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ABSTRACT
List Scheduling is one of the most widely used techniques for schedul-

ing due to its simplicity and efficiency. In traditional list-based

schedulers, a cost/priority function is used to compute the priority

of tasks/jobs and put them in an ordered list. The cost function

has been becoming more and more complex to cover increasing

number of constraints in the system design. However, most of the

existing list-based schedulers implement a static priority function

that usually provides only one schedule for each task graph input.

Therefore, they may not be able to satisfy the desire of system de-

signers, who want to examine the trade-off between a number of

design requirements (performance, power, energy, reliability . . . ).

To address this problem, we propose a framework to utilize the

Genetic Algorithm (GA) for exploring the design space and ob-

taining Pareto-optimal design points. Furthermore, multiple regres-

sion techniques are used to build predictive models for the Pareto

fronts to limit the execution time of GA. The models are built using

training task graph datasets and applied on incoming task graphs.

The Pareto fronts for incoming task graphs are produced in time 2

orders of magnitude faster than the traditional GA, with only 4%

degradation in the quality.

CCS Concepts
•Computer systems organization → Embedded software;
•Hardware → Operations scheduling;
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Design space exploration; List-scheduling; Machine Learning

1. INTRODUCTION
Since its first introduction, list-based scheduling has been exten-

sively used in different domains from operational research to elec-

tronic system design and cloud computing [14, 21]. In the field of

electronic system design, the spirit of list-based approach is widely
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adopted with the usage of cost/priority function to guide various

resource management processes: mapping, scheduling, placement

and routing. For scheduling problems, all tasks in a task graph are

sorted into a list by a priority function; then they are allocated on

the computational platform by their order in the list. While the very

first schedulers were mostly performance-oriented and focused on

reducing the schedule length; in recent list-based approaches, the

cost function evolves over time to cope with different requirements

of the design process: new terms added to reflect the pay-off in

hardware resource, energy consumption, or reliability [15,18]. How-

ever, the main limitation of existing list-based schedulers is their

ability to produce only one scheduling result for each application;

therefore, the trade-off between different design objectives cannot

be examined.

To address this problem, multi-objective approaches such as Ge-

netic Algorithm (GA) and Particle Swarm Optimization (PSO) were

proposed [9]. In these approaches, the components in the cost func-

tions are parameterized; hence, with the same task graph, different

parameter sets give different scheduling results. Each combination

of different choices for these parameters provides a single option

in terms of design objectives (performance, energy. . . ) and forms

a specific design point in the design space. Thereafter, these algo-

rithms can help the designers to efficiently traverse the design space

and generate a set of points that are superior in one of the objective

dimensions. These points form the Pareto front, which is the Holy

Grail for system designers since it not only provides the insight

into the trade-off between different objectives but also allows them

to choose the most efficient design for different purposes. However,

the process of traversing the design space in GA and PSO is usually

very time-consuming due to the exponential increase in the number

of design points to the dimension of the space, which are the num-

ber of coefficients in the priority functions. The problem is worse

when the scheduling algorithm is complicated and the evaluation

time for each design point is long.

Recently, learning based techniques are emerging in the resource

management domain of electronic system design. Several works

have used Machine Learning (ML) techniques to solve time con-

suming issues such as placement and routing [11,16]. For schedul-

ing problem, the ML approaches are well-studied for performance

modeling and resource allocation in cloud computing [10]. How-

ever, to the best of our knowledge, there is no reported ML-based

attempts that try to solve the time consuming problem of generating

Pareto front for list schedulers during GA optimization.

Our contributions: Towards the same purpose, we propose a

multi-level Machine Learning framework that utilizes Spline Re-

gression and Linear Regression to build predictive models for Pareto



fronts from a training set of task graphs (TG) and applies these pre-

dictive models to accurately estimate the Pareto fronts of new in-

coming tasks in a fraction of time when compared to GA approach.

Following are our main contributions in this work:

• Developing a comprehensive multistage framework for in-

tegrating GA and ML techniques to optimize existing list-

based schedulers: from generating data to building predictive

models and predicting Pareto fronts for new TGs;

• Building a systematic representation of Pareto front curves

with Spline regression models;

• Applying the Linear Regression techniques to model the de-

pendency between Spline model of Pareto front and TG’s

features;

• Applying Density-base Clustering Algorithm to generate near-

Pareto-optimal design points.

Paper Organization: Section 2 presents state-of-the-art related

to GA and ML techniques in scheduling domain. Section 3 pro-

vides the overview of our multistage framework. The details of

Pareto front Generating phase are presented in Section 4. Section

5 covers the main Regression techniques used in Model Building

Phase. Section 6 describes the implementation of Predicting Phase.

In Section 7, experimental results are reported and Section 8 pro-

vides the conclusion.

2. RELATED WORK
Genetic algorithm approaches have been used intensively for op-

timizing scheduling algorithms, especially in cloud computing sys-

tems [9]. However, when it comes to multiprocessor systems (MPS)

with tight timing requirements, the applications of GA are quite

limited because of its time-consuming behavior. Sutar et al. pro-

posed memetic algorithm that combines GA with simulated an-

nealing to solve the scheduling problem of precedence constrains

tasks [23]. Towards using GA-based scheduling algorithm with

primary-backup scheme to improve the fault-tolerance of real-time

MPS, Zarinzad et al. and Samal et al. proposed their frameworks

in [25] and [20] respectively. Obviously, none of above-mentioned

studies incorporates ML techniques to solve the time-consuming

problem of GA methods in scheduling domain. That unique point

makes our work stand out from previous studies, which also try to

apply GA approaches for solving scheduling problems.

Recently, ML techniques have emerged as a promising and ef-

ficient solution for resource management problems. A compre-

hensive survey on existing learning-based approaches for the same

problems on cloud computing systems has been conducted by Hor-

mozi et al. [10]. More specific overview on the direction of energy

minimization is presented by Berral et al. [2]. As summarized from

these works, the main application of ML techniques in scheduling

problem is performance modeling and Quality of Service (QoS)

modeling. For performance modeling purpose, the historical data

on execution trace of previous applications are used to build pre-

dictive models to forecast the performance of new coming applica-

tions [12]. In the other hand, the models for QoS are usually built

based on the dependency with available resource (CPU, memory,

bandwidth . . . ) and application requirements [3]. These models

are then used to assist the scheduler at runtime to efficiently allo-

cate the resources. Second approach to apply ML techniques in

resource management is to classify applications and make decision
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Figure 1: Proposed framework

based-on the classification results [7]. Using unsupervised learn-

ing techniques such as Reinforcement Learning to build autonomic

self-management schedulers is another trend not only in cloud com-

puting [17] but also in digital system design [5].

Amongst above-mentioned body of works, our framework is most

related to the first application of ML in resource management do-

main since we also use regression techniques to build predictive

models. However, the differences in purpose and the interaction be-

tween scheduling algorithms and ML techniques make our frame-

work unique and novel. While the existing works try to assist the

schedulers by predicting the performance or QoS of new applica-

tions, our framework tries to model the behavior of schedulers dur-

ing GA optimization process and build predictive model for the

result of that procedure (i.e. Pareto front).

3. OVERALL FRAMEWORK
In this section, we provide an overview of the working flow and

the general functionality of the components in our framework. Ba-

sically, we explain how the Genetic Algorithm (GA) and Machine

Learning (ML) techniques are utilized to optimize the list-based

schedulers. As can be seen from Fig.1, our framework has 3 main

phases, 2 of them execute at training time: Generating Pareto front

and Model Building Phase, while the other Prediction Phase runs

at execution time.

3.1 Phase 1: Generating the training database
In the first phase, the original Scheduling Algorithm is wrapped

by the GA optimization process, which takes a bunch of previously

generated task graphs (TG) as the input, iterates through their de-

sign spaces and generates the optimal Pareto front for each TG.

The generated Pareto fronts are stored in a database to feed to the

Model Building Phase after being processed by the Normalizing
block. The implementation details of this phase are discussed in

Section IV.

3.2 Phase 2: Building the predictive models
The Model Building phase contains main contributions and most

of the novelties of our work. The procedure in this phase starts

from Spline Regression block, which takes the normalized Pareto

front curves from Phase 1 as input and builds Spline Regression

models that fit the Pareto curve with acceptably small error. There-



after, it filters out the most Volatile Coefficients of generated Spline

models and sends them to Linear Regression block, which is the

second most important ML block. This module receives historical

data, which are Volatile Coefficients from Spline Regression block

and range of Pareto front from Phase 1, as well as the Features of

respective TGs in the TG dataset. From these inputs, it builds Lin-

ear Regression models that characterize the dependences of Spline

Coefficients and Pareto range on the TG features. The Predictive

models output from this module are sent to Phase 3 for use at execu-

tion time. The last component of Model Building Phase is Feature
Extraction block, which computes the most important metrics of

TG and creates new concise and systematic representation for TG.

In the training phase, this block processes the TG from historical

Dataset and sends the features to Linear Regression block; while in

Prediction Phase, it computes features for new TGs and feed them

to the Applying Model block. The components of Model Building

Phase are further presented in Section V.

3.3 Phase 3: Prediction at execution time
The last phase in our framework utilizes the results from previ-

ous stages to generate the Pareto front for a new TG at execution

time. The first building block in this phase is Applying Model com-

ponent, which takes the Linear Regression models and features of

the new TG to build the estimated Pareto curve. The Trace back
block produces the real design points on Pareto front from previ-

ously estimated curves.

3.4 Advantages
Our framework is developed with a fashion of modular approach

so that the designers can freely customize by plugging in new sched-

ulers, new multi-objective optimization approaches or new ML tech-

niques. At the same time, the framework is also uniformly practical

in the sense that the designer can quickly apply for a new schedul-

ing algorithm just with the built-in components. The only part that

might need to be customized is the Feature Extraction block, which

needs to be adapted for the application models (i.e. Task Graph,

SDF, or Kahn Processing Network (KPN). . . ). For the ease of rep-

resentation and reducing the level of abstraction, the detailed im-

plementation of the components in the follow Sections will be pre-

sented with examples, which show how to apply our framework to a

specific algorithm named energy-conscious scheduling (ECS) [15].

4. PHASE 1:GENERATING THE TRAINING
DATABASE

During the design process, system designers need to explore

the design space to find the solutions that satisfy the trade-offs

between often conflicting criteria such as: performance (through-

put, latency), hardware usage, energy consumption and reliabil-

ity. The commonly-used tools to facilitate this exploration process

are multi-objective optimization algorithms such as: Evolutionary

Algorithm and Particle Swarm Optimization (PSO). The result of

these optimizations is the Pareto front on the objective space that

contains non-dominated design points, which have no other design

points that better than themselves in all dimensions of the objective

space. In our example with ECS, the objectives under consideration

are Schedule Length and Energy consumption.
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Figure 2: Original Pareto front of 5 task graphs

4.1 Generating the Pareto fronts with Genetic
Algorithm

To apply the GA for scheduler ECS, we first need to parameterize
the cost function from [15]. The original cost function given by
Eqn.1 provides only one scheduling result for each TG, while the
parameterized version in Eqn.2 offers various scheduling solutions
with different set of parameters (α, β, γ, δ, η).

RS(ni, pj , vj,k, p
′, v′) =

E(ni, pj , vj,k)− E(ni, p
′, v′)

E(ni, pj , vj,k)

+
EFT (ni, pj , vj,k)− EFT (ni, p

′, v′)
E(ni, pj , vj,k)−min(EFT (ni, pj , vj,k), EFT (ni, p′, v′))

(1)

RS(ni, pj , vj,k, p
′, v′) =

α ∗ E(ni, pj , vj,k)− β ∗ E(ni, p
′, v′)

E(ni, pj , vj,k)

+
γ ∗ EFT (ni, pj , vj,k)− δ ∗ EFT (ni, p

′, v′)
E(ni, pj , vj,k)− η ∗min(EFT (ni, pj , vj,k), EFT (ni, p′, v′))

(2)

Where E(ni, pj , vj,k) and E(ni, p
′, v′) are the energy consump-

tion of task ni on processor pj with operating voltage vj,k and

that of task ni on p′ with v′, respectively, and similarly the earli-

est finish times of the two task-processor allocations are denoted as

EFT (ni, pj , vj,k) and EFT (ni, p
′, v′). The relative superiority

RS(ni, pj , vj,k, p
′, v′) is the objective function that balances both

performance considerations. More details on ECS can be found

in [15]. The parameters (α, β, γ, δ, η) are chosen to capture all the

important factors that might affect the result of objective function.

Thereafter, the GA is used to explore the space of these param-

eter set to find the Pareto front in the objectives space. In gen-

eral, the GA encodes the parameters in the form of chromosome

and uses the objectives as criteria to heuristically search for better

parameters by iterating from generation to generation. The good

parameter sets are transferred through generations by inheritance

while the new potential parameter sets are explored through muta-

tion. There are quite a number of different implementations of GA

but we use the NSGA II algorithm because of its proven efficiency

and popularity [22]. The choice of GA depends on the designers’

taste and by no means limits the generalization capability of our

framework.
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Figure 3: Normalized Pareto fronts and their Spline Models

4.2 Normalizing the Pareto fronts to uniform
curves

Fig.2 shows an example of Pareto fronts of 5 TGs, which are the

outcome from GA block. As can be observed, the general shapes

of the Pareto curves are somehow similar while the range and the

scale of these curves have major differences. To overcome this

problem and make the Pareto fronts easier to interpret and more

uniformly across the TG dataset, we normalize the curves so that

all the Pareto fronts fit in the range of [0, 1] for all dimensions of

objectives (Schedule length and Energy). The formulas used in

the normalization process are given in Eqn.3 - Eqn.4. The Pareto

fronts after normalizing step are presented in Fig.3. As can be seen,

the common pattern of Pareto curves becomes more apparent when

they are nicely fitted in the range of [0, 1].

Ti = (Ti − Tmin)/(Tmax − Tmin) (3)
Ei = (Ei − Emin)/(Emax − Emin) (4)

Where Ti and Ei denote the Schedule length and Energy con-

sumption of the i-th point on the Pareto front. Tmax, Tmin and

Emax, Emin represent the range of Pareto curve in two objective

dimensions.

5. PHASE 2: BUILDING THE PREDICTIVE
MODELS

As discussed earlier, the Model Building phase contains two

main blocks that integrate Spline Regression and Linear Regres-

sion techniques into our framework.

5.1 Build Spline Regression for Pareto curves
After observing the similar pattern in normalized Pareto curves,

we try to quantify the similarity by transforming the curves into a

more systematic representation, which is a function describing the

relationship between Energy and Schedule Length of the points on

Pareto curve. Based on the continuity and the curvy shape of the

Pareto front, a number of different regression models have been

tested to find appropriate function such as: piece-wise polynomial

regression, smoothing spline, local regression [8]. Amongst them

Cubic Spline Regression is nicely fitted into our framework due to

the balanced trade-off between accuracy and computational com-

plexity [8].

In general, Spline Regression partitions the whole range of pre-

dictor (Schedule Length) into K distinct intervals. Then, in each

interval, it tries to fit a polynomial function to the data. For the

Cubic SplineâĂŹs case, 3-degree polynomials are used. Unlike

normal Piecewise Polynomial Regression, a set of constraints on
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Figure 4: Details of Model Building and Prediction Phases

continuity are applied to ensure smooth transformation between in-

tervals. The division points are called knots and the choices of

their number and values are very important factors in Spline Re-

gression. K = 3 has been found empirically to provide the best

curve fitting vs. computation trade-off. The general formulation of

Cubic Spline model is given in Eqn.5:

yi = β0 + β1b1(xi) + β2b2(xi) + . . .+ βK+3bK+3(xi) + εi

b1(xi) = xi

b2(xi) = x2
i

b3(xi) = x3
i

bk+3(xi) = (xi − ξk)
3
+, k = 1, . . . ,K

where

(xi − ξk)
3
+ =

{
(xi − ξk)

3, if xi > ξk

0 otherwise
(5)

Where yi is the response and xi is the predictor. In our case

yi and xi is the Energy and Schedule Length of the i-th point in

Pareto front; β0 − βK+3 are the coefficients of the models. They

are different from TG to TG and each coefficient set characterize

the Pareto curve of a specific TG. b1 − bK+3 are the basic func-

tions of the models. ξk are the knots; the basic functions relative

to the knots b4 − bK+3 imply the constraints that the curve will be

continuous up to 2-orders of derivatives at each knot; hence, ensure

the smoothness of the curve. From the Eqn.5, we need (K + 4)
Coefficients to define a unique Cubic Spline or Pareto curve of a

specific TG.

Fig.4 presents more details on the functionality of blocks and

process in Phase 2 and Phase 3. After generated in Spline Regres-

sion block, the Spline Coefficients are classified into Volatile and

Consistent Coefficients. The Consistent Coefficients have a small

variance compared with their average (≤ 10%) and they do not

vary much across different TGs. So, we can use their mean for the

new coming Task graphs. Therefore, they are transferred directly to

Predict Normalized Pareto block. In contrast, the coefficients with

large variance, i.e. more than 10% of their mean, are defined as

Volatile Coefficients. These coefficients change values from TGs to



TGs and are dependent on the TG features. Therefore, we need the

Linear Regression model in Subsection V-B to characterize this de-

pendency and they are sent to Linear Regression block. The thresh-

old of 10% is derived empirically and might be tuned for different

Regression techniques. Generally, for majority of the regression

techniques, the threshold of 10% gives a good trade-off between

computational effort and accuracy of final results. For example,

Fig.5 shows Boxplot graph of 3 − knots Cubic SplineâĂŹs coef-

ficients from dataset of 40 TGs. It is obvious that only 5 out of 7
coefficients vary across the TGs; hence, they are potential candi-

dates of Volatile Coefficients.

5.2 Build Linear Regression for Spline’s Volatile
Coefficients and Pareto’s range

From the above discussion, the real Pareto front of a TG can

be rebuilt based on 3 types of parameters: the range of Pareto

curve, the Volatile Coefficients and the Consistent Coefficients of

the Spline Model. Amongst them, only the Consistent Coefficients

are unchanged across the TGs while the others are dependent on

the features of TG. Therefore, we need to build predictive models

to capture the dependencies of the range of Pareto curve and the

Volatile Coefficients on the TG’s features. That also describes the

role of Linear Regression (LR) block in our framework. As can be

seen from Fig.4, there are 2 sub-modules in this block: Linear Re-
gression for Pareto’s range and Linear Regression for Volatile Co-
efficients. The former sub-module takes input from training Pareto

curves and associate TG features to generate the LR models for

predicting the min, max of Pareto curves. The later sub-module

uses training Volatile Coefficients generated from Spline Regres-

sion block to build the model for predicting normalized Pareto curve

in Prediction Phase. The general formulation of LR model is given

in Eqn.6:

Yi = β0 + β1X1 + β2X2 + . . .+ βnXn + εi (6)

Where Yi is the outcome. In our framework it will be the min,

max of Schedule Length and Energy of points on Pareto curve or

the Volatile Coefficients of Spline Model. βi is the coefficients of

LR model. In our example, there will be 9 models and coefficient

sets in total, 5 for predicting the Volatile Coefficients and 4 for esti-

mating the range of Pareto front. Xi refers to the features extracted

from TGs such as: number of tasks, number of edges, maximum

bottom level, maximum top level, mean of task size, variance of

task size, mean of edge length, variance of edge length. These fea-

tures are selected from popular metrics of a TG [14] and its statis-

tics. The reason behind the choices of TG’s features and LR is once
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again the trade-off between accuracy and computational complex-

ity. In fact, the simple LR model can well describe the dependency

between the TG’s features and the outcomes since it can explain

more than 95% of the variation in the dataset (R2 >= 0.95). As

mentioned above, the features selection depends on the application

model used by original scheduling algorithm. For other applica-

tion models such as SDF or KPN, the designers may need different

Feature Extraction blocks.

6. PHASE 3: APPLYING THE ML MODELS
FOR PREDICTION AT RUNTIME

Fig.6 presents the execution procedure in the third phase of our

framework. When a new TG comes, its features are extracted and

sent to Applying Model block to generate an estimated Pareto

curve, which is denoted as curve (C). The Trace back module is

introduced to obtain real Pareto points on the curve. The detailed

steps of Trace back are presented in the dotted rectangle. First,

the targeted point (unfilled-point) and estimated curve (curve (C))
are put on the same normalized objective space with the Pareto

fronts of training TGs. Then, k-nearest neighbors (k-NN) of the

targeted point are extracted. Subsequently, the parameter space of

these k-NN points are fed from historical data and merged together

to form a potential parameter space. Thereafter, a clustering al-

gorithm called Ordering points to identify the clustering structure
(OPTICS) [1] is applied to potential parameter space to filter out m
potential parameter sets, which have the largest local density fac-

tor. Finally, the scheduling algorithm is called for these m potential
parameter sets to generate the desired points on objective space that

are closest to the targeted point. The rationale behind the k-NN and

OPTICS steps is to extract the most potential parameter sets from

the historical parameters space.

There are 2 obvious use cases, where our framework can be ap-

plied efficiently.

• Generating the most efficient design points that satisfy pre-
defined constraints on objectives: this use case is similar to the

procedure described above where the targeted point is defined by

the objective’s constraints. Our approach provide a huge advan-

tage over the Multi-objective Algorithms (MOAs) in term of ex-

ecution time since we just need to evaluate several points on the



objective space while the traditional MOAs need to generate the

whole Pareto fronts before obtaining the design points satisfied the

constraints. The difference is especially significant when the bot-

tleneck is usually attributed to the scheduling procedure which is

called to generate a design point on the objective space.

• Generating the whole Pareto front of a new TG: in this sce-

nario, the designer can divide the estimated Pareto curve in n- in-
tervals and run Trace back procedure for each point of these in-

tervals. The results are combined to form the Pareto front for the

new TG. The traditional alternatives for this use case are existing

Multi-objective Algorithms and GA is one of the most prominent

candidate.

Although our framework is presented with an example of 2 di-

mensional objective space, applying our framework to multi dimen-

sional objective space is straight forward. The only major change

is in the Spline model for Pareto fronts (Subsection 5.1). The steps

to modify our framework for multi-dimensional objective space are

described below:

• Choose one of the objectives as the response (yi);
• Consider the remaining objectives as the predictors (xi ,

zi , ui . . . ) ;

• Build the Spline model for the response based on the poly-

nomial of predictors. Eqn.5 will now include the components of

(zi, ui . . .) similar to the ones for (xi).
• Apply the rest of the framework as described above.

The consequence of multi-dimensional design space is that the

number of Volatile Coefficients might be increased and the execu-

tion time of the whole framework might be longer. However, the

same implication exists for GA methods as well. Therefore, we

expect the speedup of our framework to remain the same or even

improve further.

7. EXPERIMENTAL RESULTS
A number of experiments are conducted to evaluate the perfor-

mance and efficiency of our framework. Because of the limited

space, in this section we report only the result of experiments con-

ducted for the second use case, where the designer wants to gen-

erate the whole Pareto front. This also allows comparison of our

framework directly with the GA method. For the first use case,

the run time performance can be approximated from the run time

reported here, whereas the quality of the outcome needs more thor-

ough examination. We have applied our framework to a list-based

scheduler named ECS [15]. The scheduler is coded in Java, the

GA optimization is implemented with the NSGA II algorithm from

NGPM package [22] in Matlab 2013 and run with a configuration

of 50 population size and 100 generations. Finally, the ML tech-

niques are developed with R 3.2 and Splines package [19]. All

experiments are performed on an Intel Core i7 2.26GHz CPU with

8 GB RAM. The platform under scheduling has 4 heterogeneous

processors that can operate in different levels of Supply Voltage

as in the original platform model [15]. The Energy and Schedule

Length are obtained with the energy model and execution model

used in the original Scheduler ECS [15]. The criteria for compar-

ison in our experiments are quality of generated Pareto fronts and

the execution time of all methods.

7.1 GA method over original scheduler
In the first experiment, we examine the efficiency of GA meth-

ods and the accuracy of our Pareto front estimation, which is the

result of our ML framework prior to applying the Trace back mod-

ule. This experiment is performed with 3 synthesized groups of
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Figure 7: Result for single TG from fat group

TGs, each with 50 TGs, which are generated from TGFF tool [6]

with different levels of parallelism: fat, medium, slim. Out of 50

TGs in each group, 40 TGs are used as training set in Phase 1 and

Phase 2 of our framework. The predictive models are built with

10-fold Leave One Out Cross Validation process [8] to assure the

generalization capability of the models. The other 10 TGs are used

as new TGs to test the accuracy of the ML techniques. All the

results shown in this Section are from the test set.

Fig.7 shows the design space for 1 TG in the fat type. The red

plus sign presents the scheduling result from original ECS, while

the real Pareto front from GA method is marked with blue circle

points and the estimated Pareto curve by ML techniques is pre-

sented as continuous green line. It is obvious that the GA algo-

rithm provides far better results in all objective dimensions when

compared with original scheduler. It is easy to understand since

the GA has to pay a huge trade-off in running time to achieve such

a superior result as can be seen later in the runtime analysis part.

The more interesting observation is that the Pareto curve estimated

by our 2 levels ML techniques is very close to the real Pareto front

generated by GA. This result proves that both the Spline Regres-

sion and Linear Regression have done a good job in modeling the

dependency between TG’s features and Pareto front curve.

Fig.8 combines all the results from 10 TGs in the test set into

one plot. As can be seen from these figures, the superiority of GA

over original schedulers and the accuracy of our estimated Pareto

curve hold true for all the TGs in the test set across 3 different

TG types. Another interesting phenomenon is that the shape of

Pareto fronts becomes more homogeneous when moving from fat
to slim group; the results of GAs also become less dominating over

the results of original scheduler. This can be explained by the fact

that the TGs with higher parallelism will have more different ways

to be placed on the computational platform; hence, their design

spaces are bigger and more heterogeneous. The chance that original

scheduler produces a result in suboptimal region of the design space

is also higher.

7.2 Our framework over GA method
While previous experiment has shown that the estimated Pareto

curves are very close to the GA Pareto front, they are just inter-

mediate result and need to be processed by Trace back module
to generate real design points on objective space. In this experi-

ment, we examine the ultimate result of our framework which are

generated after Trace back module. These results are compared

directly with the Pareto fronts from GA method. Fig.9a and Fig.9b

show the result for 1 TG in the fat type and medium type. The red



1000 2000 3000 4000 5000 6000

60
00

10
00

0
14

00
0

18
00

0

Schedule Length

E
ne

rg
y

(a) Fat group

1000 1500 2000 2500 3000 3500 4000

40
00

80
00

12
00

0

Schedule Length

E
ne

rg
y

(b) Medium group

2000 3000 4000 5000 6000

40
00

80
00

12
00

0

Schedule Length

E
ne

rg
y

(c) Slim group

Figure 8: Combined result of all TGs in test set

points are the Pareto front generated by GA, the green line is the

estimated Pareto curve from the beginning of the Trace back pro-

cedure. All the points generated from Trace back step are marked

with blue color, where the plus signs and square signs represent the

result when m = 1 and m = 10 respectively. As can be seen,

the Pareto fronts generated by our framework are very close to the

ones from GA method. The figure also shows how the quality of

our Pareto fronts improve with the increase in m.

Since the most time consuming process in both GA and our

framework is executing the scheduler to get the design point on

objective space, we designed this experiments around two hyper-

parameters: n-interval and m-potential candidates, which directly

decide on the number of evaluation points in our framework. After

varying the value of m and n, we quantify the quality of the Pareto

fronts using popular metric in the MOA domain: R2-indicator (R2I)

[4], where the reference set is the origin of the objective space.

The quality degradation of the results generated by our framework

when compared with GA’s Pareto fronts are measure relatively by

the Quality Trade-off (QT) in percentage of the GA’s R2-indicator.

The measurements are averaged over all the 10 TGs of the test set

and reported a long with the execution time in Table 1. As can

be observed from both the Table and the Figure, the quality of our

framework is approached to the one generated by the GA method

when increasing the number of evaluations (by increasing m or n)

and the pay-off for that improvement is the nearly linear increase

in execution time. However, to achieve the comparable quality to

the result from GA we need only a fraction of time. With m = 1
and n = 20, we can achieve 2 orders of speed-up over the GA

with less than 1% deficiency in the quality of the Pareto front for

all types of task graph. Such an achievement is due to the fact that

all the heavy computation is moved to the training phase and take

advantage of the ML models built upon the historical data. As dis-

cussed in subsection 6, the runtime overhead of ML method can be

broken down to 4 main components: Feature Extraction, applying

Linear Regression model, applying Cubic Spline model and Denor-

malizing. While the Feature Extraction part has more or less the

same complexity as the original scheduler, the other components

are very simple computations: vector multiplications for applying

Linear Regression and Denormalizing blocks, 3-degree polynomial

computation for Applying Cubic Spline.

7.3 Real life applications
In this experiment, we used the predictive model built from fat

group to apply for task graphs of realistic applications: MP3 de-
coder [13], robot control, sparse matrix solver and fpppp from the

benchmark [24]. The choice of the model from fat training set is

explained by the fact that fat type has the largest variance in par-

Table 1: Execution time and quality comparison

Our approach GA

TGs m 1 5 10 5 5 50

n 20 20 20 40 80 100

R2I 0.42011 0.41979 0.41963 0.41953 0.41951 0.41936

Fat QT (%) 0.17 0.10 0.06 0.04 0.03 0

Time 23.989 68.181 124.138 132.425 260.932 2653.873

R2I 0.41786 0.41715 0.41671 0.41659 0.41650 0.41644

Medium QT (%) 0.34 0.16 0.06 0.03 0.01 0

Time 21.221 58.902 105.499 112.353 222.093 2564.354

R2I 0.42024 0.41859 0.41829 0.41804 0.41786 0.41775

Slim QT (%) 0.59 0.20 0.12 0.07 0.02 0

Time 19.104 57.349 105.587 114.533 220.870 2542.166

R2I 0.42091 0.42021 0.41996 0.41961 0.41951 0.41848

MP3 QT (%) 0.58 0.41 0.35 0.27 0.24 0

Time 16.701 31.125 48.002 58.179 115.961 2347.545

R2I 0.43159 0.42075 0.41885 0.41925 0.41885 0.41640

robot QT (%) 3.64 1.04 0.59 0.68 0.58 0

Time 21.201 52.194 91.767 101.441 197.809 2553.820

R2I 0.42282 0.41880 0.41846 0.41871 0.41857 0.41694

sparse QT (%) 1.41 0.44 0.36 0.42 0.39 0

Time 20.300 52.395 92.754 101.203 200.654 2832.736

R2I 0.42503 0.42065 0.41638 0.42050 0.41610 0.41434

fpppp QT (%) 2.57 1.52 0.49 1.48 0.42 0

Time 30.912 89.415 154.891 214.854 424.732 6632.461

allelism from the 3 groups; hence, model built on these TGs is the

most flexible and generalizable. Fig.9c presents the qualitative re-

sults from the sparse task graph. The figure again demonstrates

the capability of our ML methods to accurately generate the Pareto

fronts of new TGs just based on their features (without any prior

information about TG). The quantitative result is shown in the sec-

ond half of Table 1 with the same metrics as in the 1st experiment.

The same 2 orders of magnitude speed-up can be achieved for the

simplest configuration (m=1, n=20) with small degradation in the

Quality (the trade-off is still less than 4%).

8. CONCLUSION
This work presents a generic framework that utilizes Genetic Al-

gorithm and Machine Learning techniques to predict the Pareto

front of multi-objective list-based schedulers. While the GA op-

timization provides Pareto front that are far better than original

schedulers with huge trade-off in execution time, our multilevel

ML techniques with Spline Regression and Linear Regression can

accurately generate the Pareto curve with a much lower execution

time and less than 4% deficiency in quality of the Pareto front. This

result offers the potential of using the Pareto front information for

resource management at runtime, which is was hitherto infeasible

due to the time consuming limitation of multi-objective approaches
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Figure 9: Pareto fronts generated from GA and our framework

such as GA or PSO. The modular design of our framework allows

multiple directions for extension: new multi-objective optimization

algorithm (PSO) and new ML models can be easily integrated into

our framework. Moreover, the framework can be applied to other

resource management problems that utilize priority/cost functions

such as: mapping, placement and routing.
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