not report the normalized critical path
delay so we are not able to compare with them.

Since ParaFRo is non-deterministic, we also investigate the
variations in terms of critical path delay. They are shown as
error bars on top of the bar chart in Figure 7 and 8. Except
for stereovisionl (Figure 8), neuron and stereo_vision (Figure
7 and 8), which have significant variations for some config-
urations, most benchmarks have very consistent critical path
delay across different runs of the algorithm despite the non-
deterministic nature of ParaFRo. In addition, it can be seen that
greedy ParaFRo yields more variations as compared to static
ParaFRo. However, despite the variations, it is important to
note that the worst critical path delay is only 3% more than
that of VTR’s (stereovisionl).

120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%,

all cong. all comg. all cong. all cong. all cong. all cong

stereovisionl LUSPEENg stereovision2

EVTR 2 threads

4 threads

all cong. all comg. all cong. all cong. all cong. all cong

LU32PEENg neuron stereo_vision

8 threads

Fig. 6: Normalized speedups achieved by ParaFRo and VTR under different configurations with greedy scheduling. The results
are normalized to the their respective single threaded ParaFRo configuration.

1.01 4

A1 s B

stereovision1 LUBPEENg stereovision2 LU32PEEng neuron stereo_vision
0 120%, all, 1t 0 140%, all, 1t 8 120%, cong., 1t 0 140%, cong., 1t
0 120%, all, 2 t 0 140%, all, 2t 0 120%, cong., 2 t 0 140%, cong., 2t
0 120%, all, 4 t 0 140%, all, 4 t 0 120%, cong., 4 t 0 140%, cong., 4 t
0 120%, all, 8 t B 140%, all, 8 t 0 120%, cong., 8t 8 140%, cong., 8t

Normalized critical path delay

Fig. 7: Average critical path delay of static ParaFRo and its
variation normalized to VTR’s for various benchmarks

1.03 q

1.01 b

(il

o [N I'F

stereovision1 LUBPEENg stereovision2 LU32PEEng neuron

Normalized critical path delay

stereo_vision

0 120%, all, 1t 0 140%, all, 1t o 120%, cong., 1t 0 140%, cong., 1t
0 120%, all, 2 t 0 140%, all, 2t 0 120%, cong., 2 t 0 140%, cong., 2t
0 120%, all, 4 t 0 140%, all, 4 t 0 120%, cong., 4 t 0 140%, cong., 4 t
0 120%, all, 8 t B 140%, all, 8t 0 120%, cong., 8 t B 140%, cong., 8t
Fig. 8: Average critical path delay of greedy ParaFRo and its

variation normalized to VTR’s for various benchmarks

In addition, the critical path delay is relatively independent
of the number of threads in most benchmarks. In other words,
quality of result is not sacrificed in favor of higher speedup.

C. Execution Profile

Figure 9 shows two different execution profiles of ParaFRo
(greedy, 120%, all). The two benchmarks are chosen to il-
lustrate the need for phase two of ParaFRo. It can be seen
that stereo_vision spends significantly more time in phase two
than LU32PEEng. A possible reason is that the number of
overlapping bounding boxes in stereo_vision is higher than
that of LU32PEEng. Therefore, the probability of threads
reading outdated congestion state in stereo_vision is higher
as the number of threads increases. This prevents the number
of congested RR nodes from decreasing monotonically, which
ParaFRo detects as a signal to transition into phase two.

In addition, Figure 9 also explains the reason why
stereo_vision has worse speedup than LU32PEEng in Figure
6. As the number of threads increases, the proportion of

700 400
Phase one ===
L 4 350 e Phase two ===
600 Cost updates ——
L Partitioning mmmm |
500 B 300 —

_ _ 250 —

© 400 | 1 @

- - 150 1
200 - 7 100 il
100 - i 5 50 |]

0 Ve <, < S 0 7 <, < &
Y. B B % %, B B %
L U
LU32PEENa stereo vision
Fig. 9: Execution time profile of LU32PEEng and

stereo_vision

TABLE IV: Summary of large Titan benchmarks used in the
experiments

Channel width
Benchmark Total nets | Total blocks [Min 120% 140%
cholesky_mc 65,672 5,328 238 286 334
des90 90,434 4,977 310 372 434
segmentation 125,589 9,047 292 352 410
stap_qrd 144,408 16,017 270 324 378
sparcT2_core 176,232 13,738 302 364 424
denoise 257,423 18,600 | 310 372 434

time spent in phase two for stereo_vision is higher than
LU32PEEng. Since phase two focuses on convergence instead
of load balancing, the speedup achieved in phase one is
outweighed by the poor load balancing in phase two. Besides,
the amount of time spent in phase two for stereo_vision with
8 threads is higher than that with 4 threads. As a result, the
speedup is worse for 8 threads as compared to 4 threads as
shown in Figure 6.

D. Large benchmarks

We have also experimented with larger Titan benchmarks
shown in Table IV. The results are reported separately in
this subsection because the minimum channel widths were
determined differently where a heuristic was added into VTR’s
binary search to significantly reduce the time required. The
heuristic came from the observation that the execution time
of routing iterations increases exponentially when trying to
route a benchmark with channel width that is too small. Such
an increase in execution time is detected, and the current

TABLE V: Execution time (in seconds) of VIR and single
threaded ParaFRo for large Titan benchmarks under different
configurations

VTR ParaFRo, all ParaFRo, cong.
Benchmarks 120% 140% | 120% 140% | 120% 140%
cholesky_mc 1,224 1,270 762 188 755 169
des90 2,250 2,906 | 3,551 434 | 1,592 403
segmentation 2,317 2,617 1,541 227 1,303 213
stap_qrd 2,852 2,533 | 2,138 598 1,750 508
sparcT2_core | 2,454 2,204 | 1,659 309 | 1,239 271
denoise 7,066 5,889 | 3,365 424 | 2,505 393

routing is terminated. The binary search then proceeds to route
with the next possible channel width. This early termination
significantly reduces the time required to find the minimum
channel width albeit with slight overestimation in some cases.
The minimum channel widths in Table IV is obtained by
setting the threshold at which the routing is terminated to be
5 times the execution time of the first routing iteration.

1) Speedup: Similar to Section VI-A, the execution time of
VTR and single-threaded ParaFRo is listed in Table V while
the speedup of ParaFRo is shown in Figure 10 and 11.

It can be seen in Figure 10 and 11 that single-threaded
ParaFRo is faster than VTR in all benchmarks except one
scenario of des90 (120%, all). This is because we have added
an enhancement that was proposed by Gort [5]. We observed
that the Logic Array Block (LAB) in stratixiv_arch.timing.xml
has equivalent data output pins. The equivalence causes con-
vergence issues because the packer assumes that each net will
use only one LAB output pin but nets with multiple sinks tend
to use more than one of those pins during routing. In order to
solve the problem, the enhancement that we have added forces
the router to use the same output pin to route the rest of the
sinks once the first sink of the net has been routed.

In addition, the speedup of static ParaFRo is relatively
consistent across all benchmarks except for cholesky_mc
(120%, all & 140%, all), des90 (120%, all) and stap_qrd.
des90 (120%, all) achieved superlinear speedup because the
single-threaded ParaFRo took twice as many iterations to route
as compared to multi-threaded ParaFRo. cholesky_mc (120%,
all & 140%, all) and staq_qrd have worse speedups com-
pared to other benchmarks because our simple load balancing
mechanism does not work well for the two benchmarks. Static
ParaFRo also managed to route all the benchmarks in Table
V.

On the other hand, the speedup of greedy ParaFRo is gen-
erally less consistent and lower than that of static ParaFRo as
shown in Figure 11. Greedy ParaFRo also failed to route some
benchmarks under certain configurations. These observations
are due to the same reason explained in Section VI-A2 that
nets have to be routed in the same order in every iteration to
ensure convergence.

2) Critical Path Delay: As shown in Figure 12!, static
ParaFRo achieved lower critical path delay than VTR in
almost all benchmarks, and the critical path delay is relatively

'Due to time constraint, we managed to run ParaFRo only once for each
configuration and benchmark. Therefore, the variations in terms of critical
path delay are not shown.

independent of the number of threads. Greedy ParaFRo also
has lower critical path delay than VTR in most benchmarks
as shown in Figure 13 but the worst degradation is around 5%
higher than that of static ParaFRo.

E. Comparison with existing works

In Figure 14, we compare the average speedup of ParaFRo
to existing parallel routers. The speedup is normalized to
VTR and averaged across the twelve benchmarks that we
evaluated so that a fair comparison with existing works can be
made. While we used 20% and 40% higher than the minimum
channel width for our experiments, Gort [5], Moctar [10] and
Shen [13] used 30%, 40% and 40% respectively.

We can see in Figure 14 that with only 20% higher than
the minimum channel width and rerouting all nets, static
ParaFRo outperforms all existing parallel routers except Gort’s
enhanced router. On the other hand, when only congested nets
are rerouted, ParaFRo has significantly higher speedup than all
existing works. It is also faster than Gort’s enhanced router,
which also reroutes only congested nets.

Compared to VTR, static ParaFRo with 8 threads is 6.2X
faster when all nets are rerouted with 20% higher than the min-
imum channel width. When only congested nets are rerouted,
static ParaFRo with 8 threads is 26.2X faster than VIR with
the same channel width (20% higher than the minimum).
Given more routing resources (40% higher than the minimum),
static ParaFRo with 8 threads is able to achieve a speedup of
6.8X and 27.6X relative to VTR when all and only congested
nets are rerouted respectively.

VII. FUTURE WORKS

Currently, one of the limitations of ParaFRo is that it is
non-deterministic. This is because the congestion costs seen
by each thread is dependent on the time at which the thread
discovers a RR node. Since threads do not run at exactly the
same speed, the result of ParaFRo is non-deterministic due to
race conditions.

Fortunately, we believe that it is possible to achieve de-
terminism in ParaFRo, and we will continue to explore the
idea in the future. In order to achieve deterministic results
upon successive routing runs, it is imperative that all the nets
see the same cost of resources as in the previous runs. This
requires two conditions to be satisfied — all the nets should be
routed in the same order, and the cost of the resources while
a net is being routed should be the same as in previous runs.

While the first condition can be satisfied with a static
scheduling algorithm and barriers to ensure the same order
of nets during each run, the second condition requires a copy
of the congestion state to be stored before routing a net in
each thread. While routing a net, cost of using a RR node is
calculated based on the stored congestion state. In this case,
the congestion costs seen by a thread is no longer dependent on
the execution speed of the thread. Once a net has been routed
by a thread, the first order congestion costs are updated before
waiting for other threads to complete the same using a barrier.
The process is repeated until all the nets are routed. Although
this approach guarantees determinism, the speedup may be

120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%,
all all cong. all cong. all cong. all cong.

Ok, N WA U O N ®

120%,

all cong. cong.

cholesky_mc des90 segmentation

EVTR N2 threads

120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%,

all cong. all cong. all cong. all cong. all cong. all cong.

stap_ard sparcT2_core denoise

4 threads 8 threads

Fig. 10: Normalized speedups achieved by ParaFRo and VTR under different configurations with static scheduling for large
Titan benchmarks. The results are normalized to the their respective single threaded ParaFRo configuration.

83

Ok N WS U O N

120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%,

all cong. all cong. all cong. all cong. all cong. all cong.

cholesky_mc des90 segmentation

EVTR B 2threads

120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%, 120%, 120%, 140%, 140%,

all cong. all cong. all cong. all cong. all cong. all cong.

stap_qrd sparcT2_core denoise

4 threads 8 threads

Fig. 11: Normalized speedups achieved by ParaFRo and VTR under different configurations with greedy scheduling for large
Titan benchmarks. The results are normalized to the their respective single threaded ParaFRo configuration.

=}
@

o
©
@

0.9

Normalized critical path delay

denoise
0 140%, cong., 1t
0 140%, cong., 2t
0 140%, cong., 4 t
B 140%, cong., 8 t

des90 segmentation
0 140%, all, 1t
0 140%, all, 2 t
0 140%, all, 4 t
B 140%, all, 8 t

stap_qrd sparcT2_core
o 120%, cong., 1t
0 120%, cong., 2t
0 120%, cong., 4 t
0 120%, cong., 8 t

cholesky_mc
0 120%, all, 1t
0 120%, all, 2 t
0 120%, all, 4 t
0 120%, all, 8 t

Fig. 12: Critical path delay of static ParaFRo normalized to
VTR’s for large Titan benchmarks

1.05

0.95

0.9

Normalized critical path delay

cholesky_mc des90 segmentation stap_qrd sparcT2_core denoise

0 120%, all, 1t
0 120%, all, 2t
0 120%, all, 4 t
0 120%, all, 8 t

0 140%, all, 1 t
0 140%, all, 2t
1 140%, all, 4t
B 140%, all, 8

o 120%, cong., 1t
0 120%, cong., 2 t
0 120%, cong., 4 t
0 120%, cong., 8 t

0 140%, cong., 1t
0 140%, cong., 2t
0 140%, cong., 4 t
B 140%, cong., 8t

Fig. 13: Critical path delay of greedy ParaFRo normalized to
VTR’s for large Titan benchmarks

reduced due to the overhead of waiting in the case where
workloads among threads are unbalanced. Therefore, we also
plan to investigate more effective load balancing mechanisms
so that speedup is not dramatically reduced when achieving
determinism.

Gort [5] Gort Shen [13] Moctar [10]
(130%, all) enhanced (140%, all) (140%, all)
5] (130%,
cong.)

greedy static greedy static greedy static | greedy static

120%, all 120%, cong. 140%, all 140%, cong. Existing works

W2 threads M4 threads 8 threads

Fig. 14: Comparison of ParaFRo’s average speedup with
existing works

VIII. CONCLUSIONS

This paper presents ParaFRo — a hybrid parallel approach to
route nets in an FPGA design. The algorithm has two phases:
the first phase tries to minimize load imbalance in order
to achieve maximum parallelism. Once the congestion stops
decreasing monotonically, the second phase of the algorithm
is triggered where the remaining congested nets are parti-
tioned and rerouted. This hybrid approach provides a scalable
methodology while ensuring convergence. The approach has
been evaluated with benchmarks of various sizes from VTR
and Titan. When only congested nets are rerouted, ParaFRo
with 8 threads is 26.2X faster than VTR.

IX. ACKNOWLEDGMENTS

This work is supported in part by the German Research
Foundation (DFG) within the Cluster of Excellence “Center
for Advancing Electronics Dresden” (cfaed) at the Technische
Universitidt Dresden.

[1

—

[2

—

[3]

[4]

[5]

[6]

REFERENCES

V. Betz and J. Rose. VPR: A new packing, placement and routing tool
for FPGA research. In FPL, pages 213-222, 1997.

L. A. Cabral, J. S. Aude, and N. Maculan. TDR: A distributed-memory
parallel routing algorithm for FPGAs. In Field-Programmable Logic and
Applications: Reconfigurable Computing Is Going Mainstream, pages
263-270. Springer, 2002.

P. K. Chan, M. D. Schlag, C. Ebeling, and L. McMurchie. Distributed-
memory parallel routing for field-programmable gate arrays. [EEE
TCAD, 19(8):850-862, 2000.

X. Chen, J. Zhu, and M. Zhang. Timing-driven routing of high fanout
nets. In FPL, pages 423-428. IEEE, 2011.

M. Gort and J. H. Anderson. Accelerating FPGA Routing Through
Parallelization and Engineering Enhancements, Special Section on PAR-
CAD 2010. [EEE TCAD, 31(1):61-74, 2012.

C. H. Hoo, A. Kumar, and Y. Ha. Paralar: A parallel fpga router based
on lagrangian relaxation. In FPL, pages 1-6. IEEE, 2015.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing,
20(1):359-392, 1998.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, et al. VTR 7.0: Next generation
architecture and CAD system for FPGAs. TRETS, 7(2):6, 2014.

L. McMurchie and C. Ebeling. PathFinder: a negotiation-based
performance-driven router for FPGAs. In ACM/SIGDA FPGA, 1995.

Y. O. M. Moctar and P. Brisk. Parallel FPGA Routing based on the
Operator Formulation. In DAC, pages 1-6. ACM, 2014.

K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. Timing-driven titan:
Enabling large benchmarks and exploring the gap between academic and
commercial cad. TRETS, 8(2):10, 2015.

K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
et al. The tao of parallelism in algorithms. ACM Sigplan Notices,
46(6):12-25, 2011.

M. Shen and G. Luo. Accelerate fpga routing with parallel recursive
partitioning. In /ICCAD, pages 118-125. IEEE, 2015.

S. Yang. Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

