Lecture Notes on Stochastic Processes

PD Dr. Benjamin M. Friedrich

November 14, 2018
Contents

1 Diffusion & Random Walk
1.1 Random Walker ... 1
1.2 Continuum Limit: Diffusion Equation 2
1.3 Random Force Model .. 4

2 Probability Theory
2.1 Mathematical Foundations 9
2.2 Probability in Physics 10
2.3 Important Probability Distributions 11
2.4 Normal Approximation 13
2.5 Stochastic Processes 17

3 Langevin Equation and Fokker-Planck Equation
3.1 Langevin equation ... 19
3.2 Fokker-Planck-Equation 20
1 Diffusion & Random Walk

1.1 Random Walker

The random walk can be used to model a variety of different phenomena just like

- the motion of a particle during diffusion
- the spread of mosquito infestation in a forest
- propagation of sound waves in a heterogeneous material
- money flow

Model: Random Walker

A random walker can be considered as particle moving in steps of length l, while choosing each time a random, uncorrelated direction. Uncorrelated means that

$$\langle \vec{x}_n \cdot \vec{x}_m \rangle = l^2 \delta_{nm} \quad (1.1)$$

for averaging over a certain probability distribution.

Thus, the displacement of a random walker after n steps is given by

$$\vec{x} = \sum_{n=1}^{N} \vec{x}_n \quad \text{with} \quad \langle \vec{x} \rangle = \vec{0} \quad (1.2)$$

The mean square displacement $(\Delta \vec{x})^2$ equals the variance σ^2

$$\sigma^2 = \langle \vec{x}^2 \rangle - \langle \vec{x} \rangle^2 = \langle \vec{x}^2 \rangle = (\Delta \vec{x})^2$$

$$= \left\langle \left(\sum_{n=1}^{N} \vec{x}_n \right)^2 \right\rangle = \sum_{n,m=1}^{N} \langle \vec{x}_n \cdot \vec{x}_m \rangle = Nl^2$$

As we have $(\Delta \vec{x})^2 \sim N$ and $\Delta t \sim N$, the relation $\frac{(\Delta \vec{x})^2}{\Delta t}$ is a constant in the continuum limit, which is quite unusual that a square term in the numerator appears.
1.2 Continuum Limit: Diffusion Equation

We now consider the step sizes $\Delta \vec{y}$ of a random walker becoming infinitesimally small, with $p(\Delta \vec{y})$ being the probability for step $\Delta \vec{y}$:

$$\langle \Delta \vec{y} \rangle = \int d^d \Delta y [\Delta y_i p(\Delta \vec{y})] = 0$$

$$\langle \Delta \vec{y}_i \Delta \vec{y}_j \rangle = \int d^d \Delta y [\Delta y_i \Delta y_j p(\Delta \vec{y})] = \langle (\Delta \vec{y})^2 \rangle \frac{\delta_{ij}}{d}$$

for $i, j = 1, 2, \ldots, d$ vector components.

We can express the probability for a displacement of \vec{x} after N steps $p_N(\vec{x})$ through the elementary relation

$$P_N(\vec{x}) = \int d^d \Delta y P_{N-1}(\vec{x} - \Delta \vec{y}) P(\Delta \vec{y})$$

(1.5)

Now we do a Taylor expansion of $P_N(\vec{x})$

$$P_N(\vec{x}) \approx \int d^d \Delta y P(\Delta \vec{y}) \left[P_{N-1}(\vec{x}) - \Delta y_i \partial_i P_{N-1}(\vec{x}) + \frac{1}{2} \Delta y_i \Delta y_j \partial_i \partial_j P_{N-1}(\vec{x}) \right]$$

$$= P_{N-1}(\vec{x}) + \frac{\langle (\Delta \vec{y})^2 \rangle}{2d} \nabla^2 P_{N-1}(\vec{x})$$

We can define a continuum probability density $p(\vec{x}, t)$ after the time $t = N \Delta t$

$$p(\vec{x}, t) = p(\vec{x}, N \Delta t) := P_N(\vec{x})$$

(1.6)

and now we can take the limit

$$\frac{\partial p}{\partial t} = \lim_{\Delta t \to 0} \frac{P_N(\vec{x}) - P_{N-1}(\vec{x})}{\Delta t} = D \nabla^2 p \quad \text{with} \quad D = \frac{\langle (\Delta \vec{y})^2 \rangle}{2d \Delta t}$$

(1.7)

This continuum limit exists, if D can be treated as a constant, i.e. if $\frac{\langle (\Delta \vec{y})^2 \rangle}{\Delta t}$ is finite for $\Delta t \to 0$. The resulting equation is known as the diffusion equation.
1.2 Continuum Limit: Diffusion Equation

Diffusion Equation

The diffusion equation for a probability density \(p(\vec{x}, t) \) reads

\[
\frac{\partial p(\vec{x}, t)}{\partial t} = D \nabla^2 p(\vec{x}, t) \tag{1.8}
\]

which we can also rewrite with the definition of a current \(\vec{J} = -D \nabla p \)

\[
\frac{\partial p}{\partial t} = -\nabla \cdot \vec{J} \tag{1.9}
\]

Solving the diffusion equation

The diffusion equation can be solved e.g. by doing a Fourier transformation of both sides

\[
\frac{\partial p}{\partial t} = D \vec{k}^2 p \tag{1.10}
\]

leading to the k-space solution

\[
p(\vec{k}, t) = \mathcal{F}(p(\vec{x}, t)) = \exp(-D\vec{k}^2 t) \tag{1.11}
\]

A Fourier transform backwards gives the fundamental solution (Green’s function)

\[
p(\vec{x}, t) = \frac{1}{(4\pi kt)^{d/2}} \exp \left(-\frac{x^2}{4kt} \right) \tag{1.12}
\]

with the mean square spread \(\sigma^2 \sim kt \)
1.3 Random Force Model

Another way to approach diffusion is by considering a colloidal particle suspended in a fluid experiencing random forces $f(t)$ due to the interaction with the fluid molecules.

Model: Random Forces

The motion of a particle under random forces $f(t)$ in one dimension can be described by Newton’s law

$$m\ddot{x} + \gamma \dot{x} = f(t)$$

(1.13)

For long time scales $\tau_m \gg \frac{m}{\gamma}$, inertia is negligible and we just have $\gamma \dot{x} = f(t)$. The random force is characterized through

- $\langle f(t) \rangle = 0$ (by symmetry)
- a vanishing correlation $\langle f(t)f(t + \tau) \rangle \rightarrow 0$ for $\tau \rightarrow \tau_m$

for averaging over a certain probability distribution.

An important property of the random force is stationarity

$$\frac{1}{\gamma^2} \int_{-\infty}^{\infty} d\tau \langle f(t)f(t + \tau) \rangle = 2D$$

(1.14)

with $[D] = m^2 s^{-1}$

Concept: Diffusion

Diffusion is a net movement of particles from a region of high to a region of low concentration due to random motion of the single particles.

Formal Solution

A formal solution to the equation of motion without taking inertia into account reads

$$x(t) = x(0) + \frac{1}{\gamma} \int_{0}^{t} dt_1 f(t_1)$$

(1.15)
1.3 Random Force Model

For $\Delta x = x(t) - x(0)$ we get for the mean deviation

$$\langle \Delta x(t) \rangle = \frac{1}{\gamma} \int_0^t dt_1 \langle f(t_1) \rangle = 0$$ (1.16)

by symmetry and for the mean square deviation

$$\langle \Delta x^2 \rangle = \frac{1}{\gamma^2} \left(\left(\int_0^t dt_1 f(t_1) \right) \left(\int_0^t dt_2 f(t_2) \right) \right)$$

$$= \frac{1}{\gamma^2} \int_0^t dt_1 \int_0^t dt_2 \langle f(t_1)f(t_2) \rangle$$

$$= \frac{1}{\gamma^2} \int_0^t dt_1 \int_{-t_1}^{t+t_1} d\tau \langle f(t_1)f(t_1+\tau) \rangle$$

$$= \frac{1}{\gamma^2} \int_0^t dt_1 \int_{-\infty}^{\infty} d\tau \langle f(t_1)f(t_1+\tau) \rangle + \mathcal{O}(D\tau_m)$$

$$= \frac{1}{\gamma^2} \int_0^t dt_1 \gamma^2 2D = 2Dt$$

Calculating $D = D(T)$

In order to calculate $D(T)$ we do a trick and add an elastic spring to the model

$$kx + \gamma \dot{x} = f(t)$$ (1.17)

So at first we might ask what happens in reaction to a pulse response?

$$kx + \gamma \dot{x} = \rho_0 \delta(t) \quad \text{with} \quad x(t) = 0 \mid t < 0$$ (1.18)

The solution to this scenario is given by

$$x(t) = \rho_0 \chi(t), \quad \chi(t) = \frac{1}{\gamma} \exp \left(-\frac{t}{\sigma} \right) \Theta(t), \quad \sigma = \frac{\gamma}{k}$$ (1.19)

We get back to the full problem, where the formal solutions reads

$$x(t) = \int_0^\infty d\tau f(t-\tau) \chi(\tau)$$ (1.20)
with $\langle x(t) \rangle = 0$ by symmetry and

$$
\langle \Delta x^2 \rangle = \frac{1}{\gamma^2} \left(\int_0^\infty d\tau_1 f(t-\tau_1)\chi(\tau_1) \right) \left(\int_0^\infty d\tau_2 f(t-\tau_2)\chi(\tau_2) \right)
$$

$$
= \int_0^\infty d\tau_1 \int_0^\infty d\tau_2 \langle f(t-\tau_1) f(t-\tau_2) \rangle \frac{\chi(\tau_1)\chi(\tau_2)}{\gamma^2} \exp(-\frac{\tau_1 + \tau_2}{\sigma})
$$

$$
= \int_0^\infty d\tau_1 \int_{-\infty}^{\tau_1} d\tau \langle f(t-\tau_1) f(t-\tau_1 - \tau) \rangle \frac{1}{\gamma^2} \exp\left(-\frac{2\tau_1 + \tau}{\sigma}\right)
$$

$$
= \int_0^\infty d\tau_1 \int_{-\infty}^{\tau_1} d\tau \langle f(t-\tau_1) f(t-\tau_1 - \tau) \rangle \frac{1}{\gamma^2} \exp\left(-\frac{2\tau_1 + \tau}{\sigma}\right) + \mathcal{O}(D\tau_m)
$$

$$
\approx \frac{1}{\gamma^2} \int_0^\infty d\tau_1 \exp\left(-\frac{2\tau_1}{\sigma}\right) \int_{-\infty}^{\infty} d\tau \langle f(t-\tau_1) f(t-\tau_1 - \tau) \rangle \exp\left(-\frac{\tau}{\sigma}\right)
$$

$$
= \frac{1}{\gamma^2} \frac{\sigma}{2} 2D\gamma^2 = \frac{\gamma}{k} D
$$

At this point we would like to make use of the equipartition theorem

$$
\langle k_x^2 \rangle = \frac{k_B T}{2} \quad \tag{1.21}
$$

As we have

$$
\langle k_x^2 \rangle = \frac{k_B T}{2} D = \frac{k_B T}{2} \quad \tag{1.22}
$$

we obtain the Stokes-Einstein-relation

$$
D = \frac{k_B T}{\gamma} \quad \tag{1.23}
$$

Repetition: Equipartition Theorem

In thermal equilibrium, the systems energy, given by a Hamiltonian H, is distributed

Made with LaTeX by Benjamin Wolba
on its degrees of freedom x_n via

$$\left< x_m \frac{\partial H}{\partial x_n} \right> = \delta_{mn} k_B T$$ \hspace{1cm} (1.24)

This holds for a microcanonical and canonical ensemble and relates temperature to the systems average energies.
2 Probability Theory

2.1 Mathematical Foundations

Concept: Probability

Let X be a set of states, then we have the following axioms of probability:

- is a function $0 \leq P(A) \leq 1$ for some $A \subseteq X$
- $P(A) + P(B) = P(A \cup B) - P(A \cap B)$

The probability density is analogously a function $p(x) : \mathbb{R} \to \mathbb{R}^+$ and it relates to the probability itself by

$$P(A) = \int_A dx \, p(x) \tag{2.1}$$

for $A \subseteq X$. If $[x] = m$, then $[p] = m^{-1}$. Note that it is also called probability density function $PDF(x) = p(x)$ and the cumulative density function is given by

$$CDF(x) = \int_{-\infty}^{x} dx' \, p(x') \tag{2.2}$$

Important properties of probability distributions are its moments and its cumulants.

Moments

The moments of a probability distributions $p(x)$ are given by

$$\mu_n = \langle x^n \rangle = \int_{-\infty}^{\infty} x^n p(x) \tag{2.3}$$

with the characteristic function

$$\langle \exp(tx) \rangle = \sum_{n=0}^{\infty} \frac{\mu_n}{n!} t^n \tag{2.4}$$
Cumulants

The cumulants are given by the mean value \(k_1 = \mu_1 \), the variance \(k_2 = \mu_2 - \mu_1^2 \) and higher order cumulants such as \(k_3 = \mu_3 - 3\mu_2\mu_1 + 2\mu_1^3 \). More generally we have

\[
\ln \langle \exp(tx) \rangle = \sum_{n=0}^{\infty} k_n \frac{t^n}{n!}
\]

(2.5)

2.2 Probability in Physics

Usually, probability is regarded as relative frequency of an event \(A \) occurring \(N_A \) times for the total number of measurements being \(N \)

\[
P(A) = \lim_{N \to \infty} \frac{N_A}{N}
\]

(2.6)

Practically, a probability is determined by

- the experiment being repeated very often with the same initial macrostate
- replacing the physical system by an idealized model for stochastic simulations

(Talk by Jan Nagel: Gott würfelt nicht. Oder doch? \(\rightarrow \) Uncertainty in initial conditions leads to a dice producing a stochastic behavior.)

Example Weather Forecast

For an event \(R \) = "rain tomorrow" we know that it is raining 116 out of 365 days in Dresden: \(P(R \mid \text{Dresden}) = \frac{116}{365} = 18\% \). Our forecast is getting more accurate if we consider also seasonal changes and thus specific the month being October with 8 days of rain out of 31 in total: \(P(R \mid \text{Dresden, October}) = \frac{8}{31} = 25.8\% \).

Another approach is based on persistence of conditions, i.e. to make a rain prediction for tomorrow based on the weather today. E.g. according to Caskey 1963 we have \(P(R \mid \text{current local weather}) = x \) and \(P(R \mid \text{rain today}) = 44\% \), \(P(R \mid \text{dry today}) = 17\% \).

Last but not least we can sample macrostate that is consistent with measurement data and calculate the probabilities for rain from deterministic models (Navier-Stokes-equations / mathematical forecasting) \(P(R \mid \text{current global weather}) \).
2.3 Important Probability Distributions

Normal Distribution

The normal distribution is given by

\[p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right] = N(\mu, \sigma^2) \] \hspace{1cm} (2.7)

with the moments and cumulants being

\[\mu_1 = \mu, \mu_2 = \mu^2 + \sigma^2, \mu_3 = \mu^3 + 3\mu\sigma^2 \]
\[k_1 = \mu, k_2 = \sigma^2, k_j = 0 \text{ for } j \geq 3 \]

Bernoulli Distribution

For a Bernoulli trial you have two outcomes with probabilities \(p \) and \(1-p \). If you now perform \(n \) independent trials you will get \(k \) times the first outcome with probability

\[P(k, n) = \binom{n}{k} p^k (1-p)^{n-k} \] \hspace{1cm} (2.8)

with \(\langle k \rangle = np \) and \(\langle k^2 \rangle - \langle k \rangle^2 = np(1-p) \). In many practical cases one can do a normal approximation by \(p(k, n) = N(np, np(1-p)) \).

Poisson Distribution

We consider the continuous time limit of the Binomial distribution. Therefore we introduce a time \(t_j = \frac{j}{n}T = j \Delta t \) with \(\Delta t = \frac{T}{n} \) and \(\lambda = np \) being the total number of expected events. The event rate is given by \(r = \frac{\lambda}{T} = \frac{p}{\Delta t} \) with \([r] = s^{-1} \).

Now take the limit \(n \to \infty \) with \(\lambda = \text{const and } p = \frac{\lambda}{n} \), so we get the Poisson distribution

\[p(k, \lambda) = \exp(-\lambda) \frac{\lambda^k}{k!} \] \hspace{1cm} (2.9)

with \(\mu = \langle k \rangle = \lambda, \sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \lambda \). An approximation is \(p(k, \lambda) = N(\lambda, \lambda) \) for very large \(\lambda \).
Remark: Why is the concept of time being used here?

The Poisson distribution is an example of a stochastic Poisson process

\[f(t) = \sum_{-\infty}^{\infty} \delta(t - t_j) \quad (2.10) \]

and so \(k = \int_0^T f(t) \).

Power-law distribution

E.g. the jump distribution of animals pursuing food foraging (Levy walk) or to describe the distribution of Facebook contacts (\(\alpha = 2.2 \)) are described by a power-law distribution of the form

\[p(x) \sim x^{-\alpha} \quad \text{for} \quad x \gg 1 \quad (2.11) \]

It has some unpleasant properties such as \(\sigma = \infty \) for \(\alpha < 3 \).
2.4 Normal Approximation

Proof I Using Stirling’s Approximation

We would like to approximate the Bernoulli distribution

\[p(k, n) = \binom{n}{k} p^k (1-p)^{n-k} \] \hspace{1cm} (2.12)

by means of a normal distribution. Therefore we introduce a small deviation \(\varepsilon \) such that \(q = 1-p, k = np + n\varepsilon \) and \(p(k, n) \approx 0 \) for \(\varepsilon \gg \frac{1}{\sqrt{N}} \).

Trick number one in order to continue is to use Stirling’s approximation

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \] \hspace{1cm} (2.13)

which leads us to

\[
p(k, n) = \frac{\sqrt{2\pi n}}{\sqrt{2\pi k \sqrt{2\pi (n-k)}}} \frac{n^n}{k^k (n-k)^{n-k}} p^k q^{n-k} \\
= \left[\frac{1}{\sqrt{2\pi pqn}} + \mathcal{O}(\varepsilon) \right] (\frac{np}{k})^k \left(\frac{nq}{n-k} \right)^{(n-k)}
\]

To do the second trick and apply \(x^k = \exp(k \ln(x)) \) we need to evaluate the following two expressions

\[
\ln \left(\frac{np}{k} \right) = \ln \left(\frac{p}{p-\varepsilon} \right) = -\ln \left(1 + \frac{\varepsilon}{p} \right) \approx -\frac{\varepsilon}{p} + \frac{1}{2} \left(\frac{\varepsilon}{q} \right)^2
\]

\[
\ln \left(\frac{nq}{n-k} \right) = \ldots \approx \frac{\varepsilon}{p} - \frac{1}{2} \left(\frac{\varepsilon}{q} \right)^2
\]

which means
\[
\left(\frac{np}{k} \right)^k \left(\frac{nq}{n-k} \right)^{n-k} \approx \exp \left(k \left[-\frac{\varepsilon}{p} + \frac{1}{2} \left(\frac{\varepsilon}{q} \right)^2 \right] + (n-k) \left[\frac{\varepsilon}{p} - \frac{1}{2} \left(\frac{\varepsilon}{q} \right)^2 \right] \right)
\]
\[
= 0 \cdot \varepsilon - \frac{1}{2} n \varepsilon^2 - \frac{1}{2} n \varepsilon^2 + O(\varepsilon^3)
\]
\[
= -\frac{1}{2} \frac{\varepsilon^2 (p+q)}{pq} = -\frac{1}{2} \frac{(k-np)^2}{n pq}
\]

Thus

\[
p(k, n) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(k-np)^2}{2\sigma^2} \right)
\]

(2.14)

with \(\sigma^2 = npq \)

Proof II Using the Central-Limit-Theorem

Central-Limit-Theorem

Consider sequence of \(x_1, \ldots, x_n \) independent, identically distributed, random variables with mean \(\mu \) and variance \(\sigma^2 \). We define the empirical mean by

\[
x = \frac{1}{n} (x_1 + \cdots + x_n) = \text{empirical mean}
\]

(2.15)

We normalize it to a random variable with expectation value zero

\[
z = \frac{x - \mu}{\sigma / \sqrt{n}}
\]

(2.16)

Then the probability distribution \(p(z) \to N(0, 1) \) for large \(n \) ("convergence in distribution") or equivalently \(CDF(z) \to Erf(z) \) for almost all \(z \in \mathbb{R} \)

As a second, more elegant proof we consider \(n \) independent random variables \(x_j \) with \(j = 1, \ldots, n \) and

\[
x_j = \begin{cases}
1 & \text{with probability } p \\
0 & \text{with probability } q = 1 - p
\end{cases}
\]

(2.17)
2.4 Normal Approximation

As we define the empirical mean via

\[\bar{x} = \frac{1}{n}(x_1 + \cdots + x_n) = \text{empirical mean} \]

with \(k = n\bar{x} \) we get \(p(k, n) = p(\bar{x}) \sim N(np, npq) \) by the Central-Limit-Theorem. The idea of the proof is to compute the cumulants of \(x_j \)

\[k_1 = \mu, \; k_2 = \sigma^2 \ldots \]

and then to show that the cumulants of \(z_j \) are given by

\[k_1 = 0, \; k_2 = 1, \; k_3 \sim \frac{1}{\sqrt{n}}, \; k_4 \sim \frac{1}{n} \ldots \]

and

\[\lim_{n \to \infty} \ln \langle zt \rangle = \lim_{n \to \infty} \sum_{l=0}^{\infty} k_lt^l = 1 - \frac{1}{2}t^2 \]

then we have \(z \to N(0, 1) \). To show this behavior of the cumulants we take a look at the functions

\[C_x(t) = \langle xt \rangle \quad \text{with} \quad C_{\alpha x}(t) = C_x(\alpha t), \; \alpha \in \mathbb{R} \]

with \(\langle (\alpha x)^l \rangle = \alpha^l \langle x^l \rangle \) and \(k_{\alpha x,j} = \alpha^j k_{x,j} \) for all cumulants, i.e. \(\forall j \in \mathbb{N} \). Use this for \(\bar{x}, z: \)

\[C_{\bar{x}}(t) = C_{x_1} \left(\frac{t}{n} \right) C_{x_2} \left(\frac{t}{n} \right) \cdots C_{x_n} \left(\frac{t}{n} \right) = C \left(\left(\frac{t}{n} \right)^n \right) \]

\[C_z(t) = C_{\bar{x}} \left(\frac{t}{\sigma/\sqrt{n}} \right) \exp \left(- \frac{\mu t}{\sigma/\sqrt{n}} \right) = C_x \left(\left(\frac{t}{\sigma/\sqrt{n}} \right)^n \right) \exp \left(- \frac{\mu t}{\sigma/\sqrt{n}} \right) \]

giving us

\[\ln(C_z(t)) = n \ln \left(C_x \left(\frac{t}{\sigma/\sqrt{n}} \right) \right) - \frac{\mu t}{\sigma/\sqrt{n}} \]

Made with \texttt{B\TeX} by Benjamin Wolba
and so we get

\[k_{z,j} = n \left(\frac{1}{\sigma \sqrt{n}} \right)^j k_{x,j} \]

(2.24)
2.5 Stochastic Processes

Stochastic Process

A stochastic process is a random function \(f(t) : \mathbb{R} \rightarrow \mathbb{R} \), i.e. a family of random variables parameterized by \(t \).

Terminology

- conditional probability density: \(p(f(t_2) = f_2 | f(x_1) = f_1) \)
- Markov property: For \(t_3 > t_2 > t_1 \) it holds that \(p(f(t_3) = f_3 | f(x_2) = f_2, f(x_1) = f_1) = p(f(t_3) = f_3 | f(x_2) = f_2) \forall t_j, f_j \), example: diffusion, counter-example: random draw from an urn without replacements
- Martingales: Markov processes with the property \(\langle f(t_2) | f(t_1) = t_1 \rangle = f_1 \), example: diffusion, counter-example: diffusion with drift

Example: Poisson Process

Poisson Process

For a Poisson process events occur independently with rate \(r \) at random times \(t_j \)

\[
f(t) = \sum_{j=-\infty}^{\infty} \delta(t - t_j)
\]

(2.25)

The property \(x = \int_{\theta}^{T} f(t) \) counts events and yields a Poisson distribution for \(\lambda = rt \).
The waiting times \(t = t_{j+1} - t_j \) are exponentially distributed, i.e. \(p(t) = r \exp(-rt) \).

The last property can be proven by taking a look at the CDF for which we have

\[
P(t \geq \theta + dt) = P(t \geq \theta) - r \, dt \, P(t \geq \theta)
\]

so that

\[
\frac{d}{dt} P(t \geq \theta) = -r \, dt \, P(t \geq \theta) \quad \Rightarrow \quad P(t \geq \theta) \sim \exp(-rt)
\]
Example: Gaussian White Noise

Poisson Process

Gaussian White Noise is described by a function $\xi(t) : \mathbb{R} \to \mathbb{R}$ with the following properties

i) $\langle \xi(t) \rangle = 0$

ii) $\langle \xi(t)\xi(t') \rangle = 2D\delta(t-t')$

iii) $\int_{t_1}^{t_2} dt \xi(t) \sim N(0, 2D[t_2 - t_1])$

Gaussian white noise can be considered as the idealization of thermal random forces, corresponding to $\tau_c \to 0$

Remark: Gaussian White Noise and Mathematics

Strictly speaking, ξ itself cannot be defined mathematically. Instead mathematicians define a so-called Wiener process

$$W(t) = \int_{0}^{t} dt' \xi(t') \quad (2.26)$$

so that $W(t)$ exists and is continuous with probability 1.
3 Langevin Equation and Fokker-Planck Equation

3.1 Langevin equation

Langevin theory describes non-equilibrium systems by postulating a stochastic process, thus adding a noise term to fundamental equations. In its original form, Langevin theory was used to describe Brownian motion, e.g. of a particle suspended in a fluid.

Definition of the Langevin equation

The Langevin equation is a stochastic differential equation for the particle velocity

\[\dot{x} = f(x) + \sqrt{2D} \xi(t) \]

(3.1)

- \(\xi(t) \) represents Gaussian white noise
- it describes diffusion in an effective potential \(U(x) = - \int_0^x dx' f(x') \)

Generalization

\[\dot{x}_i = f_i(\vec{x}) + \sum_{j=1}^m g_{ij}(\vec{x}) \xi_j(t) \]

(3.2)

with \(i = 1, \ldots, n \) and \(\xi_j(t) \) being independent Gaussian white noise functions \(\langle \xi_j(t) \xi_i(t') \rangle = \delta_{ji} \delta(t - t') \)

Example 1: Double-well Potential

Example 2: Escape over a Barrier

Numerics for the Langevin Equation
Euler Scheme

The Langevin equation $\dot{x} = f(x) + \sqrt{2D} \xi(t)$ leads, using the Euler scheme, to the following update-rule

$$\hat{x}_{n+1} = \hat{x}_n + f(\hat{x}_n) \, dt + \sqrt{2D \, dt} \, N_n$$

(3.3)

with $D = D_0$, $t_i = i \, dt$, $x_i = x(t_i)$, $N_n \sim N(0,1)$ and $|\hat{x}_n - x_n| \sim \mathcal{O}(dt^{3/2})$

3.2 Fokker-Planck-Equation

Derivation of Fokker-Planck-Equation

Repetition: Ordinary Diffusion

For the example of ordinary diffusion

$$\dot{x} = \xi(t), \ x(0) = 0 \quad \text{with} \quad \langle x(t) \rangle = 0 \ \langle x^2(t) \rangle = 2Dt$$

(3.4)

the probability density is given by

$$p(x, t) = \frac{1}{(2\pi)^{1/2} 2Dt} \exp \left(-\frac{x^2}{4Dt} \right)$$

(3.5)

fullfilling the Diffusion equation

$$\frac{\partial p(x, t)}{\partial t} = D \frac{\partial^2 p(x, t)}{\partial x^2}$$

(3.6)

Considering the general case $\dot{x} = f(x) + \sqrt{2D} \xi(t)$ we would like to find an operator \hat{L} such that

$$\frac{\partial p(x, t)}{\partial t} = \hat{L} p(x, t)$$

(3.7)

Therefore we discretize time and take a look how a sub-ensemble of $p(x, t)$ at x_n will evolve
3.2 Fokker-Planck-Equation

during a time step from \(p(x, t_n) \) to \(p(x, t_{n+1}) \). For this we are using the Markov-Property:

\[
p(x, t_{n+1}|x_0, t_0) = \int dx_n p(x, t_{n+1}, x_n, t_n|x_0, t_0) \\
= \int dx_n p(x, t_{n+1}|x_n, t_n) p(x_n, t_n|x_0, t_0) \\
= \int dx_n N(x_n + f(x_n), 2Ddt)p(x_n, t_n|x_0, t_0)
\]

This is already an implicit solution in terms of a convolution of the probability density with a family of normal distributions, but it is of few practical use.

A Remark about Units

Unlike probabilities, probability densities for positions have units of inverse length! Therefore we are integrating over a two-point probability density have units of inverse length squared

\[
[p(x, t_{n+1}|x_0, t_0)] = m^{-1} \\
[p(x, t_{n+1}, x_n, t_n|x_0, t_0)] = m^{-2}
\]

So let us define the following abbreviations in order to evaluate this convolution further

\[
p(x, t_n) = \int dx_n I(x_n, y)|_{y=x-n} \quad \text{with} \quad I(x_n, y) = p(x_n)n(x_n, y), \\
\text{and} \quad n(x_n, y) = N(f(x_n)dt, 2Ddt)
\]

The integrand \(I(x, y) \) will contribute only for small \(y = O(dt) \), which means \(x_n \approx x \), so we can Taylor expand \(I(x_n, y) \) in \(x_n \) around \(x \):

\[
I(x_n, y) = I(x, y) + \frac{\partial I(x_n, y)}{\partial x_n}|_{x_n=x}(x_n-x) + \frac{\partial^2 I(x_n, y)}{\partial x_n^2}|_{x_n=x}\frac{(x_n-x)^2}{2} \tag{3.8}
\]
Inserting this into the convolution integral leads to

\[p(x, t_{n+1}) = \int \mathrm{d}y \ I(x, y)|_{x_n=x-y} \]

\[= \int \mathrm{d}y \left(p(x)n(x, y) - \frac{\partial}{\partial x} \left(p(x) n(x, y) y \right) + \frac{\partial^2}{\partial x^2} \left(p(x) n(x, y) \frac{y^2}{2} \right) \right) \]

\[= p(x) \int \mathrm{d}y \ n(x, y) - \frac{\partial}{\partial x} \left(p(x) \int \mathrm{d}y \ n(x, y) y \right) + \frac{\partial^2}{\partial x^2} \left(p(x) \int \mathrm{d}y \ n(x, y) \frac{y^2}{2} \right) \]

The integrals that are occurring in this step are known as Kramers-Moyal coefficients:

\[\int \mathrm{d}y \ n(x, y) = 1 \]

\[\int \mathrm{d}y \ n(x, y) y = f(x) \ dt \]

\[\int \mathrm{d}y \ n(x, y) \frac{y^2}{2} = D \ dt + \frac{1}{2} [f(x)]^2 = D \ dt + \mathcal{O}(dt^2) \]

which gives us

\[p(x, t_{n+1}) = p(x, t_n) - \frac{\partial}{\partial x} [p(x, t_n) f(x) \ dt] + \frac{\partial^2}{\partial x^2} [p(x, t_n) D] \ dt \] \hspace{1cm} (3.9) \]

and thus

\[\frac{p(x, t_{n+1}) - p(x, t_n)}{dt} = - \frac{\partial}{\partial x} [p(x, t_n) f(x)] + \frac{\partial^2}{\partial x^2} [p(x, t_n) D] \] \hspace{1cm} (3.10) \]

Taking the time step to zero, we have finally derived the Fokker-Planck equation.

Fokker-Planck equation

The Fokker-Planck equation is a partial differential equation, which reads

\[\frac{\partial}{\partial t} p(x, t) = - \frac{\partial}{\partial x} [p(x, t) f] + D \frac{\partial^2}{\partial x^2} p(x, t) \]

\hspace{1cm} (3.11) \]

The structure of the Fokker-Planck equation is similar to the Schrödinger equation, i.e. solution methods from QM can be borrowed (take a look at the Risken book!).

Made with \texttt{\LaTeX} by Benjamin Wolba
3.2 Fokker-Planck-Equation

Application to the Diffusion Potential

We consider the diffusion potential $U(x)$ (now we care about physical units!)

$$\dot{x} = -\frac{1}{\gamma} \frac{\partial U}{\partial x} + \xi$$ \hspace{1cm} (3.12)

and look for the steady state $\frac{\partial U}{\partial t} = 0$. Hence, the Fokker-Planck equation reads

$$0 = \nabla\left[\frac{1}{\gamma} \nabla U p\right] + D \nabla^2 p = \nabla\left[\frac{1}{\gamma} \nabla U p + D \nabla p\right]$$

$$\Rightarrow c = \frac{1}{\gamma} \nabla U p + D \nabla p$$

thus, if $c = 0$, we get

$$\frac{\partial}{\partial x} \ln p = \frac{\nabla p}{p} = -\frac{1}{\gamma} \frac{\nabla U}{p}$$ \hspace{1cm} (3.13)

and

$$p \sim \exp\left(-\frac{U}{\gamma D}\right) = \exp\left(-\frac{U}{k_B T}\right)$$ \hspace{1cm} (3.14)

with $D = \frac{k_B T}{\gamma}$, i.e. we recover the Boltzmann distribution. If c would not be zero, the solution could not be normalized. Another explanation, why $c = 0$, is based on the Fokker-Planck-equation being interpreted as conservation equation

$$\dot{p} = -\nabla J \quad \text{with} \quad J = \frac{1}{\gamma} \nabla U p + D \nabla p$$ \hspace{1cm} (3.15)

of the current J. At equilibrium, the current must vanish and thus we have

$$\lim_{t \to \infty} J = c = 0$$ \hspace{1cm} (3.16)
3 Langevin Equation and Fokker-Planck Equation

Eigenvalue Spectrum of \hat{L}

The probability density can be expressed in terms of eigenfunctions of the operator \hat{L}

$$\hat{L}\phi_n(x) = \lambda_n \phi_n(x) \quad (3.17)$$

through

$$p(x,t) = \sum a_n \phi_n(x) \exp(\lambda_n t) \quad (3.18)$$

If $\lambda_0 = 0$, then this corresponds to a steady state ϕ_0 and the slowest decaying mode determines hopping rates.

But why are the λ_n real? We have $\hat{L} \neq \hat{L}^*$, which means \hat{L} is not Hermitian.

$$\left< \hat{L} g, h \right> = \int dx (\hat{L} g) h = \int dx g \hat{L}^* h = \left< g, \hat{L}^* h \right> \quad \forall g(x), h(x) \quad (3.19)$$

so by partial integration we see that

$$\hat{L}^* h = f \frac{\partial h}{\partial x} + D \frac{\partial^2 h}{\partial x^2} \quad (3.20)$$

If $f(x) = -\frac{\partial U(x)}{\partial x}$ we can define a Hermitian operator via

$$A = T^{-1} L T \quad \text{with} \quad T = \exp\left(+\frac{\beta U}{2} \right), \beta = \frac{1}{D} \quad (3.21)$$

The newly constructed operator is self-adjoint $\hat{A} = \hat{A}^*$ and thus all eigenvalues are real. \hat{A} and \hat{L} do have the same eigenvalues.

Backward Fokker-Planck Equation

$$p = p(x_1,t|x_0,0) = p(x_1,0|x_0,-t), \text{ which gives the backward Fokker-Planck equation}$$

$$\dot{p} = \hat{L}_x p = \hat{L}^*_x p = \left[+f(x) \frac{\partial}{\partial x_0} + D \frac{\partial^2}{\partial x_0^2} \right] p(x_1,0|x_0,-t) \quad (3.22)$$
3.2 Fokker-Planck-Equation

Boundary Conditions Matter

1) Reflecting Boundary Conditions (No-Flux / Robin B.C.)

The probability current \(\dot{p} = -J \) vanishes

\[
J(x_1) = J(x_2) = 0 \quad (3.23)
\]

and

\[
\int_{x_1}^{x_2} dx \, p(x, t) = 1 \quad (3.24)
\]

so the steady-state distribution \(p^*(x) = \phi_0(x) \) exists. This is similar for a confinement potential \(\lim_{x \to x_1, x_2} U(x) \to \infty \)

2) Absorbing Boundary Conditions

We have \(p(x_2, t) = 0 \) (Dirichlet Boundary Conditions) and therefore

\[
0 > \frac{d}{dt} \int dx \, p(x, t) = \int dx \, \frac{dp(x, t)}{dt} = \int_{-\infty}^{x_2} \frac{\partial J}{\partial x} = -J(x_2) \quad (3.25)
\]

So no steady-state solution exists (non-trivial / normalizable to one) and all eigenvalues are strictly negative.

Boundary Conditions and Functional Analysis

Changing the boundary conditions changes also the eigenvalues and the adjoint operator (boundary terms might pop up) and thus you will get each time a different operator in terms of functional analysis.