Biological Hydrodynamics

PD Dr. Benjamin Friedrich, Dr. Jan Brugues, Lorenzo Duso BIOTEC, TU Dresden, MPI PKS

Next Tutorial: Thursday 5th December, 14:50-16:20, MPI PKS Seminar Room 3

Tutorial 6: Hydrodynamic interactions between multiple beads

1. Two beads

Consider two beads, one of radius r and one of radius R that are immersed within an incompressible Newtonian fluid of viscosity η. They are a distance L apart. For a time t, both beads exert an attractive force F upon each other.

1.1) How far does each of the beads move? When evaluating the hydrodynamic interaction between the beads, assume that L is much larger than R and r, and that t is small enough so that L does not change considerably for the time that the attractive force is generated. (Hint: Use the Oseen-tensor for point particles to evaluate the hydrodynamic interaction.)
1.2) In a second step, both beads exert a repulsive force of the same magnitude F upon each other, for the same time t. Will this move the two beads back to their original positions, or will the system have displaced?

2. Three beads

Now consider one large bead (No. 3) of radius R and two small beads (No. 1 and 2) of radius r. Beads 1 and 2 are separated from bead 3 along the x direction by a distance L, and beads 1 and 2 are themselves separated by a distance $2 H$, see illustration A.

The following force generation protocol is applied: In a first step, an attractive force of magnitude $F / 2$ is generated between bead 1 and 3 and between bead 2 and 3 for a time t, see illustration A. These forces act along the x-direction only. In a second step an attractive force is generated between beads 1 and 2, which reduces their separation distance to H. This process is assumed to not affect bead 3. In a third step, a repulsive force of magnitude $F / 2$ is generated between bead 1 and 3 and between bead 2 and 3 again for a time t, see illustration B. Again, these forces only have components in the x-direction. In a fourth step, a repulsive force is generated between beads 1 and 2 to increase their separation distance back to $2 H$, without affecting bead 3 .
2.1) How far are the beads displaced along the x direction after step 1 and 3? For evaluating hydrodynamic interactions, again assume that L is essentially constant throughout the entire cycle.
2.2) By repeating the cycle, will the system swim forward? However, would you expect beads 1 and 2 to maintain a constant distance to bead 3 when the cycle is repeated?

