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The unicellular green alga Chlamydomonas swims with two flagella
that can synchronize their beat. Synchronized beating is required to
swim both fast and straight. A long-standing hypothesis proposes
that synchronization offlagella results fromhydrodynamic coupling,
but the details are not understood. Here, we present realistic hydro-
dynamic computations and high-speed tracking experiments of
swimming cells that showhowaperturbation fromthe synchronized
state causes rotational motion of the cell body. This rotation feeds
back on the flagellar dynamics via hydrodynamic friction forces and
rapidly restores the synchronized state in our theory. We calculate
that this “cell-body rocking” provides the dominant contribution to
synchronization in swimming cells, whereas direct hydrodynamic
interactions between the flagella contribute negligibly. We experi-
mentally confirmed the two-way coupling betweenflagellar beating
and cell-body rocking predicted by our theory.

flagellar force–velocity relation | low-Reynolds-number hydrodynamics

Eukaryotic cilia and flagella are long, slender cell appendages
that can bend rhythmically and thus present a prime example

of a biological oscillator (1). The flagellar beat is driven by the
collective action of dynein molecular motors, which are distrib-
uted along the length of the flagellum. The beat of flagella, with
typical frequencies ranging from 20–60 Hz, pumps fluids, for
example, mucus in mammalian airways (2), and propels unicel-
lular microswimmers such as Paramecia, spermatozoa, and algae
(3). The coordinated beating of collections of flagella is important
for efficient fluid transport (2, 4, 5) and fast swimming (6). This
coordinated beating represents a striking example for the syn-
chronization of oscillators, prompting the question of how flagella
couple their beat. Identifying the specific mechanism of synchro-
nization can be difficult because synchronization may occur even
for weak coupling (7). Further, the effect of the coupling is difficult
to detect once the synchronized state has been reached.
Hydrodynamic forces were suggested to play a significant role

for flagellar synchronization already in 1951 by Taylor (8). Since
then, direct hydrodynamic interactions between flagella were
studied theoretically as a possible mechanism for flagellar syn-
chronization (9–12). Another synchronization mechanism that
is independent of hydrodynamic interactions was recently de-
scribed in the context of a minimal model swimmer (13–15). This
mechanism crucially relies on the interplay of swimming motion
and flagellar beating.
Here, we address the hydrodynamic coupling between the two

flagella in a model organism for flagellar coordination (16–19),
the unicellular green alga Chlamydomonas reinhardtii. Chlamy-
domonas propels its ellipsoidal cell body, which has typical di-
ameter of 10 μm, using a pair of flagella, whose lengths are about
10 μm (16). The two flagella beat approximately in a common
plane, which is collinear with the long axis of the cell body. In
that plane, the two beat patterns are nearly mirror-symmetric
with respect to this long axis. The beating of the two flagella of
Chlamydomonas can synchronize, that is, adopt a common beat
frequency and a fixed phase relationship (16–19). In-phase syn-
chronization of the two flagella is required for swimming along
a straight path (19). The specific mechanism leading to flagellar
synchrony is unclear.

Here, we use a combination of realistic hydrodynamic compu-
tations and high-speed tracking experiments to reveal the nature of
the hydrodynamic coupling between the two flagella of free-swim-
ming Chlamydomonas cells. Previous hydrodynamic computations
for Chlamydomonas used either resistive force theory (20, 21),
which does not account for hydrodynamic interactions between the
two flagella, or computationally intensive finite element methods
(22). We employ an alternative approach and represent the
geometry of a Chlamydomonas cell by spherical shape primitives,
which provides a computationally convenient method that fully
accounts for hydrodynamic interactions between different parts of
the cell. Our theory characterizes flagellar swimming and synchro-
nization by a minimal set of effective degrees of freedom. The
corresponding equation of motion follows naturally from the
framework of Lagrangian mechanics, which was used previously to
describe synchronization in a minimal model swimmer (13, 15).
These equations of motion embody the key assumption that the
flagellar beat speeds up or slows down according to the hydrody-
namic friction forces acting on the flagellum, that is, if there is more
friction and therefore higher hydrodynamic load, then the beat will
slow down. This assumption is supported by previous experiments
that showed that the flagellar beat frequency decreases when the
viscosity of the surrounding fluid is increased (23, 24). The simple
force–velocity relationship for the flagellar beat employed by us
coarse-grains the behavior of thousands of dyneinmolecularmotors
that collectively drive the beat. Similar force–velocity properties
have been described for individual molecular motors (25) and re-
flect a typical behavior of active force generating systems.
Our theory predicts that any perturbation of synchronized

beating results in a significant yawing motion of the cell, remi-
niscent of rocking of the cell body. This rotational motion imparts
different hydrodynamic forces on the two flagella, causing one of
them to beat faster and the other to slow down. This interplay
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between flagellar beating and cell-body rocking rapidly restores
flagellar synchrony after a perturbation. Using the framework
provided by our theory, we analyze high-speed tracking experi-
ments of swimming cells, confirming the proposed two-way cou-
pling between flagellar beating and cell-body rocking.
Previous experiments restrained Chlamydomonas cells from

swimming, holding their cell body in a micropipette (17–19). Re-
markably, flagellar synchronization was observed also for these
constrained cells. This observation seems to argue against a syn-
chronization mechanism that relies on swimming motion. How-
ever, the rate of synchronization observed in these experiments
was faster by an order of magnitude than the rate we predict for
synchronization by direct hydrodynamic interactions between the
two flagella in the absence of any motion. In contrast, we show
that rotational motion with a small amplitude of a few degrees
only, which may result from either a residual rotational compli-
ance of the clamped cell or an elastic anchorage of the flagellar
pair, provides a possible mechanism for rapid synchronization,
which is analogous to synchronization by cell-body rocking in free-
swimming cells.

Results and Discussion
High-Precision Tracking of Confined Chlamydomonas Cells. To study
the interplay of flagellar beating and swimming motion, we recor-
ded single wild-type C. reinhardtii cells swimming in a shallow ob-
servation chamber using high-speed phase-contrast microscopy
(1,000 frames per second). The chamber heights were only slightly
larger than the cell diameter so that the cells did not roll around
their long body axis, but only translated and rotated in the focal
plane. This confinement of cell motion to two space dimensions
and the fact that the approximately planar flagellar beat was par-
allel to the plane of observation greatly facilitated data acquisition
and analysis. From high-speed recordings we obtained the pro-
jected position and orientation of the cell body as well as the shape
of the two flagella (Fig. 1A and Fig. S1).
In the reference frame of the cell body, each flagellum under-

goes periodic shape changes. To formalize this observation, we
defined a flagellar phase variable by binning flagellar shapes
according to shape similarity (Fig.1B and Fig. S2). A time series of
flagellar shapes is represented by a point cloud in an abstract
shape space. This point cloud comprises an effectively one-di-
mensional shape cycle, which reflects the periodicity of the fla-
gellar beat. Each shape point can be projected on the centerline of
the point cloud. We define a phase variable φ running from 0 to 2π
that parameterizes this limit cycle by requiring that the phase
speed _φ be constant for synchronized beating. Approximately, we
determine this parameterization from the condition that the av-
eraged phase speed is independent of the location along the limit
cycle. This defines a unique flagellar phase for each tracked fla-
gellar shape. The width of the point cloud shown in Fig. 1B is
a measure for the variability of the flagellar beat during sub-
sequent beat cycles. We find that the variations of flagellar shapes
for the same value of the phase variable are much smaller than the
shape changes during one beat cycle. For our analysis, we there-
fore neglect these variations of the flagellar beat. In this way, we
characterize a swimming Chlamydomonas cell by 5 degrees
of freedom: its position ðx; yÞ in the plane, the orientation angle α
of its cell body, and the two flagellar phase variables φL and φR
for the left and right flagellum, respectively. Our theoretical
description will employ the same 5 degrees of freedom and use
flagellar shapes tracked from experiment for the hydrodynamic
computations.

Hydrodynamic Forces and Interactions. For a swimming Chlamydo-
monas cell, inertial forces are negligible [as characterized by a low
Reynolds number of Re∼ 10−3 (22)], which implies that the hy-
drodynamic friction forces exerted by the cell depend only on its
instantaneous motion (26). To conveniently compute hydrody-
namic friction forces and hydrodynamic interactions, we repre-
sented the geometry of a Chlamydomonas cell by 300 spherical
shape primitives (Fig. 2A). The spheres constituting the cell body

are treated as a rigid cluster. For simplicity, we consider free-
swimming cells and do not include wall effects in our hydrody-
namic computations. Flagellar beating and swimming corresponds
to a simultaneous motion of all 300 spheres of our cell model. The
dependence of the corresponding hydrodynamic friction forces
and torques on the velocities of the individual spheres is charac-
terized by a grand hydrodynamic friction matrix G. We computed
this friction matrix G using a Cartesian multipole expansion
technique (27);Materials and Methods gives details. Fig. 2 C and D
shows a submatrix that relates force and velocity components
parallel to the long axis of the cell. The entries of the color matrix
depict the force exerted by any of the flagellar spheres or by the
cell-body cluster (row index), if a single flagellar sphere or the cell-
body cluster is moved (column index). The indexing of flagellar
spheres is indicated by cartoon drawings of the cell next to the
color matrix. The diagonal entries of this friction matrix are pos-
itive and account for the usual Stokes friction of a single “flagellar
sphere” (or of the cell body). Off-diagonal entries are negative and
represent hydrodynamic interactions. We find considerable hy-
drodynamic interactions between spheres of the same flagellum,
as well as between each flagellum and the cell body. However,
interactions between the two flagella are comparably weak.

Theoretical Description of Flagellar Beating and Swimming. We now
present dynamical equations for the minimal set of 5 degrees of
freedom shown in Fig. 1A to describe flagellar beating, swimming,
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Fig. 1. Five degrees of freedom for Chlamydomonas. (A) In our experiments,
conducted in shallow observation chambers, Chlamydomonas cells swim in
a plane. At each time, the position and orientation of the cell body is charac-
terized by its center position ðx,yÞ and the angle α of its long axis with respect to
the laboratory frame. The beating of each flagellum is characterized by a single
periodic phase variable, φL and φR for the left and right flagellum, respectively.
The flagellar shapes shown in different colors were tracked from high-speed
recordings and correspond to a time-difference of 2 ms. This beat pattern was
used for all computations. (B) Binning of tracked flagellar shapes according to
shape similarity defines a flagellar phase angle as shown on the left. More pre-
cisely, we employed a nonlinear dimensionality reduction technique as specified
in Supporting Information to represent each tracked planar flagellar shape as
a point in an abstract shape space. This representation reveals the periodicity of
the flagellar beat and supports our description of the flagellar beat as a fixed
sequence of flagellar shapes parameterized by a single phase variable φ.
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and later flagellar synchronization in Chlamydomonas. These
equations of motion follow naturally from the framework of La-
grangian mechanics of dissipative systems, which defines gener-
alized forces conjugate to effective degrees of freedom.
Motivated by our experiments, we describe the progression

through subsequent beat cycles of each of the two flagella by re-
spective phase angles φL and φR (Fig. 1A). The angular frequency
ωj of flagellar beating is given by the time-averaged phase speed
h _φji, so we can think of the phase speed as the instantaneous beat
frequency. We are interested in variations of the phase speed that
can restore a synchronized state after a perturbation.We introduce
the key assumption that changes in hydrodynamic friction during
the flagellar beat cycle can increase or decrease the phase speed of
each flagellum. Specifically, we assume that for both the left and
right flagellum, j=L;R, the respective flagellar phase speed _φj is
determined by a balance of an active driving force Qj that coarse-
grains the active processes within the flagellum and a generalized
hydrodynamic friction force Pj, which depends on _φj. Note that in
addition to hydrodynamic friction, dissipative processes within the
flagella may contribute to the friction forces PL and PR. We do not
consider such internal friction in our description because it does
not change our results qualitatively. The hydrodynamic friction
forces Pj have to be computed self-consistently for a swimming cell.

We restrict our analysis to planar motion in the “xy” plane and thus
consider the position ðx; yÞ and the orientation α of the cell body
with respect to a fixed laboratory frame (Fig. 1A).
Any change of the degrees of freedom x, y, α, φL, or φR results

in the dissipation of energy into the fluid at some rate R. This
dissipation rate R characterizes the mechanical power output of
the cell and plays the role of a Rayleigh dissipation function
known in Lagrangian mechanics; it can be written as R= _xPx +
_yPy + _αPα + _φLPL + _φRPR, which defines the generalized friction
forces Pj conjugate to the different degrees of freedom. The
forces PL, PR, and Pα are conjugate to an angle and have physical
unit, piconewtons times micrometer. We compute the general-
ized friction forces using the grand hydrodynamic friction matrix
G introduced above. In brief, the superposition principle of low-
Reynolds-number hydrodynamics relevant for Chlamydomonas
swimming (26) implies that the generalized friction forces relate
linearly to the generalized velocities, Pj =Γjx _x+Γjy _y+Γjα _α+
ΓjL _φL +ΓjR _φR. This defines the generalized hydrodynamic fric-
tion coefficients Γji, which are suitable linear combinations of the
entries of the grand hydrodynamic friction matrix G (Materials
and Methods and Figs. S3 and S4).
The friction force Px conjugate to the x coordinate of the cell

position represents just the x component of the total force
exerted by the cell on the fluid, and an analogous statement
applies for Py ; Pα is the total torque associated with rotations
around an axis normal to the plane of swimming. If the swimmer
is free from external forces and torques, we have Px =Py = 0 and
Pα = 0. Together with the proposed balance of flagellar friction
and driving forces, PL =QL and PR =QR, we have a total of five
force balance equations, which allow us to solve for the time
derivatives of the 5 degrees of freedom. We obtain an equation
of motion that combines swimming and flagellar phase dynamics

ð_x; _y; _α; _φL; _φRÞT =Γ−1ð0; 0; 0;QL;QRÞT : [1]

The phase dependence of the active driving forces QjðφjÞ is
uniquely specified by the condition that the phase speeds should
be constant, _φj =ω0, for synchronized flagellar beating with zero
flagellar phase difference δ= 0, where δ=φL −φR.
In essence, this generic description implies that the phase speed

of one flagellum is determined by hydrodynamic friction forces,
which in turn depend on the swimming motion of the cell. Because
the swimming motion is determined by the beating of both fla-
gella, Eq. 1 effectively defines a feedback loop that couples the
two flagellar oscillators.

Theory and Experiment of Chlamydomonas Swimming. Using the
equation of motion (Eq. 1), we can compute the swimming motion
of our model cell. For mirror-symmetric flagellar beating with zero
flagellar phase difference δ= 0, the model cell follows a straight
path with an instantaneous velocity that is positive during the ef-
fective stroke but becomes negative during a short period of the
recovery stroke (Fig. 3A, Left). Chlamydomonas swims two steps
forward, one step back. This saltatory motion is also observed
experimentally by us (Fig. 3A, Right) and others (16, 28, 29). In our
computation, the instantaneous swimming velocity reaches values
up to 200 μm/s, which agrees with experimental measurements for
free-swimming cells (29), but overestimates the observed trans-
lational swimming speeds in shallow chambers, in which wall
effects are expected to reduce the speed of translational motion
(compare left and right panels in Fig. 3A). If the two flagella are
beating out of phase, the cell will not swim straight anymore, but
the cell body yaws (Fig. 3B). Cell-body yawing is observed ex-
perimentally (Fig. 3B, Right), with measured yawing rates that
agree well with our computations (Fig. 3B, Left). The proximity of
boundary walls is known to reduce translational motion but to
affect rotational motion to a much lesser extent for a given dis-
tance from the wall (21). This is indeed observed in our experi-
ments with cells swimming in shallow chambers: Whereas the
observed translational speed is smaller than predicted (Fig. 3A
and Fig. S5), the observed yawing rates are very similar to the
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Fig. 2. Hydrodynamic interactions between the two flagella are weak. (A)
Model Chlamydomonas cell represented by an ensemble of 300 spheres used to
compute hydrodynamic friction forces at low Reynolds numbers. In our calcu-
lations, the model cell was assumed to be far from any surfaces. (B) Illustration
of hydrodynamic interactions between spheres. A single sphere (labeled 1)
moving with velocity v1y > 0 along the y axis will drag fluid alongside and thus
exert a total hydrodynamic friction force F1y =G11,yyv1y > 0 on the fluid. If
a second sphere (labeled 2) is held fixed close to the first one, it will locally slow
down this fluid flow. The force F2 required to hold the second sphere equals
the force exerted by this sphere on the fluid; its y component F2y =G21,yyv1y < 0
defines a friction coefficient G21,yy that characterizes hydrodynamic inter-
actions between the two spheres. (C) Hydrodynamic interactions between
different parts of the model cell. Analogous to B, one defines a matrix Gij,yy of
hydrodynamic friction coefficients for the ensemble of 2 · 14 flagellar spheres
and the rigid sphere cluster constituting the cell body that together represent
a Chlamydomonas cell (Inset). Each columnof the color-codedmatrix shows the
magnitude of hydrodynamic friction exerted by a flagellar sphere (or the cell
body), if a single sphere or the cell body is moved parallel to the long cell body
axis. Off-diagonal entries characterize hydrodynamic interactions, which are
particularly pronounced along a single flagellum (white arrow), or between
one flagellum and the cell body (central column). Hydrodynamic interactions
between the two flagella are very weak and partly screened by the cell body.
(D) Same as in C, but for a recovery stroke configuration. There are weak hy-
drodynamic interactions between the proximal segments of the two flagella
(white arrow). All friction coefficients shown scalewith the viscosity of thefluid,
which was taken as the viscosity of water at 20 °C, η= 1   pN ms=μm2.
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predicted ones (Fig. 3B). The good agreement between theory
and experiment for the yawing rate supports our hydrodynamic
computation as well as our description of flagellar beating using
a single phase variable. In the next section, we show that rota-
tional motion is crucial for flagellar synchronization, whereas
translational motion is less important.

Theory of Flagellar Synchronization by Cell-Body Yawing. We now
demonstrate how yawing of the cell body leads to flagellar syn-
chronization. We first examine the flagellar phase dynamics after
a perturbation of in-phase flagellar synchrony. Fig. 4A shows
numerical results for a free-swimming cell obtained from solving
the equation of motion (Eq. 1). The initial flagellar asynchrony
causes a yawing motion of the model cell, which is characterized
by periodic changes of the cell’s orientation angle αðtÞ. The phase
difference δ between the left and right flagellum decays ap-
proximately exponentially as δðtÞ∼ expð−λt=TÞ with a rate con-
stant λ (measured in beat periods T = 2π=ω0) that will serve as
a measure of the strength of synchronization.
To mimic experiments in which external forces constrain cell

motion, we now consider the idealized case of a cell that cannot
translate, while cell-body yawing is constrained by an elastic re-
storing force Qα = − kα. Again, the two flagella synchronize in-
phase, provided some residual cell-body yawing is allowed (Fig. 4B).
In the absence of an elastic restoring force ðk= 0Þ, when the model
cell cannot translate, but can still freely rotate, its yawing motion
and synchronization behavior is very similar to the case of a free-
swimming cell that can rotate and translate. For a fully clamped cell
body, however, the synchronization strength is strongly attenuated
and is solely due to the direct hydrodynamic interactions between
the two flagella. In this case of synchronization by hydrodynamic
interactions, the time constant for synchronization is decreased
approximately 20-fold compared to the case of free swimming.
These numerical observations point to a crucial role of cell-body
yawing for flagellar synchronization. The underlying mechanism of
synchronization can be explained as follows. For in-phase synchro-
nization, the flagellar beat is mirror-symmetric and the cell swims
along a straight path. If, however, the left flagellum has a small head-
start during the effective stroke, this causes a counter-clockwise
rotation of the cell (Fig. 3B). This cell-body yawing increases
(decreases) the hydrodynamic friction encountered by the left (right)

flagellum, causing the left flagellum to beat slower and the right one
to beat faster. As a result, flagellar synchrony is restored.
Next, we present a formalized version of this argument using

a reduced equation of motion. We thus arrive at a simple theory
for biflagellar synchronization, which will later allow for quanti-
tative comparison with experiments. As in Fig. 4B, we assume that
the cell is constrained such that it cannot translate ð_x= _y= 0Þ. The
cell can still yaw, possibly being subject to an elastic restoring force
Qα = − kα. This leaves only 3 degrees of freedom: φL, φR, and α.
Neglecting direct hydrodynamic interactions between the flagella,
we can reduce the equations of motion for a clamped cell (Eq. 1
with constraint _x= _y= 0) to a set of three coupled equations for
the three remaining degrees of freedom:

_φL =ωL − μðφLÞ _α; [2]

_φR =ωR + μðφRÞ _α; [3]

kα+ ρðφL;φRÞ _α= − νðφLÞ _φL + νðφRÞ _φR: [4]

The coupling function μ in Eq. 2 characterizes the effect of cell-
body yawing on the flagellar beat as detailed below, and ν de-
scribes how asynchronous flagellar beating results in yawing; ρ is
the hydrodynamic friction coefficient for yawing of the whole cell.
The coupling functions μ, ν, and ρ can be computed using our
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Fig. 3. (A) For synchronized flagellar beating, we compute saltatory forward
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summarized by cartoon drawings (Extreme Right). A typical experimental ve-
locity profile of a Chlamydomonas cell in a shallow observation chamber
measured during a cycle of synchronized beating is shown for comparison in
the middle panel. (B) Flagellar asynchrony causes cell-body yawing, both in
theory and experiment. Shown is the instantaneous rotation rate _α of the cell
body in color code as a function of the respective phase of the two flagella. For
in-phase synchronized flagellar beating (dashed line), the cell body does not
rotate (green). For out-of-phase flagellar beating, however, we find significant
cell-body rocking (blue, clockwise; red, counter-clockwise).
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cell (Top), the equationofmotion (Eq. 1) predicts a yawingmotionof the cell body
characterizedby αðtÞ if the twoflagella are initially out of synchrony (Middle). The
flagellar phase difference δ is found to decrease with time (Bottom, solid line),
approximately followinganexponential decay ∼ expð−λt=TÞ (dotted line),where
T is the period of theflagellar beat and λ defines a dimensionless synchronization
strength. Thus, in-phase synchronized beating is stable with respect to pertur-
bations. Dots mark the completion of a full beat cycle of the left flagellum. (B) To
mimic experiments where external forces constrain cell motion, we simulated the
idealized case of a cell that cannot translate, while cell-body yawing is constricted
by an elastic restoring torque Qα = − kα that acts at the cell body center (Top).
Again, the two flagella synchronize (Middle) with a synchronization strength λ
that can become even larger than in the case of a free swimming as shown here
for k= 2 · 103   pN  μm, which is close to the rotational stiffness for which the
synchronization strength λ is maximal (Bottom). For very large clamping stiffness
k, the cell body cannot move and the synchronization strength λ attenuates to
a basal value λ≈ 0:03, which arises solely from direct hydrodynamic interactions
between the two flagella (arrow). Parameters: 2π=ω0 = 30 ms.
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hydrodynamic model.* Their dependence on the flagellar phase is
shown in Fig. 5 (Left). The physical significance of Eqs. 2–4 can be
explained as follows. Eq. 2 implies that during the effective stroke
of the left flagellum ðφ∼ 08Þ, a counter-clockwise rotation of the
whole cell slows down the flagellar beat, whereas a clockwise ro-
tation speeds it up (Fig. 5B, μ> 0). Eq. 3 implies the converse for
the right flagellum. During the recovery stroke ðφ∼ 1808Þ, the
effect is opposite and a counter-clockwise rotation of the cell
would speed up the beat of the left flagellum ðμ< 0Þ. Eq. 4 states
that flagellar beating causes the cell body to yaw: If the right fla-
gellum were absent, the model cell would rotate clockwise ð _α< 0Þ
during the effective stroke of the left flagellum (Fig. 5A, ν> 0),
and counter-clockwise during its recovery stroke ðν< 0Þ. This
swimming behavior is observed for uniflagellar mutants (21). For
synchronized beating of the two flagella, the right-hand side of Eq. 4
cancels to zero and the model cell swims straight. For asynchronous
flagellar beating with a finite phase difference δ=φL −φR, the
phase dependence of the coupling function νðφÞ results in an im-
balance of the torques generated by the left and right flagellum,
respectively, which is balanced by a rotation of the whole cell.
We study the dynamical system given by Eqs. 2–4 after a small

perturbation of the synchronized state at t= 0 with initial fla-
gellar phase difference 0< δð0Þ � 1. For simplicity, we assume
equal intrinsic beat frequencies, ωL =ωR =ω0. The synchroni-
zation strength λ is given by λ= −

R T
0 dt  _δ=δ. In the limit of

a small elastic constraint, we find (Supporting Information)

λ= −
I2π

0

dφ
2μðφÞν′ðφÞ

ρðφ;φÞ− 2μðφÞνðφÞ   for k � ρω0; [5]

where a prime denotes differentiation with respect to φ. Using
the coupling functions μ, ν, and ρ computed above, we obtain
λ> 0, which implies stable in-phase synchronization (Fig. 4). In
the case of a stiff elastic constraint, we obtain a different result
for λ:

λ= −
I2π

0

dφ
μðφÞν″ðφÞ

k=ω0
 for k � ρω0: [6]

Synchronization in the absence of an elastic restoring force as
characterized by Eq. 5, and synchronization involving a strong elastic
coupling as characterized by Eq. 6 shows interesting differences,
which relate to the fact that in the first case the flagellar phase dy-
namics depends only on the yawing rate _α, but not on α itself. The
difference between these two synchronization mechanisms is best
illustrated in a special case, in which both the ratio σ = μ=ν and ρ are
constant. A constant σ correspond to an active flagellar driving force
that does not depend on the flagellar phase, whereas for constant ρ
the angular friction for yawing would not depend on the flagellar
configuration. In the limit of a stiff elastic constraint, k � ρω0,
we readily find λ=−σω0

H
νν″=k= σω0

H ðν′Þ2=k> 0, which indi-
cates stable in-phase synchronization. In the limit of a weak elastic
constraint, k � ρω0, however, the integral on the right-hand side of
Eq. 5 evaluates to zero, which implies that synchronization does not
occur. Hence, synchronization in the absence of an elastic restoring
force requires that either μ=ν or ρ depend on the flagellar phase.
For our realistic Chlamydomonas model, μ and ν differ (Fig.

5A), and also ρ is not constant (Fig. S3). This allows for rapid
synchronization also in the absence of elastic forces. Previous
work on synchronization in minimal systems showed that elastic
restoring forces can facilitate synchronization (11, 30). Here, we
have shown that elastic forces can increase the synchronization
strength (Fig. 4), but they are not required for flagellar

synchronization in swimming Chlamydomonas cells, even if hy-
drodynamic interactions are neglected.
Our discussion of flagellar synchronization can be extended to

the case, where the intrinsic beat frequencies of the two flagella do
not match. If the frequency mismatch jωL −ωRj is small compared
to the inverse time scale of synchronization λ=T, a general result
implies that the two flagellar oscillators will still synchronize (7). For
a frequencymismatch that is too large, the two flagella display phase
drift with a phase difference that increases monotonously (18).

Experiments Show Coupling of Beating and Yawing. We recon-
structed the coupling functions μðφÞ and νðφÞ between beating and
yawing from experimental data using the theoretical framework
developed in the previous section. In brief, (i) we extracted the in-
stantaneous yawing rate _α and flagellar phase speeds _φL and _φR
from high-speed videos of swimming Chlamydomonas cells, (ii) we
represented the coupling functions by a truncated Fourier series,
and (iii) we obtained the unknown Fourier coefficients by linear re-
gression usingEqs. 2–4. The high temporal resolution of our imaging
enabled us to accurately determine phase speeds as time derivatives
of flagellar phase angle data. Fig. 5B displays averaged coupling
functions obtained byfitting for a typicalChlamydomonas cell;fits for
five more cells are shown in Figs. S6 and S7. We find a significant
coupling between flagellar phase speeds and yawing rates, which are
in good qualitative agreement with the theoretical predictions.
For the experimental conditions used, we commonly observed

cells that displayed a large frequency mismatch between the two
flagella. In the cells selected for analysis, this frequency mismatch
exceeded 30%. This large frequency mismatch caused flagellar
phase drift, which resulted in pronounced cell-body yawing and en-
abled us to accurately measure the coupling of yawing and flagellar
beating. Experiments were done using either white-light illumina-
tion, which gave maximal image quality, or red-light illumination,
which reduces a possible phototactic stimulation of the cells.
The observed modulation of flagellar phase speed according to

the rate of yawing is consistent with a force–velocity dependence
of flagellar beating, for which the speed of the beat decreases if
the hydrodynamic load increases. We propose that a similar load
characteristic of the flagellar beat holds also in cases of small
frequency mismatch, where it allows for flagellar synchronization.
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Theory Experiment

Fig. 5. Flagellar beating and cell-body yawing are coupled in a bidirectional
way. (Upper Left) In our theory, the beat of the left flagellum generates a tor-
que, which, in the absence of the right flagellum, has to be counterbalanced by
a yawing motion of cell body (Eq. 4). This effect is quantified by the coupling
function νðφÞ shown, normalized here by ρ0 = hρi : The effective stroke ðφL ∼08Þ
of the left flagellum causes the cell to yaw clockwise. (Lower Left) Conversely,
yawing of the cell changes the hydrodynamic friction force that opposes the
flagellar beat, which, in our theory, speeds up or slows down the beat (Eq. 2).
This effect is quantified by the coupling function μðφÞ shown: a counter-clock-
wise yawing during the effective stroke of the left flagellum slows down its beat.
The coupling of beating and yawing allows for flagellar synchronization in
a free-swimming cell. (Right) By fitting Eqs. 2 and 4 to experimental time-series
data, we can recover the coupling functions μðφÞ and νðφÞ=ρ0 (1 cell, n= 5 time
series of 0.5-s duration; gray regions denote mean ± SE).

*Specifically, μðφÞ=ΓLαðφ,φÞ=ΓLLðφ,φÞ, νðφÞ=ΓαLðφ,φÞ, ρðφL,φRÞ=ΓααðφL ,φRÞ. For simplicity,
the active flagellar driving forces were approximated as QL =ωLΓLL and QR =ωRΓRR for
constrained translational motion.
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Conclusion and Outlook
We have presented a theory on the hydrodynamic coupling un-
derlying flagellar synchronization in swimming Chlamydomonas
cells. We have shown that direct hydrodynamic interactions be-
tween the two flagella as considered in refs. 9–11 give only a minor
contribution to the computed synchronization strength and are
unlikely to account for the rapid synchronization observed in
experiments (16–19). In contrast, rotational motion of the swimmer
caused by asynchronous beating imparts different hydrodynamic
friction forces on the two flagella, which rapidly brings them back in
tune: Chlamydomonas rocks to get into synchrony.
Using high-speed tracking experiments, we could confirm the

two-way coupling between flagellar beating and cell-body yawing
predicted by our theory. The striking reproducibility of our fits for
the corresponding coupling functions and their favorable com-
parison to our theory is highly suggestive of a regulation of fla-
gellar phase speed by hydrodynamic friction forces that depend on
rotational motion. Thus, coupling of flagellar beating and cell-
body yawing provides a strong candidate for the mechanism that
underlies flagellar synchronization of swimming Chlamydomonas
cells. A similar mechanism may account for synchronization in
isolated flagellar pairs (31) (Fig. S8).
To explain a previously observed synchronization for cells held

in a micropipette (17–19), we propose a finite clamping compli-
ance that still allows for residual cell-body yawing with an ampli-
tude of a few degrees, which is sufficient for rapid synchronization.
Alternatively, a compliant basal anchorage of the flagellar pair or
bending deformations of the elastic cell body would allow for
flagellar synchronization by a completely analogous mechanism.
In fact, the simple theory for biflagellar synchronization by rota-
tional motion presented here (Eqs. 2–4) applies analogously to
a pivoting motion of an elastically anchored flagellar pair (Figs. S9
and S10). From the observed value λ= 0:3 for the synchronization
strength in clamped cells (19), we estimate a rotational stiffness of
k∼ 104   pN  μm for either of these two cases.
Finally, the coupling of two phase oscillators by a third degree

of freedom, in this case rotational motion, could allow for syn-
chronization also in other contexts. For example, one may con-
sider that synchronization in ciliar arrays (2) is mediated by an
elastic coupling through the matrix with elastic deformations
playing the role of the third degree of freedom.

Materials and Methods
Hydrodynamic Computation of Swimming Chlamydomonas. We represent
a Chlamydomonas cell by an ensemble of 300 spheres of radius a= 0:25  μm (Fig.
2A) and use a freely available hydrodynamic library based on a Cartesian mul-
tipole expansion technique (27) to compute the grand hydrodynamic friction
matrix G (26) for this ensemble of spheres. We assume a rigid cell body, and
hence that the spheres constituting the cell body move as a rigid unit, which
results in n= 2 · 14+1 independently moving objects. The matrix G has dimen-
sions6n ×  6n and relates the componentsof the translational and rotational
velocities, vi and Ωi , of each of the n objects to the hydrodynamic friction
forces and torques, Fj and Tj , exerted by the j-th object on the fluid,
ðF1x ,F1y ,F1z,T1x ,T1y ,T1z,F2x ,F2y , . . . ,Tny ,TnzÞ=G _q0 with _q0 = ðv1x ,v1y ,v1z,Ω1x ,Ω1y ,
Ω1z,v2x ,v2y , . . . ,Ωny ,ΩnzÞ. Fig. 2 C and D shows a submatrix of G that relates
force and velocity components parallel to the long axis of the cell body. The
reduced friction matrix Γ for a set of m effective degrees of freedom q is
computed fromGas Γ= LTGLwith 6n×m transformationmatrix Lij = ∂ _q0,i=∂ _qj ,
where q= ðx,y,α,φL,φRÞ (13). Initial tests confirmed that the friction matrix of
only the cell body gave practically the same result as the analytic solution for
the enveloping spheroid; similarly, the computed friction matrix of only
a single flagellum matched the prediction of resistive force theory (26).

Imaging Chlamydomonas Swimming in a Shallow Observation Chamber. For cell
culture, C. reinhardtii cells (CC-125 wild-type mt+ 137c, R. P. Levine via N. W.
Gillham, 1968) were grown in 300 mL TAP+P buffer (32) (with 4× phosphate)
at 24 °C for 2 d under conditions of constant illumination (two 75-W fluo-
rescent bulbs) and constant air bubbling to a final density of 106 cells/mL.

Forhigh-speedvideomicroscopy,anassaychamberwasmadeofprecleaned
glassandsealedusingValap,a1:1:1mixtureof lanolin,paraffin,andpetroleum
jelly, heated to 70 °C. The surface of that chamber was blocked using casein
solution (solution of casein from bovine milk, 2 mg/mL, for 10min) prior to
the experiment. Single, noninteracting cells were visualized using phase-
contrast microscopy set up on a Zeiss Axiovert 100 TVMicroscope using a 63×
Plan-Apochromat NA1.4 PH3 oil lens in combination with an 1.6× tube lens
and an oil phase-contrast condenser N.A. 1.4. The sample was illuminated
using a 100-W tungsten lamp. For red-light imaging, an e-beam-driven
luminescent light pipe (Lumencor) with spectral range of 640–657 nm and
powerof 75mWwasused. The sample temperaturewas kept constant at 248  C
using an objective heater (Chromaphor). For image acquisition, an EoSens
Cmos high-speed camera was used. Videos were acquired at a rate of 1,000
frames per second with exposure times of 1 ms (white light) and 0.6 ms (red
light). Finally, cell positions and flagellar shapes were tracked using custom-
build Matlab software (Supporting Information gives details).
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