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We present a multi-scale modeling and simulation framework for low-Reynolds number hydro-
dynamics of shape-changing immersed objects, e.g., biological microswimmers and active surfaces.
The key idea is to consider principal shape changes as generalized coordinates, and define conju-
gate generalized hydrodynamic friction forces. Conveniently, the corresponding generalized friction
coefficients can be pre-computed and subsequently re-used to solve dynamic equations of motion
fast. This framework extends Lagrangian mechanics of dissipative systems to active surfaces and
active microswimmers, whose shape dynamics is driven by internal forces. As an application case,
we predict in-phase and anti-phase synchronization in pairs of cilia for an experimentally measured
cilia beat pattern.
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Biological hydrodynamics. Biology provides ample examples of active shape-changes in fluid environments: bacteria
like E. coli rotate helical prokaryotic flagella to swim [1], other bacteria like Spiroplasma propagates twist waves along
their flexible body [2], sperm cells and motile algae posses slender cell appendages termed cilia (or eukaryotic flagella),
whose regular bending waves propel these cells in a fluid [3, 4]. On epithelial surfaces, collections of beating cilia
transport biological fluids such as mucus in airways, cerebrospinal fluid in brain ventricles, and oviduct fluid in
the Fallopian tubes [5, 6]. In addition to their important role in self-propulsion and fluid transport, these model
systems enable us to learn about internal force generation mechanisms in these cells, such as the collective dynamics
of molecular motors inside cilia [7–10]. On larger scales, the interaction of many shape-changing units leads to the
spontaneous formation of spatio-temporal patterns, e.g., in dense suspensions of microswimmers [11], or collections
of cilia exhibiting metachronal coordination [12].

These examples represent a class of fluid-structure interaction problems, where shape-changing active structures
exert forces on the surrounding fluid, while the surrounding passive fluid exerts hydrodynamic friction forces back
on these active structures. These hydrodynamic forces may affect the active shape dynamics; examples include the
torque-velocity relationship of rotating prokaryotic flagella [13], the load-response of beating cilia and eukaryotic
flagella [10, 14], as well as minimal model swimmers [15–17]. Closed feedback loops between passive fluids and active
structures can lead to emergent dynamics; examples include spontaneous pattern formation in dense microswimmer
suspensions [11, 18], or (hydrodynamic) synchronization of beating cilia and flagella [12, 19–23].

Common hydrodynamics methods at low Reynolds numbers. At the relevant length and time scales, viscous drag
dominates inertia, corresponding to low Reynolds numbers [24–26]. In the limit of zero Reynolds numbers, the
Navier-Stokes equation of hydrodynamics simplifies to the Stokes equation. Although, the Stokes equation is linear,
hydrodynamic computations can still be costly, because hydrodynamic interactions are long-ranged [27].

In the past, different computational methods of different degrees of approximation have been used in the community,
including resistive force theory for slender filaments, which includes short-range, but not long-range hydrodynamic
interactions [28–30], the more refined method of slender-body theory, which considers a line distribution of hydro-
dynamic singularities (point forces) along a filament [31–33], or multi-particle collision dynamics, which replaces the
continuum description of the Stokes equation by the stochastic dynamics of a large number of “fluid particles” [34–
36]. Despite its applicability for large-scale problems [37], the stochastic nature of the MPCD algorithm introduces
algorithm-specific fluctuations, which can be impractical if one wants to study the role of biological noise. Lattice-
Boltzmann methods similarly rely on fictitious “fluid particles”, for which in each time step both a streaming and
a collision steps is performed [38]. Finally, boundary element methods convert the problem of solving the Stokes
equation in three-dimensional space to a two-dimensional boundary integral problem of finding a surface distribution
of forces on a moving boundary surface. Boundary element methods are similar in spirit to slender-body methods, but
less susceptible to issues of regularization, since a two-dimensional distribution of forces is used. Modern algorithms
use fast multi-pole methods that solve a tree of hierarchically coarse-grained sub-problems instead of solving a single
large linear system when computing the force distribution on a surface [39–41].

Irrespective of the hydrodynamic computation method used, it can be computationally costly to calculate a solution
of the Stokes equation in every time step, while simulating the dynamics of a shape-changing microswimmer or an
active surface.
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Lagrangian mechanics. In this methods manuscript, we present a multi-scale simulation framework, where the
Stokes equation has to be solved only in an initial step for a small set of principal shape modes of a shape-changing
surface. The resultant surface distributions of hydrodynamic friction forces define generalized hydrodynamic friction
coefficients by a projection method of Lagrangian mechanics [10, 42–48]. These scalar friction coefficients are inde-
pendent of the velocity of the moving surface. Once tabulated, these friction coefficients provide a look-up table for
subsequent fast simulations of shape dynamics and active motion. Specifically, we view principal shape changes of
an active surface as generalized coordinates, for which we compute conjugate generalized friction forces. We obtain
effective equations of motion for the generalized coordinates from a force balance between these generalized friction
forces and active driving forces. These active driving forces coarse-grain the internal active processes that drive the
active shape changes of the surface (such as the collective dynamics of molecular motors). Importantly, these a priori
unknown active driving forces can be calibrated for a reference case (e.g., using experimental data), and then used to
extrapolate to other application cases of interest. Thereby, our framework extends Lagrangian mechanics of dissipative
systems to active surfaces and active microswimmers, whose shape dynamics is driven by active forces.

NOTATION: STOKES EQUATION AND HYDRODYNAMIC DISSIPATION

Fluid dynamics at the scale of individual biological cells is characterized by low Reynolds numbers, i.e., viscous
effects commonly dominate over inertia [24–26]. Correspondingly, fluid flow is described by the Stokes equation, which
reads for an incompressible Newtonian fluid in the absence of body forces in the bulk [27]

0 = −∇p+ µ∇2u , (1)

with incompressibility condition ∇ · u = 0. Here, u(x) denotes the flow velocity, p(x) the pressure field, and µ the
dynamic viscosity of the fluid.

The total stress tensor σ for an incompressible fluid depends on both the hydrostatic pressure p and the symmetrized
strain rate tensor ∆ [27]

σ = −p1 + 2µ∆ , ∆ =
1

2

[
∇⊗ u + (∇⊗ u)T

]
. (2)

Thus, the Stokes equation, Eq. (1) could be equivalently written as 0 = ∇ · σ in the bulk of the fluid. Special
conditions apply at boundaries.

No-slip boundary condition for an active surface. We consider a surface S immersed in the fluid that changes its
shape as a function of time. For example, S may represent the outer surface of a shape-changing microswimmer, or
even the combined surface for a collection of microswimmers. We introduce the surface velocity v(x, t) for each point
x ∈ S at time t.

We impose a no-slip boundary condition at this surface, i.e., require that the local velocity u(x) of fluid flow matches
the local velocity v(x) of the surface for each surface point

u(x) = v(x) for all x ∈ S . (3)

Hydrodynamic friction forces. A shape change of the surface S induces a flow field u(x) with corresponding stress
tensor field σ(x). The stress σ(x) determines the surface density of forces f(x) exerted by the surface on the fluid
(with units of a stress N/m2, also called contact force, or traction force density)

f(x) = −σ · n for all x ∈ S , (4)

where n is the surface normal pointing into the fluid. Correspondingly, −f(x) is the surface density of hydrodynamic
friction forces exerted by the fluid on the surface. The total force exerted by the surface on the fluid is simply the
surface integral of f(x)

F =

∫
S
d2x f(x) . (5)

Analogously, the total torque (with respect to a reference point x0) exerted by the surface on the fluid is given by

M =

∫
S
d2x (x− x0)× f(x) . (6)
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Superposition principle. The linearity of the Stokes equation of low-Reynolds number flow, Eq. (1), implies a
superposition principle for hydrodynamic friction forces, which will be pivotal for the modeling ansatz presented here.
Specifically, we consider a boundary condition with rate of displacement v that is given as a linear combination of
velocity distributions v1 and v2 as

v = α1 v1 + α2 v2 , (7)

with real coefficients α1, α2 ∈ R. Then, the resultant flow field u is given by u = α1u1 + α2u2, while the surface
density of hydrodynamic friction forces f is f = α1f1 + α2f2, where ui and fi denote the flow field and the surface
density of hydrodynamic friction forces corresponding to boundary condition vi, respectively, for i = 1, 2.

Hydrodynamic dissipation. We introduce the rate of work R(h) exerted by the surface on the fluid

R(h) =

∫
S
d2x v(x) · f(x) . (8)

For incompressible Newtonian fluids at zero Reynolds number, R(h) equals the instantaneous rate of hydrodynamic
energy dissipation within the fluid [27]. Indeed, let us consider the local dissipation rate, which is given by Φ = 2µ∆ :
∆, where ∆ : ∆ =

∑
i,j ∆ij∆ij denotes tensor contraction. The dissipation rate can be rewritten as Φ = ∇ · (u · σ)

using Eqs. (1), (2) and the incompressibility condition ∇ · u = 0. Gauss divergence theorem now gives [27] (using
u(x) = v(x) for x ∈ S) ∫

S
d2x v(x) · f(x)︸ ︷︷ ︸

power exerted by surface

=

∫
V

d3x Φ(x)︸ ︷︷ ︸
hydrodynamic dissipation in bulk

. (9)

Here, V denotes the three-dimensional fluid domain with boundary surface S. At finite Reynolds numbers, R(h) still
equals the rate of work exerted by the surface on the fluid, yet this injected energy would be dissipated as heat with
a delay, such that Eq. (9) would only hold for time-averages.

LAGRANGIAN MECHANICS: GENERALIZED COORDINATES

We consider a shape-changing surface S(t). While a description of all possible shape changes of S would require
an infinite number of degrees of freedom, in important applications, we can restrict ourselves to a constrained set of
shape changes characterized by a small number of shape coefficients, or generalized coordinates, q1, . . . , qn.

Examples for minimal model swimmers include undulating sheets with a finite set of admissible wavelengths [49],
bead distances as in Najafi’s three-sphere swimmer [50], or lever arm angles in Purcell’s the three-link swimmer [51]
and Dreyfus’ rotator [52], see Fig. 1. An example for a biological microswimmer would be the rotation angle ϕ of
an idealized rigid helical prokaryotic flagellum. Similarly, the regular traveling bending waves of cilia and eukaryotic
flagella can be described by an oscillator phase ϕ that characterizes the current position in a periodic shape cycle
[45, 53–55]. Elastic degrees of freedom arising from waveform compliance can be incorporated in such a framework
as additional amplitude degrees of freedom [10, 48].

We introduce the state vector, q = (q1, . . . , qn). The shape dynamics of the active surface S(t) = S[q(t)] is thus
entirely described by the dynamics of q(t). In particular, the local rate of surface displacement depends linearly on
the generalized velocities q̇i as

v(x) = w1(x; q) q̇1 + w2(x; q) q̇2 + . . .+ wn(x; q) q̇n , (10)

where the normalized velocity fields wi(x) = ∂x/∂qi depend on q(t) but not on q̇(t). In fact, Eq. (10) simply
generalizes Eq. (7) to the case of generalized coefficients αi = q̇i with units of a generalized velocity. Correspondingly,
the surface distribution of hydrodynamic friction forces f(x) is given as a linear combination

f(x) = g1(x; q) q̇1 + . . .+ gn(x; q) q̇n , (11)

where the normalized force densities gi(x; q) = fi(x)/αi correspond to the surface density of hydrodynamic friction
forces fi(x) induced by the velocity field vi(x) = αi wi(x; q). An example of a surface velocity field with corresponding
surface density of hydrodynamic friction forces is shown in Fig. 2.

The formalism allows to include also rigid body transformation such as translations and rotations of the surface S
in the set of generalized coordinates. Thereby, the self-propulsion of shape-changing microswimmers can be described
using the same formalism, see the section of rigid body transformations below.
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FIG. 1: Generalized coordinates: Examples. (A) Undulating sheet with two wave modes. The amplitudes q1, q2 of the
wave modes represent generalized coordinates of the shape-changing surface S. (B) Rigid body motion of a microswimmer
in three-dimensional space is characterized by three translational and three rotational degrees of freedom, corresponding to
six generalized coordinates: qi for translations parallel to the ei-axis, and qi+3 for rotations around the ei-axis, i = 1, 2, 3,
respectively. (C) Najafi’s three-sphere swimmer consists of three collinear spherical beads with time-varying bead distances
[50], corresponding to two internal degrees of freedom, q6+1 and q6+2, in addition to the generalized coordinates of rigid body
motion. (D) Purcell’s three-link swimmer consists of three connected segments [51], whose relative angles q6+1 and q6+2 can be
treated as two generalized coordinates. (E) Similarly, Dreyfus’ rotator consists of three segments connected at a single joint;
the relative angles q6+1 and q6+2 again define generalized coordinates. This shape-changing microswimmer exhibits pronounced
rotation in the plane in addition to translational motion, hence its name. (F) Simplified geometry of the bacterium E. coli
with a single prokaryotic flagellum. A rotary motor inside the cell wall can spin the helical flagellum around its central axis;
this internal rotational degree of freedom defines a single generalized coordinate q6+1 with periodicity of 2π. (G) Prototypical
flagellar beat pattern of a sperm cell, parametrized by a 2π-periodic phase variable, which defines a generalized coordinate
q6+1. For the amplitude of regular flagellar bending waves and mean flagellar curvature, we used parameters from [30].
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GENERALIZED HYDRODYNAMIC FRICTION FORCES

We introduce generalized hydrodynamic friction forces Pi conjugate to the generalized coordinates qi, following the
convention of Lagrangian dynamics of dissipative systems [42], see also [43, 46]

Pi =

∫
S
d2x wi(x) · f(x) , i = 1, . . . , n . (12)

The superposition principle for the shape changes wi(x), Eq. (10), allows us to rewrite the total hydrodynamic
dissipation rate R(h) as a sum of products of generalized velocities times their conjugate generalized friction force

R(h) =
∑
i

Pi q̇i . (13)

Note that the different generalized coordinates qi may have different physical units, in which case also all derived
quantities will have different units; nonetheless, all vector and matrix operations of the formalism are consistent
unit-wise.

In the special case, where some of the qi denote a rigid body transformation of an immersed microswimmer, i.e., a
rigid body translation or rotation, the conjugate generalized force simply corresponds to the respective components
of the total force F or total torque M exerted by the swimmer on the fluid, respectively, see the section on rigid body
motion below.

Generalized hydrodynamic friction coefficients. Using the superposition principle of Stokes flow, we can conve-
niently express the generalized hydrodynamic friction forces as linear function of the generalized velocities q̇i by
introducing generalized hydrodynamic friction coefficients

Pi =

n∑
j=1

Γij q̇j , i = 1, . . . , n . (14)

The generalized friction coefficients can be computed as scalar products between the (normalized) velocity profiles
wi(x), and the (normalized) force profiles gj(x), see also Fig. 2

Γij =

∫
S
d2x wi(x) · gj(x) , i, j = 1, . . . , n . (15)

Alternatively, we could express Γij in terms of partial derivatives with respect to the generalized velocities q̇i as
Γij =

∫
Sd

2x (∂ v(x)/∂ q̇i) · (∂ f(x)/∂ q̇j). We refer to diagonal elements Γii of the generalized hydrodynamic friction
matrix Γ as self-friction coefficients. Off-diagonal elements Γij , i 6= j, or cross-friction coefficients, characterize
a coupling between different degrees of freedom (e.g., a coupling between translational and rotational degrees of
freedom for chiral objects; or direct hydrodynamic interactions between different sub-objects that can, in principle,
move independently).

The rate of hydrodynamic dissipation can thus be expressed as a quadratic form in the generalized velocity q̇

R(h) = q̇ · Γ · q̇ =
∑
i,j

Γij q̇iq̇j . (16)

The hydrodynamic dissipation rate R(h) plays the role of a Rayleigh dissipation function for Lagrangian mechanics
of dissipative systems [42]. Specifically, we could have equivalently defined the generalized forces as 2Pi = ∂R(h)/∂q̇i.
(Following standard notation, the Rayleigh dissipation function is actually R(h)/2 [42]).

The matrix Γ is symmetric, which represents a special case of Onsager reciprocity [27, 56]

Γji(q) = Γij(q) (17)

The matrix is also positive semi-definite, consistent with the fact that the rate of energy dissipation should be non-
negative. (In fact, Γ should be positive definite, except maybe at singular points q in configuration space, where
wi = ∂x/∂qi, i = 1, . . . , n are linearly dependent.)

In addition to hydrodynamic dissipation as characterized by R(h), internal dissipative processes can be included in
our framework, provided the corresponding dissipation function is likewise a quadratic form of the generalized velocity
[10, 48].
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FIG. 2: Hydrodynamic friction forces: Example of cilium during power stroke. (A) Surface velocity v1(x) on a
shape-changing surface S, here given by a slender cilium (blue) attached to a no-slip boundary surface (gray); the cilium
progresses with phase velocity q1 = ϕ̇1 along its periodic beat cycle. For visualization, the three-dimensional shape of the
cilium, as well as v1(x) was projected on the yz-plane (see Fig. 3A for a three-dimensional representation). (B) Corresponding
surface distribution of hydrodynamic friction forces f1(x) exerted by the active, shape-changing surface on the surrounding
viscous fluid. The force distribution is obtained by solving the Stokes equation, Eq. (1), see also Multi-scale modeling section
for details. From the velocity and force distributions, v1(x) and f1(x), we can compute a generalized hydrodynamic friction
coefficient, Γ11, which is proportional to the phase-dependent rate of energy dissipation in the surrounding fluid. In the general
case of n generalized coordinates q1, . . . , qn, we obtain a n × n-matrix Γij , see also Eq. (15). (C) Flow field induced by the
active shape change of the cilium, here shown as two-dimensional section at x = 0. The color represents the magnitude |u(x)|
of three-dimensional velocity vectors, whereas white arrows represent the projections of u on the yz-plane. The flow field was
computed as convolution of the fundamental solution of the Stokes equation with the force distribution f1(x). Cilium phase
corresponding to Fig. 3A: ϕ1 = 1.4π, cilium beat frequency: ω0/(2π) = 32 Hz [12], dynamic viscosity of fluid: µ = 10−3 Pa s
(corresponding to viscosity of water at 20◦ C).

EQUATION OF MOTION

Balance of generalized forces. We introduce active driving forces Qi, i = 1, . . . , n that coarse-grain internal pro-
cesses that drive the active shape changes of the active surface. Previous minimal models of flagella synchronization
considered spheres moving along circular orbits driven by a tangential force [44, 57–59]. Our active driving forces Qi
generalize the active driving forces considered in these models.

We postulate a balance of generalized forces between driving forces and hydrodynamic friction forces

Qi = Pi, i = 1, . . . , n . (18)

We emphasize that Eq. (18) is simply an instance of Newton’s second law, and thus does not involve any new
assumptions. Simplifying modeling assumptions have only been made in constraining the shape dynamics to a finite
number of degrees of freedom q1, . . . , qn, and in the choice of the active driving forces Q1, . . . , Qn.

From the force balance equation, Eq. (18), and Eq. (12) expressing the generalized forces Pi, we obtain equations
of motion for the generalized velocities q̇

q̇ = Γ−1 ·Q , (19)

where Q = (Q1, . . . , Qn)T is the vector of active forces.
Calibration of active driving forces. Because each driving force Qi characterizes internal processes, it is plausible

to assume that Qi only depends on the corresponding degree of freedom qi, but not on the other qj , j 6= i, i.e., we may
assume Qi = Qi(ϕi). This assumption will hold in particular in applications, where the index i enumerates different
microswimmers or different cilia. In principle, Qi may additionally depend on the friction force Pi itself, i.e., if the
internal active processes may change under load [17]. In this case, Eq. (18) becomes a self-consistency equation that
has to be solved using methods for implicit equations. For a number of biological application cases, it was sufficient
to assume that Qi is independent of load [10, 45, 48]. In this case, the active driving forces can be uniquely calibrated
from a reference dynamics, ideally known from experiments. Once this is done, one can extrapolate to alternative
dynamic scenarios.
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As an example for this calibration procedure, previous work used experimental data of in-phase synchronized
beating in the biflagellate green alga Chlamydomonas, which allowed to predict the response to perturbations of this
synchronized state [45]. Similarly, measured cilia beat patterns in the absence of external flow have been used to
calibrate active driving forces and predict the response to external flow [10]. In the application section below, we
consider the dynamics of an isolated cilium with constant phase speed to calibrate its active driving force. We then use
this model to predict synchronization dynamics for a pair of cilia. In all these cases, the driving forces Qi coarse-grain
internal active processes.

Additionally, the formalism allows to incorporate internal elastic degrees of freedom qi and the corresponding elastic
restoring forces Qi in a formally equivalent manner. An example includes the waveform compliance of flagellar bending
waves [10, 48]. Similarly, one can include external forces acting on self-propelled shape-changing microswimmers, as
discussed in the next section.

RIGID BODY MOTION OF A SELF-PROPELLED MICROSWIMMER

The above formalism includes the important application case of shape-changing microswimmers and their self-
propulsion in a viscous fluid. For that aim, we introduce rigid body transformation and include these in the set of
generalized coordinates.

Specifically, we consider a microswimmer with outer surface S and introduce a material frame of this microswimmer
consisting of a reference point x0 and a set of orthonormal vectors e1, e2, e3.

A rigid body motion of the swimmer is characterized by a translation of its reference point, ẋ0 = v0 = v1 e1 +
v2 e2 + v3 e3, and a rotation of its material frame with ėi = εijkΩjek, where εijk denotes the Levi-Cevita symbol and
we use Einstein summation convention. The components v1, v2, v3 and Ω1, Ω2 and Ω3 of the translational and the
rotational velocity vector with respect to the basis e1, e2, e3, respectively, represent the six degrees of freedom of rigid
body motion and satisfy v1 = v0 · e1, v2 = v0 · e2, v3 = v0 · e3, and Ω1 = ė2 · e3 = −ė3 · e2, Ω2 = ė3 · e1 = −ė1 · e3,
Ω3 = ė1 · e2 = −ė2 · e1.

We choose these velocity components as the six generalized velocities

q̇1 = v1, q̇2 = v2, q̇3 = v3, q̇4 = Ω1, q̇5 = Ω2, q̇6 = Ω3 . (20)

The coordinates q1, . . . , q6 are elements of the Lie group se(3) = R3 × so(3) of rigid body transformation [60].
For the special case, where the generalized velocities represent rigid body motion as in Eq. (20), the conjugate gener-

alized hydrodynamic friction forces defined in Eq. (12) are simply given by the components of the total hydrodynamic
friction force F and the total hydrodynamic friction torque M, respectively

P1 = F · e1, P2 = F · e2, P3 = F · e3, P4 = M · e1, P5 = M · e2, P6 = M · e3 . (21)

In this case, the 6× 6-matrix of generalized hydrodynamic friction coefficients Γ reduces to the well-known hydrody-
namic friction matrix (inverse mobility matrix) of an arbitrary-shaped rigid object. For a collection of rigid objects
(e.g., a collection of rigid spheres as considered in [61]), we recover the inverse of the grand mobility matrix.

We can describe active shape changes of the microswimmer using coordinates x′1, x′2, x′3 relative to the swimmer’s
material frame for each point x ∈ S on the surface

x = x0 + x′1 e1 + x′2 e2 + x′3 e3 . (22)

We introduce the time-dependent rigid body transformation that maps the material frame of the swimmer to the
laboratory frame, such that the reference point r0 of the swimmer is mapped to the origin 0 ∈ R3, and the material
frame vectors are mapped to the standard unit vectors, respectively. The coordinates x′1, x′2, x′3 are then just the
coordinates of the image x′ of a point x ∈ S under this transformation, i.e., the coordinates of the surface after it has
been brought into a reference condition [62]. Eq. (22) allows us to decompose the displacement velocity v(x) of the
surface into a contribution stemming from the rigid body motion and a contribution stemming only from any shape
change

v(x) = ẋ = ẋ0 +

3∑
j=1

x′j ėj︸ ︷︷ ︸
rigid body motion

+

3∑
j=1

ẋ′j ej︸ ︷︷ ︸
shape change

. (23)
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The superposition principle of low-Reynolds number flow, Eq. (11), implies that the surface density f(x) of hydrody-
namic friction forces can be written as a superposition of contributions due to rigid body motion and a contribution
fact(x) due the active shape change

f(x) = v1 g1(x) + v2 g2(x) + v3 g3(x) + Ω1 g4(x) + Ω2 g5(x) + Ω3 g6(x) + fact(x) , (24)

where fact(x) depends only on the shape change ẋ′, but not on the translational velocity v0 nor the rotational velocity
Ω.

Since inertia is assumed negligible, the total force and total torque acting on a microswimmer must equal any
external force or torque acting on the swimmer, F = Fext, M = Mext [27]. It follows that a microswimmer that is
free from external forces or torques does not exert any net force or torque on the surrounding fluid itself

F
!
= 0 , M

!
= 0 . (25)

Eq. (25) holds in particular for a neutrally buoyant biological microswimmer (a good approximation for many biological
microswimmers).

The surface density of hydrodynamic friction forces due to active shape changes, fact(x), gives rise to a contribution
Fact =

∫
Sd

2x fact(x) to the total force, as well as an analogous contribution Mact to the total torque. The force
and torque balance equations, Eq. (25), thus provide an inhomogeneous system of six linear equations for the six
components of the translational and rotational velocity, v0 and Ω.

We emphasize that Eq. (18) is very general, and includes the following application cases of microswimmer motion:

• External forces or torques: For example, external forces Fext, or external torques Mext are captured by cor-
responding external forces Qext

i . Examples include gravitational force for a non-buoyant swimmer or torques
exerted by an external rotating magnetic fields on an artificial microswimmer with non-zero magnetic dipole
moment.

• Prescribed shape dynamics: For a prescribed shape-dynamics, say of shape coordinate qi with prescribed driving
protocol qi(t), one would omit the corresponding force balance equation Qi = Pi from the set of equations
Eq. (18), and solve for the equation of motion of the other coordinates with prescribed qi(t). The conjugate
hydrodynamic friction force Pi nonetheless appears in the formula for the total hydrodynamic dissipation rate
R(h), where Piq̇i equals the rate of work required for the shape change with rate q̇i. A number of classical theory
publications on self-propelled biological microswimmers considered prescribed shape dynamics [28, 49–52, 62].

• Constrained motion. Several applications considered constrained swimmers, for example, biological microswim-
mers clamped in micropipettes constrained from translational motion [19, 20, 22]. Formally, this is a special case
of a coordinate qi with prescribed dynamics for the coordinates q1, . . . , q3 representing rigid body translation,
enforcing q̇i = 0. The conjugate hydrodynamic friction force Pi equals the external constraining force required
to impose the constraint. Similarly, to constrain a microswimmer from rotational motion requires a constraining
torque M = P4 e1 +P5 e2 +P6 e3. As a historical note, in their classical 1955 paper, Gray & Hancock considered
self-propulsion of sperm cells with constrained rotational motion to simplify the calculation [28].

Finally, clamped microswimmers exposed to uniform external flow with flow velocity u0 far from the swimmer as
considered in [10] can be incorporated into our formalism by switching to a co-moving reference frame in which
the fluid is at rest. In the co-moving frame, the clamped swimmer is “dragged” through the fluid, corresponding
to a constraint for rigid body translation, q̇i = −u0 · ei, i = 1, 2, 3. Correspondingly, the total hydrodynamic
friction force F = P1 e1 + P2 e2 + P3 e3 represents the constraining force required to clamp the microswimmer
in such an external flow.

MULTI-SCALE MODELING: NUMERICAL IMPLEMENTATION

To solve for the dynamics of an active surface according to Eq. (19), it suffices to compute the generalized hydrody-
namic friction matrix Γ for a set of reference configurations q and save this as a look-up table; the friction matrix Γ(q)
for arbitrary q can then be found by interpolation. This allows to solve the equation of motion Eq. (19) fast, using
pre-computed hydrodynamic friction coefficients. We outline the numerical implementation of this general program.

While Eq. (15) may look abstract, all quantities can be directly obtained from numerical computations for arbitrary
surfaces S. Assume the surface S is represented by a triangulated mesh. The triangular faces (or ‘elements’) shall be
enumerated by k ∈ I with midpoints xk and respective areas Ak.
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In a first step, we compute a (normalized) surface distribution of velocities wi(xk), k ∈ I for each generalized
coordinate i = 1, . . . , n, either by computing the derivative wi(xk) = ∂xk(q)/∂qi analytically, or by evaluating the
finite difference quotient

wi(xk) =
xk(q + ε∆i)− xk(q)

ε
, (26)

for each midpoint xk, k ∈ I, where ∆i is the unit vector whose components are all zero, except the ith component,
and ε is a small number.

We can use boundary element methods to numerically compute a surface density of hydrodynamic friction forces
f(xk) with physical units of a stress, given an arbitrary surface distribution of velocities v(xk) specified at each
midpoint xk, k ∈ I. Specifically, in the application example below, we use the fast multi-pole boundary element
method fastBEM [39, 40].

In the next step, we compute the surface density fj(xk) = αj gj(xk) of hydrodynamic friction forces, corresponding
to the velocity distribution vj(xk) = αj wj(xk). Here, αj is an arbitrary constant to ensure proper physical units
of a velocity for vj . We thus obtain n surface distributions of (normalized) hydrodynamic friction forces gj(xk),
j = 1, . . . , n, one for each generalized coordinate qj . These force distributions gj(xk) depend on q, but not on q̇.
Finally, we compute the components Γij of the generalized hydrodynamic friction matrix Γ by taking the scalar
product of the ith (normalized) velocity distribution wi(xk), and the jth (normalized) force distribution gj(xk)

Γij =
∑
k∈I

wi(xk) · gj(xk)Ak , i, j = 1, . . . , n , (27)

where Ak was the area of the kth triangle. We can interpret αjgj(xk)Ak at the total force acting on the kth element
(with proper physical units of a force) if the generalized coordinate qi would change at a rate αi.

Importantly, it suffices to compute the generalized hydrodynamic friction matrix Γ only for a set of reference
configurations and save this as a look-up table. If m discrete values are used for each of the n generalized coordinates,
the Stokes equation needs to be solved a total of nmn times, as we need to change each of the qj , j = 1, . . . , n for
mn different choices of q. By exploiting symmetries, as well as translational and rotational invariance for individual
microswimmers, this number can be reduced further. The friction matrix Γ(q) for arbitrary q can then be found
by interpolation. For example, spline interpolation, low-order polynomials, and (double) Fourier series were used in
previous applications [10, 45, 48].

In principle, different hydrodynamic simulation methods could be used to solve the Stokes equation and compute
the force distribution f(xk). Deterministic lattice Boltzmann solvers may be suitable, provided the effective Reynolds
numbers are sufficiently small. An early application represented the surface of a microswimmer not by a triangulated
mesh, but as a collection of equally-sized spheres, and computed the grand mobility matrix for these spheres using
the hydrolib package [63]. In the application example below, we employ the fast multi-pole boundary element method
fastBEM [39, 40], available for download at [64]. The open source implementation of the fast boundary element
method STKFMM directly incorporates the fundamental solution of the Stokes equation close to a no-slip boundary
wall [65], and thus relieves the need for an explicit representation of the boundary as a triangulated mesh, yet currently
only supports the computation of velocity fields from force distributions [66, 67].

APPLICATION: PAIR OF INTERACTING CILIA

We demonstrate our LAMAS modeling framework using the example of hydrodynamic synchronization in pairs of
cilia. We thereby reconsider the question of in-phase and anti-phase synchronization previously addressed by Vilfan
et al. [57], yet, instead of a minimal model of spheres orbiting on circular trajectories, we employ in our simulations
a realistic cilia beat pattern obtained from previous experiments.

We digitalized and reconstructed three-dimensional shapes of a beating cilium on the surface of the unicellular
ciliated protist Paramecium [12] as presented in [68]. The cilia beat is periodic, and we can thus describe the shape
of the cilia centerline as a periodic shape sequence parametrized by a 2π-periodic phase variable ϕ, see Fig. 3A. For
unperturbed beating, the phase speed equals the angular frequency of the cilia beat, ϕ̇(t) = ω0.
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FIG. 3: In-phase and anti-phase synchronization in a pair of interacting cilia. (A) Cilia beat pattern from unicellular
Paramecium [12] as reported in [68], shown as sequence of three-dimensional shapes parameterized by a 2π-periodic phase
variable ϕ (color code). Spacing of square grid: 2µm. (B) We consider a pair of cilia with respective phases ϕ1 and ϕ2, whose
base points are separated by a distance d along a direction that encloses an angle ψ with the x axis (where the y axis is set by
the direction of the effective stroke of both cilia). (C) Self-friction coefficient Γ11(ϕ1) of a single cilium as function of its phase
variable ϕ1, obtained by solving the Stokes equation of three-dimensional flow (blue dots), as well as continuous representation
as Fourier series (orange line). In the case of a single cilium, Γ11 is proportional to the phase-dependent active cilia driving
force Q1(ϕ1). (D) Generalized hydrodynamic friction coefficient Γ12(ϕ1, ϕ2) characterizing hydrodynamic interactions from the
second cilium to the first cilium, see also Eq. (28). Positive values (red colors) imply that the motion of the second cilium
causes the first cilium to beat slower, while negative values (blue colors) imply that the first cilium beats faster. Cilia distance
d = 18µm, orientation angle ψ = π/3. (E) The magnitude of hydrodynamic interactions, here quantified by the L2-norm of
Γ12, decay as ∼ 1/d3, consistent with the theoretical scaling expected from the Blake tensor [65]. Different curves correspond
to different separation directions between the two cilia (ψ = 0: dark-blue, ψ = π/3: teal, ψ = 2π/3: light-green; also indicated
by the direction arrows.) (F) We characterize the stability of the in-phase synchronized state, defined by ϕ1(t) = ϕ2(t), for
different relative orientations of the two cilia by a Lyapunov exponent λ, see Eq. (30). Colored dots at respective positions
in the xy-plane represent the value of λ if the second cilium is positioned at the position of the dot and the first cilium is
located at the origin. Negative values imply that in-phase synchronization is linearly stable (green colors, λ < 0), while positive
values imply that in-phase synchronization is linearly unstable (red colors, λ > 0). (G) We determined the steady-state phase
difference δ∗ between the two cilia for different relative cilia positions, analogous to panel F. While δ∗ = 0 for cilia orientations
with stable in-phase synchronization (cyan), we observe anti-phase synchronization with δ∗ ≈ π for cilia orientations with
λ > 0 (red colors). For relative cilia orientation aligned with the direction of the effective stroke of the cilia beat (ψ = π/2),
we observed cases of multi-stability (bi-colored dots). (H) Consistent with the far-field scaling of hydrodynamic interactions as
shown in panel E, we find that also the Lyapunov exponent λ, which represents an effective synchronization strength, likewise
decays as 1/d3 with distance d between the two cilia. Different curves represent different separation directions, analogous to
panel E. Frequency of cilia beat: ω0/(2π) = 32 Hz [12], fluid viscosity: µ = 10−3 Pa s.
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Equation of motion for a pair of cilia

We consider two identical cilia beating in the same direction attached to a no-slip boundary wall, see Fig. 3A and
B. We describe each cilium by a single phase variable that parameterizes its periodic sequence of centerline shapes.
The two phase variables ϕ1 and ϕ2 fully characterize the dynamics of the two beating cilia, and represent a set of
generalized coordinates with state vector q = (ϕ1, ϕ2).

For our example, the force balance equation, Eq. (18) takes the form

Q1(ϕ1) = Γ11(ϕ1, ϕ2)ϕ̇1 + Γ12(ϕ1, ϕ2)ϕ̇2

Q2(ϕ2) = Γ21(ϕ1, ϕ2)ϕ̇1 + Γ22(ϕ2, ϕ2)ϕ̇2 . (28)

This equation can be further simplified. The symmetry relation Eq. (17) implies Γ12(ϕ1, ϕ2) = Γ21(ϕ1, ϕ2). Numerical
computation of Γ11(ϕ1, ϕ2) shows that this self-friction coefficient of the first cilium is virtually independent of the
phase of the second cilium, and almost does not change when the other cilium is not present at all. An analogous state-
ment holds for the second cilium. Therefore, we can replace the two self-friction coefficients in Eq. (28), Γ11(ϕ1, ϕ2)
and Γ22(ϕ1, ϕ2), by the self-friction coefficient for a single cilium to very good approximation. This approximation
allows us to define the active driving forces using the case of a single cilium.

Calibration of active driving force. We require that a single cilium should beat at a constant phase speed ϕ̇1 = ω0,
where ω0 denotes the intrinsic beat frequency of the cilium if there are no interactions with other cilia. This requirement
uniquely determines the active driving force Q1(ϕ1). Specifically, for a single cilium, the force balance equation reads,
Q1(ϕ1) = Γ11(ϕ1) ϕ̇1. We conclude Q1(ϕ1) = ω0 Γ11(ϕ1); Fig. 3C displays the phase-dependence of Γ11(ϕ1). Since
both cilia are assumed identical with same intrinsic beat frequency ω0, this also specifies the active driving force
Q2(ϕ2) of the second cilium.

Equation of motion. Using the force balance equation, Eq. 28, and the calibrated driving force, we obtain the
equation of motion

ϕ̇1 = ω0 − C1(ϕ1, ϕ2) ϕ̇2 , C1(ϕ1, ϕ2) =
Γ12(ϕ1, ϕ2)

Γ11(ϕ1)

ϕ̇2 = ω0 − C2(ϕ1, ϕ2) ϕ̇1 , C2(ϕ1, ϕ2) =
Γ12(ϕ1, ϕ2)

Γ11(ϕ2)
. (29)

Eq. (29) describes a pair of coupled phase oscillators.
In the following, we use Eq. (29) and pre-computed friction coefficients to analyze in-phase and anti-phase synchro-

nization of the two cilia depending on their relative position. Details on the numerical computation of Γij(ϕ1, ϕ2)
can be found in the appendix. An example of the generalized friction coefficient Γ12(ϕ1, ϕ2), which characterizes
hydrodynamic interactions between the two cilia, is shown in Fig. 3D; Fig. S2 shows Γ12(ϕ1, ϕ2) for additional cilia
orientations.

Results: In-phase and anti-phase synchronization as function of direction

Hydrodynamic interactions decay as 1/d3. For large separation distances d between the two cilia, hydrodynamic
interactions between the two cilia as characterized by Γ12(ϕ1, ϕ2) decay as 1/d3, see Fig. 3E. This asymptotic scaling
is consistent with the expected leading order singularity of the flow field induced by a single cilium. Specifically, the
flow field induced by a point force parallel to a no-slip boundary wall is given by the Blake tensor [65], and decays as
1/d3 for points at a constant height from the boundary, which is the relevant case for the interaction between cilia
[69].

Linear stability analysis. Since both cilia were assumed identical, the in-phase synchronized state with ϕ1(t) =
ϕ2(t) is always a periodic solution of Eq. (29). To assess the linear stability of this in-phase synchronized state, we
monitored the evolution of a small perturbation of the phase difference δ(t) = ϕ2(t) − ϕ1(t) during one beat cycle.
Specifically, we integrated Eq. (29) with the initial condition ϕ1(t = 0) = −δ0/2 and ϕ2(t = 0) = δ0/2 for a small
perturbation |δ0| � 1 up to time T defined by ϕ(T ) = [ϕ1(T ) +ϕ2(T )]/2 = 2π (corresponding to the completion of a
full beat cycle), and recorded the new phase difference δ1 = δ(T ).

We define a dimensionless Lyapunov exponent as

λ = log |δ1/δ0| , (30)
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which characterizes whether the initial perturbation decays or grows. The in-phase synchronized state is linearly
stable if |δ1| < |δ0| (hence λ < 0), and linearly unstable if |δ1| > |δ0| (hence λ > 0).

Fig. 3F shows λ as function of relative cilia position. Here, the first cilium is located at the origin, while the second
cilium is located at the position of the respective colored dots.

The symmetry of Eq. (29) implies that the synchronization behavior is invariant under a point reflection, which
swaps cilia 1 and 2. Whether in-phase synchronization is stable or not only depends on the direction of the separation
vector between the two cilia (where λ > 0 for direction angles ψ = π/6 and π/3, in which case the cilia synchronize
anti-phase, as discussed next).

Additionally, we analyzed the steady-state dynamics of Eq. (29) and identified phase differences δ∗ that correspond
to stable periodic solutions, see Fig. 3G. As a technical point, δ(t) may weakly oscillate during each cycle; we therefore
define δ∗ as the phase difference at times for which ϕ is an integer multiple of 2π.

When the in-phase synchronized state is linearly stable for a given cilia configuration, we obviously have δ∗ = 0.
If, however, the in-phase synchronized state is linearly unstable, we approximately find δ∗ ≈ π, corresponding to
anti-phase synchronization. For a few cilia configurations, we observe multi-stability, characterized by two different
values of the phase differences δ∗ that correspond to stable periodic solutions; these configurations are indicated as
bi-colored half circles in Fig. 3G.

The magnitude |λ| of the Lyapunov exponents decreases as 1/d3 with distance d between the two cilia, see Fig. 3H,
consistent with the far-field scaling of hydrodynamic interactions shown in panel E. This suggests that short-range
interactions between close-by cilia may dominate emergent behavior in carpets of many cilia.

DISCUSSION

Summary. We presented a multi-scale modeling and simulation framework for active surfaces immersed in viscous
fluids. This includes self-propulsion of shape-changing microswimmers as a special case. The key idea is to constrain
the shape dynamics to a small number of principal deformation modes. These modes represent generalized coordi-
nates, for which generalized hydrodynamic friction coefficients are defined according to the formalism of Lagrangian
mechanics. To actually compute these friction coefficients, the Stokes equation is solved for an infinitesimal change
of each generalized coordinate in an initial step. For subsequent dynamic simulations, a generalized force balance
between hydrodynamic friction forces and active driving forces is solved in each time step. This is sufficiently fast
since this second step does not involve any hydrodynamic computations, but uses the pre-computed hydrodynamic
friction coefficients.

Our formalism generalizes classical Lagrangian dynamics of dissipative systems [42] to active systems. The rate
of work exerted by the active surface on the surrounding fluid provides a Rayleigh dissipation function R(h), which
defines generalized friction forces Pi conjugate to each generalized coordinate qi as a partial derivative 2Pi = ∂R(h)/∂qi.
Numerically, the generalized friction forces are computed from a surface density of hydrodynamic friction forces using
a Lagrangian projection method. Active driving forces coarse-grain internal active processes, such as the dynamics of
molecular motors inside cilia and flagella. These active driving forces can be calibrated from a reference data set, for
which the dynamics is already known or prescribed.

Our approach shares the idea of multi-scale modeling to efficiently explore biological fluid dynamics problems at
low Reynolds numbers with recent developments of reduced-order models, which likewise propose a decomposition of
biological hydrodynamics problems with multiple queries into an initial setup phase during which the Stokes equation
needs to be solved for example configurations (‘offline phase’), and an subsequent phase of parameter space exploration
(‘online phase’) [41]. However, our approach does not require an affine dependence of hydrodynamic quantities on
model parameters.

Potential applications. We applied our general framework to a model example of mutual synchronization between
two cilia, using an experimentally measured cilia beat pattern. Future work will generalize this approach to cilia
carpets with many cilia, which previously had been either studied using detailed simulations with many degrees of
freedom [70, 71], or using minimal models [69, 72–74]. A key simplifying assumption will be to approximate many-
body hydrodynamic interactions between many cilia as a superposition of pairwise interactions. A similar approach
can be applied to study self-organized pattern formation in suspension of shape-changing microswimmers, using the
approximation of pairwise interactions between microswimmers, which is valid for dilute suspensions.

An important feature of our modeling framework is that biological noise can be incorporated in a natural way.
Beating cilia are known to exhibit both phase fluctuations (frequency jitter), as well as amplitude fluctuations [20,
53, 75]. This active noise jeopardizes synchronization of cilia by hydrodynamic interactions. Additionally, noise
randomizes the motion of biological microswimmers. While thermal noise causes noticeable rotational diffusional of
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micrometer-sized bacteria such as E. coli [76], amplitude fluctuations of cilia beating affect the swimming of ten-fold
larger eukaryotic swimmers [47]. In our framework, active noise is incorporated by using stochastic active driving
forces. In previous work, adding additive Gaussian white noise with noise strengths calibrated from experiments was
sufficient to account for effective diffusion of swimming sperm cells, or noisy synchronization of coupled cilia [53]. For
simulations accounting for biological noise, it is beneficial to use a deterministic solver for the Stokes equation as done
here, in order to not confound physically relevant noise and fluctuations from a stochastic hydrodynamic simulation
method.

Next, our modeling framework helps to conceptualize the load-response of cilia and flagella, which beat slower if the
hydrodynamic load opposing their beat increases. Classical work showed how cilia and flagella beat slower at increased
viscosity of the surrounding fluid [12, 14]; likewise external flows change the speed of cilia beating [10, 17, 23]. The
load response of cilia and flagella is a prerequisite for putative mechanisms of synchronization by hydrodynamic or
mechanical interactions. We propose that the generalized hydrodynamic friction force defined here can serve as a
proxy for the effective hydrodynamic load acting on an actively shape-changing structure such as a beating cilium.

Limitations. Our approach is restricted to the limit of zero Reynolds numbers, because it crucially relies on
the superposition principle for Stokes flow. In a laminar flow regime at finite Reynolds numbers, we expect that
computations of self-friction are still accurate, but long-range hydrodynamic interactions become increasingly less
accurate with increasing distance if the Stokes equation is used. Nonetheless, our approach should still serve as
a reasonable approximation, since any long-range hydrodynamic interactions that are incorrectly predicted by the
Stokes equation will be very weak already.

In principle, a similar framework could be developed using the linearized Navier-Stokes equations instead of the
Stokes equation used here, but only in Fourier space. The linearized Navier-Stokes equation provides a refined
approximation for long-ranged hydrodynamic interactions if the Reynolds number for oscillatory motion becomes
appreciable. In this case, a superposition principle applies for time-periodic flows. However, working in frequency
space instead of the time domain will make the practical solution of dynamic problems more difficult.

Another limitation of our approach is that it is inherently restricted to Newtonian fluids. While certain important
biological fluid dynamics problems involve visco-elastic fluids, the lack of a superposition principle in this case implies
that other methods need to be used.

Conclusion. Our modeling and simulation framework LAMAS can be complimentary to existing methods. Our
approach is particularly suited to screen extensive parameter ranges, provided the modified parameters concern the
dynamical model (such as active driving forces or effective elastic constants [48]), and do not require re-computation
of the generalized hydrodynamic friction coefficients. Likewise, our approach allows to compute multiple stochastic
realizations of the same problem fast.
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APPENDIX: NUMERICAL METHODS

We present additional details on the numerical computations for the application case of a pair of interacting cilia.
Mesh generation. We generated a triangulated mesh for the combined surface S of cilia and boundary surface using

a custom-build Python package (available upon request), see also Fig. S1. We represent the digitalized shapes of the
cilia centerline as a family of space curves r(s, ϕ) parameterized by arclength s with 0 ≤ s ≤ L, where L = 10µm
is the length of the cilium, and a 2π-periodic phase variable ϕ. The centerline shapes of the two cilia are thus given
by r0,1 + r(s, ϕ1) and r0,2 + r(s, ϕ2), where the base points r0,1 and r0,2 have a distance d. The separation vector
r0,2 − r0,1 encloses an angle ψ with x-axis (where y axis is set by the effective stroke of both cilia), see Fig. 3B.

We generate a triangulated mesh for the each cilium by treating the cilium as a bent cylinder of radius 0.125µm,
using 8 node points in azimuthal direction, and 61 nodes in longitudinal direction, as well as one apex node at the
proximal and distal ends, respectively. For numerical stability, the proximal apices of each cilium mesh have a distance
of 0.25µm from the boundary surface. A smaller distance virtually does not change the computed friction coefficients,
but can cause convergence issues.

The hydrodynamic solver fastBEM requires closed surfaces, which prompted us to use a circular disk of finite
thickness (radius 60µm, thickness 1.5µm) instead of a plane surface. Initial simulations confirmed that using a larger
disk radius virtually did not change results. Disk faces were meshed using the Python triangle package (minimum
triangle angle 20◦, maximum triangle area 2µm2 on the upper surface of the disk up to a distance of 50µm from the
disk center, 20µm2 otherwise). Additionally, to improve the convergence of the solver, we refined the mesh in a small
area below the proximal apices of the cilia (maximum triangle area 0.04µm2 up to a distance of 0.625µm from cilia
base points). In total, each meshed cilium consists of 975 triangles, while the meshed disk consists of approximately
7600 triangles.

Hydrodynamic computations. We employed a fast multipole boundary element method termed fastBEM [39, 40, 64]
to solve the inverse problem of finding the surface distributions of hydrodynamic friction forces f(x) for given given
velocity fields v(x) on the combined surface S of both cilia and the boundary surface. To solve this inverse problem,
the algorithm employs an iterative linear GMRES solver (tolerance parameter used here, tol = 5 · 10−4). In principle,
the solver would allow also for mixed boundary conditions that specify a combination of forces and velocities on
different parts of the surface, which is, however, not needed here.

Initial tests showed that the self-friction is virtually independent of the phase the other cilium, allowing us to
approximate Γ11(ϕ1, ϕ2) ≈ Γ11(ϕ1) and Γ22(ϕ1, ϕ2) ≈ Γ11(ϕ2), where Γ11(ϕ1) corresponds to the simulation result
for a single cilium. For the smallest distance tested here, 14µm, the difference was at most 2%. Thus, computation
of Γ11 required m hydrodynamic computations for m = 20 equidistant phase values. The symmetry relation Eq. (17)
gives Γ21(ϕ1, ϕ2) = Γ12(ϕ1, ϕ2); thus it is sufficient to compute only Γ12 (i.e., perform only computations where cilium
number 2 moves, while cilium number 1 is static). To compute Γ12(ϕ1, ϕ2), we performed m2 = 400 hydrodynamic
computations for m2 pairs of phase values on a equidistant (ϕ1, ϕ2)-grid, with mean CPU time of about 102 seconds
per computation. We repeated these computations for 42 different relative positions of cilia as shown in Fig. 3F.

Interpolation. From the generalized friction coefficients computed for a discrete set of (ϕ1, ϕ2)-values, we ob-
tained in a final step a continuous representation in the form of a (double) Fourier series truncated after order 4
(corresponding, e.g., to (2 · 4 + 1)2 = 81 Fourier terms for Γ12(ϕ1, ϕ2)).

Dynamical equation. The system of coupled ordinary differential equations, Eq. (28), was solved with Python
(method scipy.integrate.solve ivp, tolerance 10−8, scipy version 1.5.0). In each time step, we compute the inverse of
matrix Γ.

Lyapunov exponents. For the computation of Lyapunov exponents λ shown in Fig. 3F, we used a small perturbation
δ0 = 10−2 of the in-phase synchronized state. Preliminary simulations using a smaller perturbation δ0 = 10−3 gave
virtually identical results.

Steady-state phase difference. We computed the steady-state phase difference δ∗ between the two cilia as a fixed
point of the Poincaré map L : δ0 → δ1. Specifically, we computed L(δ0) for 30 equidistant values of δ0 in the
interval [0, 2π) by integrating Eq. (28) using initial conditions ϕ1(t = 0) = −δ0/2 and ϕ2(t = 0) = +δ0/2. We then
numerically solved for fixed points L(δ∗) = δ∗, using monotonic cubic spline interpolation of L. The periodic solution
corresponding to a steady-state phase difference δ∗ is stable if the numerical derivative dL/dδ0|δ0=δ∗ is smaller than
1.
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FIG. S1: Triangulated mesh for pair of cilia attached to boundary surface. (A) Entire mesh consisting, of two cilia
represented as bent cylinders (red, cyan), as well as a thin disk of radius 60µm representing the boundary surface (gray),
corresponding to approximately 1000 triangular elements per cilium and 7500 elements for the boundary surface. (B) Close-up
view on a single cilium. Nodes on the bottom of the surface are hidden from view. Cilia distance d = 18µm, orientation angle
ψ = π/6, see also Fig. 3B.

FIG. S2: Hydrodynamic interaction as function of cilia phases for different cilia orientations. Generalized hydro-
dynamic friction coefficient Γ12(ϕ1, ϕ2) as in Fig. 3D for different cilia orientation angles: left: ψ = π/2 (direction of effective
stroke), middle: ψ = π/3, right: ψ = 0 (perpendicular to direction of effective stroke). Cilia distance: d = 18µm. Note different
color scale compared to Fig. 3D.


