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1 Diffusion & Random Walk

1.1 Random Walker

The random walk can be used to model a variety of di�erent phenomena just like

∙ the motion of a particle during di�usion

∙ the spread of mosquito infestation in a forest

∙ propagation of sound waves in a heterogeneous material

∙ money �ow

Model: Random Walker

A random walker can be considered as particle moving in steps of length 𝑙, while
choosing each time a random, uncorrelated direction. Uncorrelated means that

⟨�⃗�𝑛 · �⃗�𝑚⟩ = 𝑙2𝛿𝑛𝑚 (1.1)

for averaging over a certain probability distribution.

Thus, the displacement of a random walker after 𝑛 steps is given by

�⃗� =
𝑁∑︁

𝑛=1

�⃗�𝑛 with ⟨�⃗�⟩ = 0⃗ (1.2)

The mean square displacement (Δ�⃗�)2 equals the variance 𝜎2

𝜎2 =
⟨︀
�⃗�2
⟩︀
− ⟨�⃗�⟩2 =

⟨︀
�⃗�2
⟩︀
= (Δ�⃗�)2

=

⟨(︃
𝑁∑︁

𝑛=1

�⃗�𝑛

)︃2⟩
=

𝑁∑︁
𝑛,𝑚=1

⟨�⃗�𝑛 · �⃗�𝑚⟩ = 𝑁𝑙2

As we have (Δ�⃗�)2 ∼ 𝑁 and Δ𝑡 ∼ 𝑁 , the relation (Δ�⃗�)2

Δ𝑡
is a constant in the continuum

limit, which is quite unusual that a square term in the numerator appears.



1 Diffusion & Random Walk

1.2 Continuum Limit: Diffusion Equation

We now consider the step sizes Δ�⃗� of a random walker becoming in�nitesimally small,
with 𝑝(Δ�⃗�) being the probability for step Δ�⃗�:

⟨Δ�⃗�𝑖⟩ =
∫︁

d𝑑Δ𝑦 [Δ𝑦𝑖 𝑝(Δ�⃗�)] = 0 (1.3)

⟨Δ�⃗�𝑖 Δ�⃗�𝑗⟩ =
∫︁

d𝑑Δ𝑦 [Δ𝑦𝑖 Δ𝑦𝑗 𝑝(Δ�⃗�)] =
⟨︀
(Δ�⃗�)2

⟩︀ 𝛿𝑖𝑗
𝑑

(1.4)

for 𝑖, 𝑗 = 1, 2, . . . , 𝑑 vector components.

We can express the probability for a displacement of �⃗� after N steps 𝑝𝑁(�⃗�) through the
elementary relation

𝑃𝑁(�⃗�) =

∫︁
d𝑑Δ𝑦 𝑃𝑁−1(�⃗�−Δ�⃗�)𝑃 (Δ�⃗�) (1.5)

Now we do a Taylor expansion of 𝑃𝑁(�⃗�)

𝑃𝑁(�⃗�) ≈
∫︁

d𝑑Δ𝑦 𝑃 (Δ�⃗�)

[︂
𝑃𝑁−1(�⃗�)−Δ𝑦𝑖𝜕𝑖𝑃𝑁−1(�⃗�) +

1

2
Δ𝑦𝑖Δ𝑦𝑗𝜕𝑖𝜕𝑗𝑃𝑁−1(�⃗�)

]︂
= 𝑃𝑁−1(�⃗�) +

⟨(Δ�⃗�)2⟩
2𝑑

∇⃗2𝑃𝑁−1(�⃗�)

We can de�ne a continuum probability density 𝑝(�⃗�, 𝑡) after the time 𝑡 = 𝑁Δ𝑡

𝑝(�⃗�, 𝑡) = 𝑝(�⃗�, 𝑁Δ𝑡) := 𝑃𝑁(�⃗�) (1.6)

and now we can take the limit

𝜕𝑝

𝜕𝑡
= lim

Δ𝑡→0

𝑃𝑁(�⃗�)− 𝑃𝑁−1(�⃗�)

Δ𝑡
= 𝐷∇⃗2𝑝 with 𝐷 =

⟨(Δ�⃗�)2⟩
2𝑑Δ𝑡

(1.7)

This continuum limit exists, if 𝐷 can be treated as a constant, i.e. if
⟨(Δ�⃗�)2⟩

Δ𝑡
is �nite for

Δ𝑡→ 0. The resulting equation is known as the di�usion equation.
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1.2 Continuum Limit: Diffusion Equation

Diffusion Equation

The di�usion equation for a probability density 𝑝(�⃗�, 𝑡) reads

𝜕𝑝(�⃗�, 𝑡)

𝜕𝑡
= 𝐷∇⃗2𝑝(�⃗�, 𝑡) (1.8)

which we can also rewrite with the the de�nition of a current 𝐽 = −𝐷∇⃗𝑝

𝜕𝑝

𝜕𝑡
= −∇⃗ · 𝐽 (1.9)

Solving the diffusion equation

The di�usion equation can be solved e.g. by doing a Fourier transformation of both sides

𝜕𝑝

𝜕𝑡
= 𝐷�⃗�2𝑝 (1.10)

leading to the k-space solution

𝑝(�⃗�, 𝑡) = ℱ(𝑝(�⃗�, 𝑡)) = exp
(︀
−𝐷𝑘2𝑡

)︀
(1.11)

A Fourier transform backwards gives the fundamental solution (Green's function)

𝑝(�⃗�, 𝑡) =
1

(4𝜋𝑘𝑡)𝑑/2
exp

(︂
− 𝑥2

4𝑘𝑡

)︂
(1.12)

with the mean square spread 𝜎2 ∼ 𝑘𝑡
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1 Diffusion & Random Walk

1.3 Random Force Model

Another way to approach di�usion is by considering a colloidal particle suspended in a
�uid experiencing random forces 𝑓(𝑡) due to the interaction with the �uid molecules.

Model: Random Forces

The motion of a particle under random forces 𝑓(𝑡) in one dimension can be described
by Newtons law

𝑚�̈�+ 𝛾�̇� = 𝑓(𝑡) (1.13)

For long time scales 𝜏𝑚 >> 𝑚
𝛾
, inertia is negligible and we just have 𝛾�̇� = 𝑓(𝑡). The

random force is characterized through

∙ ⟨𝑓(𝑡)⟩ = 0 (by symmetry)

∙ a vanishing correlation ⟨𝑓(𝑡)𝑓(𝑡+ 𝜏)⟩ → 0 for 𝜏 → 𝜏𝑚

for averaging over a certain probability distribution.

An important property of the random force is stationarity

1

𝛾2

∫︁ ∞

−∞
d𝜏 ⟨𝑓(𝑡)𝑓(𝑡+ 𝜏)⟩ = 2𝐷 (1.14)

with [𝐷] = m2 s−1

Concept: Diffusion

Di�usion is a net movement of particles from a region of high to a region of low
concentration due to random motion of the single particles.

Formal Solution

A formal solution to the equation of motion without taking inertia into account reads

𝑥(𝑡) = 𝑥(0) +
1

𝛾

∫︁ 𝑡

0

d𝑡1 𝑓(𝑡1) (1.15)
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1.3 Random Force Model

For Δ𝑥 = 𝑥(𝑡)− 𝑥(0) we get for the mean deviation

⟨Δ𝑥(𝑡)⟩ = 1

𝛾

∫︁ 𝑡

0

d𝑡1 ⟨𝑓(𝑡1)⟩ = 0 (1.16)

by symmetry and for the mean square deviation

⟨︀
Δ𝑥2

⟩︀
=

1

𝛾2

⟨(︂∫︁ 𝑡

0

d𝑡1 𝑓(𝑡1)

)︂(︂∫︁ 𝑡

0

d𝑡2 𝑓(𝑡2)

)︂⟩
=

1

𝛾2

∫︁ 𝑡

0

d𝑡1

∫︁ 𝑡

0

d𝑡2 ⟨𝑓(𝑡1)𝑓(𝑡2)⟩

=
1

𝛾2

∫︁ 𝑡

0

d𝑡1

∫︁ 𝑡+𝑡1

−𝑡1

d𝜏 ⟨𝑓(𝑡1)𝑓(𝑡1 + 𝜏)⟩

=
1

𝛾2

∫︁ 𝑡

0

d𝑡1

∫︁ ∞

−∞
d𝜏 ⟨𝑓(𝑡1)𝑓(𝑡1 + 𝜏)⟩+𝒪(𝐷𝜏𝑚)

=
1

𝛾2

∫︁ 𝑡

0

d𝑡1 𝛾
22𝐷 = 2𝐷𝑡

Calculating 𝐷 = 𝐷(𝑇 )

In order to calculate 𝐷(𝑇 ) we do a trick and add an elastic spring to the model

𝑘𝑥+ 𝛾�̇� = 𝑓(𝑡) (1.17)

So at �rst we might ask what happens in reaction to a pulse response?

𝑘𝑥+ 𝛾�̇� = 𝜌0𝛿(𝑡) with 𝑥(𝑡) = 0 | 𝑡 < 0 (1.18)

The solution to this scenario is given by

𝑥(𝑡) = 𝜌0𝜒(𝑡), 𝜒(𝑡) =
1

𝛾
exp

(︂
− 𝑡

𝜎

)︂
Θ(𝑡), 𝜎 =

𝛾

𝑘
(1.19)

We get back to the full problem, where the formal solutions reads

𝑥(𝑡) =

∫︁ ∞

0

d𝜏 𝑓(𝑡− 𝜏)𝜒(𝜏) (1.20)
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1 Diffusion & Random Walk

with ⟨𝑥(𝑡)⟩ = 0 by symmetry and

⟨︀
Δ𝑥2

⟩︀
=

1

𝛾2

⟨(︂∫︁ ∞

0

d𝜏1 𝑓(𝑡− 𝜏1)𝜒(𝜏1)

)︂(︂∫︁ ∞

0

d𝜏2 𝑓(𝑡− 𝜏2)𝜒(𝜏2)

)︂⟩
=

∫︁ ∞

0

d𝜏1

∫︁ ∞

0

d𝜏2 ⟨𝑓(𝑡− 𝜏1)𝑓(𝑡− 𝜏2)⟩ 𝜒(𝜏1)𝜒(𝜏2)⏟  ⏞  
= 1

𝛾2
exp(− 𝜏1+𝜏2

𝜎 )

=

∫︁ ∞

0

d𝜏1

∫︁ ∞

−𝜏1

d𝜏 ⟨𝑓(𝑡− 𝜏1)𝑓(𝑡− 𝜏1 − 𝜏)⟩ 1

𝛾2
exp

(︂
−2𝜏1 + 𝜏

𝜎

)︂
=

∫︁ ∞

0

d𝜏1

∫︁ ∞

−∞
d𝜏 ⟨𝑓(𝑡− 𝜏1)𝑓(𝑡− 𝜏1 − 𝜏)⟩ 1

𝛾2
exp

(︂
−2𝜏1 + 𝜏

𝜎

)︂
+𝒪(𝐷𝜏𝑚)

=
1

𝛾2

∫︁ ∞

0

d𝜏1 exp

(︂
−2𝜏1
𝜎

)︂∫︁ ∞

−∞
d𝜏 ⟨𝑓(𝑡− 𝜏1)𝑓(𝑡− 𝜏1 − 𝜏)⟩ exp

(︁
− 𝜏
𝜎

)︁
⏟  ⏞  
≈1, 𝜏𝑚<<𝜎

=
1

𝛾2
𝜎

2
2𝐷𝛾2 =

𝛾

𝑘
𝐷

At this point we would like to make use of the equipartition theorem

⟨
𝑘

2
𝑥2
⟩

=
𝑘𝐵𝑇

2
(1.21)

As we have ⟨
𝑘

2
𝑥2
⟩

=
𝑘

2

𝛾

𝑘
𝐷 =

𝑘𝐵𝑇

2
(1.22)

we obtain the Stokes-Einstein-relation

𝐷 =
𝑘𝐵𝑇

𝛾
(1.23)

Repetition: Equipartition Theorem

In thermal equilibrium, the systems energy, given by a Hamiltonian 𝐻, is distributed
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1.3 Random Force Model

on its degrees of freedom 𝑥𝑛 via

⟨
𝑥𝑚

𝜕𝐻

𝜕𝑥𝑛

⟩
= 𝛿𝑚𝑛𝑘𝐵𝑇 (1.24)

This holds for a microcanonical and canonical ensemble and relates temperature to
the systems average energies.
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2 Probability Theory

2.1 Mathematical Foundations

Concept: Probability

Let 𝑋 be a set of states, then we have the following axioms of probability:

∙ is a function 0 ≤ 𝑃 (𝐴) ≤ 1 for some 𝐴 ⊆ 𝑋

∙ 𝑃 (𝐴) + 𝑃 (𝐵) = 𝑃 (𝐴 ∪𝐵)− 𝑃 (𝐴 ∩𝐵)

The probability density is analogously a function 𝑝(𝑥) : R → R+ and it relates to the
probability itself by

𝑃 (𝐴) =

∫︁
𝐴

d𝑥 𝑝(𝑥) (2.1)

for 𝐴 ⊆ 𝑋. If [𝑥] = m, then [𝑝] = m−1. Note that it is also called probability density
function PDF(𝑥) = 𝑝(𝑥) and the cumulative density function is given by

CDF(𝑥) =

∫︁ 𝑥

−∞
d𝑥′ 𝑝(𝑥′) (2.2)

Important properties of probability distributions are its moments and its cumulants.

Moments

The moments of a probability distributions 𝑝(𝑥) are given by

𝜇𝑛 = ⟨𝑥𝑛⟩ =
∫︁ ∞

−∞
𝑥𝑛𝑝(𝑥) (2.3)

with the characteristic function

⟨exp(𝑡𝑥)⟩ =
∞∑︁
𝑛=0

𝜇𝑛
𝑡𝑛

𝑛!
(2.4)



2 Probability Theory

Cumulants

The cumulants are given by the mean value 𝑘1 = 𝜇1, the variance 𝑘2 = 𝜇2 − 𝜇2
1 and

higher order cumulants such as 𝑘3 = 𝜇3 − 3𝜇2𝜇1 + 2𝜇3
1. More generally we have

ln ⟨exp(𝑡𝑥)⟩ =
∞∑︁
𝑛=0

𝑘𝑛
𝑡𝑛

𝑛!
(2.5)

2.2 Probability in Physics

Usually, probability is regarded as relative frequency of an event 𝐴 occuring 𝑁𝐴 times for
the total number of measurements being 𝑁

𝑃 (𝐴) = lim
𝑁→∞

𝑁𝐴

𝑁
(2.6)

Practically, a probability is determined by

∙ the experiment being repeated very often with the same initial macrostate

∙ replacing the physical system by an idealized model for stochastic simulations

(Talk by Jan Nagel: Gott würfelt nicht. Oder doch? �> Uncertainty in initial conditions
leads to a dice producing a stochastic behavior.)

Example Weather Forecast

For an event R = "rain tomorrow" we know that it is raining 116 out of 365 days in
Dresden: 𝑃 (𝑅 |Dresden) = 116

365
= 18%. Our forecast is getting more accurate if we

consider also seasonal changes and thus speci�c the month being October with 8 days of
rain out of 31 in total: 𝑃 (𝑅 |Dresden,October) = 8

31
= 25.8%

Another approach is based on persistence of conditions, i.e. to make a rain prediction
for tomorrow based on the weather today. E.g. according to Caskey 1963 we have
𝑃 (𝑅 | current local weather) = 𝑥 and 𝑃 (𝑅 | rain today) = 44%, 𝑃 (𝑅 | dry today) = 17%

Last but not least we can sample macrostate that is consistent with measurement data
an calculate the probabilities for rain from deterministic models (Navier-Stokes-equations
/ mathematical forecasting) 𝑃 (𝑅 | current global weather).
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2.3 Important Probability Distributions

2.3 Important Probability Distributions

Normal Distribution

The normal distribution is given by

𝑝(𝑥) =
1√
2𝜋𝜎2

exp

[︂
−(𝑥− 𝜇)2

2𝜎2

]︂
= 𝑁(𝜇, 𝜎2) (2.7)

with the moments and cumulants being

𝜇1 = 𝜇, 𝜇2 = 𝜇2 + 𝜎2, 𝜇3 = 𝜇3 + 3𝜇𝜎2

𝑘1 = 𝜇, 𝑘2 = 𝜎2, 𝑘𝑗 = 0 for 𝑗 ≥ 3

Bernoulli Distribution

For a Bernoulli trial you have two outcomes with probabilities 𝑝 and 1 − 𝑝. If you now
perform 𝑛 independent trials you will get 𝑘 times the �rst outcome with probability

𝑃 (𝑘, 𝑛) =

(︂
𝑛

𝑘

)︂
𝑝𝑘(1− 𝑝)𝑛−𝑘 (2.8)

with ⟨𝑘⟩ = 𝑛𝑝 and ⟨𝑘2⟩ − ⟨𝑘⟩2 = 𝑛𝑝(1− 𝑝). In many practical cases one can do a normal
approximation by 𝑝(𝑘, 𝑛) = 𝑁(𝑛𝑝, 𝑛𝑝(1− 𝑝)).

Poisson Distribution

We consider the continuous time limit of the Binomial distribution. Therefore we intro-
duce a time 𝑡𝑗 =

𝑗
𝑛
𝑇 = 𝑗 d𝑡 with d𝑡 = 𝑇

𝑛
and 𝜆 = 𝑛𝑝 being the total number of expected

events. The event rate is given by 𝑟 = 𝜆
𝑇
= 𝑝

d𝑡
with [𝑟] = s−1.

Now take the limit 𝑛→ ∞ with 𝜆 = const and 𝑝 = 𝜆
𝑛
, so we get the Poisson distribution

𝑝(𝑘, 𝜆) = exp(−𝜆)𝜆
𝑘

𝑘!
(2.9)

with 𝜇 = ⟨𝑘⟩ = 𝜆, 𝜎2 = ⟨𝑘2⟩ − ⟨𝑘⟩2 = 𝜆. An approximation is 𝑝(𝑘, 𝜆) = 𝑁(𝜆, 𝜆) for very
large 𝜆.
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2 Probability Theory

Remark: Why is the concept of time being used here?

The poisson distribution is an example of a stochastic Poisson process

𝑓(𝑡) =
∞∑︁
−∞

𝛿(𝑡− 𝑡𝑗) (2.10)

and so 𝑘 =
∫︀ 𝑇

0
𝑓(𝑡).

Power-law distribution

E.g. the jump distribution of animals pursuing food foraging (Levy walk) or to describe
the distribution of Facebook contacts (𝛼 = 2.2) are described by a power-law distribution
of the form

𝑝(𝑥) ∼ 𝑥−𝛼 for 𝑥≫ 1 (2.11)

It has some unpleasant properties such as 𝜎 = ∞ for 𝛼 < 3.
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2.4 Normal Approximation

2.4 Normal Approximation

Proof I Using Stirling’s Approximation

We would like to approximate the Bernoulli distribution

𝑝(𝑘, 𝑛) =

(︂
𝑛

𝑘

)︂
𝑝𝑘(1− 𝑝)𝑛−𝑘 (2.12)

by means of a normal distribution. Therefore we introduce a small deviation 𝜀 such that
𝑞 = 1− 𝑝, 𝑘 = 𝑛𝑝+ 𝑛𝜀 and 𝑝(𝑘, 𝑛) ≈ 0 for 𝜀≫ 1√

𝑁
.

Trick number one in order to continue is to use Stirling's approximation

𝑛! ≈
√
2𝜋𝑛

(︁𝑛
𝑒

)︁𝑛
(2.13)

which leads us to

𝑝(𝑘, 𝑛) =

√
2𝜋𝑛√

2𝜋𝑘
√︀

2𝜋(𝑛− 𝑘)

𝑛𝑛

𝑘𝑘(𝑛− 𝑘)𝑛−𝑘
𝑝𝑘𝑞𝑛−𝑘

=

[︂
1√

2𝜋𝑝𝑞𝑛
+𝒪(𝜀)

]︂(︁𝑛𝑝
𝑘

)︁𝑘 (︂ 𝑛𝑞

𝑛− 𝑘

)︂(𝑛−𝑘)

To do the second trick and apply 𝑥𝑘 = exp(𝑘 ln(𝑥)) we need to evaluate the following two
expressions

ln
(︁𝑛𝑝
𝑘

)︁
= ln

(︂
𝑝

𝑝− 𝜀

)︂
= − ln

(︂
1 +

𝜀

𝑝

)︂
≈ −𝜀

𝑝
+

1

2

(︂
𝜀

𝑞

)︂2

ln

(︂
𝑛𝑞

𝑛− 𝑘

)︂
= . . . ≈ 𝜀

𝑝
− 1

2

(︂
𝜀

𝑞

)︂2

which means
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2 Probability Theory

(︁𝑛𝑝
𝑘

)︁𝑘 (︂ 𝑛𝑞

𝑛− 𝑘

)︂𝑛−𝑘

≈ exp

(︃
𝑘

[︃
−𝜀
𝑝
+

1

2

(︂
𝜀

𝑞

)︂2
]︃
+ (𝑛− 𝑘)

[︃
𝜀

𝑝
− 1

2

(︂
𝜀

𝑞

)︂2
]︃)︃

= 0 · 𝜀− 1

2
𝑛
𝜀2

𝑝
− 1

2
𝑛
𝜀2

𝑞
+𝒪(𝜀3)

= −1

2

𝜀2(𝑝+ 𝑞)

𝑝𝑞
= −1

2

(𝑘 − 𝑛𝑝)2

𝑛𝑝𝑞

Thus

𝑝(𝑘, 𝑛) =
1√
2𝜋𝜎2

exp

(︂
−(𝑘 − 𝑛𝑝)2

2𝜎2

)︂
(2.14)

with 𝜎2 = 𝑛𝑝𝑞

Proof II Using the Central-Limit-Theorem

Central-Limit-Theorem

Consider sequence of 𝑥1, ...𝑥𝑛 independent, identically distributed, random variables
with mean 𝜇 and variance 𝜎2. We de�ne the empirical mean by

�̄� =
1

𝑛
(𝑥1 + · · ·+ 𝑥𝑛) = empiricalmean (2.15)

We normalize it to a random variable with expectation value zero

𝑧 =
�̄�− 𝜇

𝜎/
√
𝑛

(2.16)

Then the probability distribution 𝑝(𝑧) → 𝑁(0, 1) for large 𝑛 ("convergence in distri-
bution") or equivalently 𝐶𝐷𝐹 (𝑧) → 𝐸𝑟𝑓(𝑧) for almost all 𝑧 ∈ R

As a second, more elegant proof we consider 𝑛 independent random variables 𝑥𝑗 with
𝑗 = 1, ..., 𝑛 and

𝑥𝑗 =

{︃
1 |with probability 𝑝
0 |with probability 𝑞 = 1− 𝑝

(2.17)
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2.4 Normal Approximation

As we de�ne the empirical mean via

�̄� =
1

𝑛
(𝑥1 + · · ·+ 𝑥𝑛) = empiricalmean (2.18)

with 𝑘 = 𝑛�̄� we get 𝑝(𝑘, 𝑛) = 𝑝(�̄�) ∼ 𝑁(𝑛𝑝, 𝑛𝑝𝑞) by the Central-Limit-Theorem. The
idea of the proof is to compute the cumulants of 𝑥𝑗

𝑘1 = 𝜇, 𝑘2 = 𝜎2 . . . (2.19)

and then to show that the cumulants of 𝑧𝑗 are given by

𝑘1 = 0, 𝑘2 = 1, 𝑘3 ∼
1√
𝑛
, 𝑘4 ∼

1

𝑛
. . . (2.20)

and

lim
𝑛→∞

ln ⟨𝑧𝑡⟩ = lim
𝑛→∞

∞∑︁
𝑙=0

𝑘𝑙𝑡
𝑙 = 1− 1

2
𝑡2 (2.21)

then we have 𝑧 → 𝑁(0, 1). To show this behavior of the cumulants we take a look at the
functions

𝐶𝑥(𝑡) = ⟨𝑥𝑡⟩ with 𝐶𝛼𝑥(𝑡) = 𝐶𝑥(𝛼𝑡), 𝛼 ∈ R (2.22)

with ⟨(𝛼𝑥)𝑗⟩ = 𝛼𝑗 ⟨𝑥𝑗⟩ and 𝑘𝛼𝑥,𝑗 = 𝛼𝑗𝑘𝑥,𝑗 for all cumulants, i.e. ∀𝑗 ∈ N. Use this for �̄�, 𝑧:

𝐶�̄�(𝑡) = 𝐶𝑥1

(︂
𝑡

𝑛

)︂
𝐶𝑥2

(︂
𝑡

𝑛

)︂
. . . 𝐶𝑥𝑛

(︂
𝑡

𝑛

)︂
= 𝐶

(︂(︂
𝑡

𝑛

)︂𝑛)︂

𝐶𝑧(𝑡) = 𝐶�̄�(
𝑡

𝜎/
√
𝑛
) exp

(︂
− 𝜇𝑡

𝜎/
√
𝑛

)︂
= 𝐶𝑥((

𝑡

𝜎/
√
𝑛
)𝑛) exp

(︂
− 𝜇𝑡

𝜎/
√
𝑛

)︂

giving us

ln(𝐶𝑧(𝑡)) = 𝑛 ln

(︂
𝐶𝑥

(︂
𝑡

𝜎/
√
𝑛

)︂)︂
− 𝜇𝑡

𝜎/
√
𝑛

(2.23)
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2 Probability Theory

and so we get

𝑘𝑧,𝑗 = 𝑛

(︂
1

𝜎
√
𝑛

)︂𝑗

𝑘𝑥,𝑗 (2.24)
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2.5 Stochastic Processes

2.5 Stochastic Processes

Stochastic Process

A stochastic process is a random function 𝑓(𝑡) : R → R, i.e. a family of random
variables parameterized by 𝑡.

Terminology

∙ conditional probability density: 𝑝(𝑓(𝑡2) = 𝑓2|𝑓(𝑥1) = 𝑓1)

∙ Markov property: For 𝑡3 > 𝑡2 > 𝑡1 it holds that 𝑝(𝑓(𝑡3) = 𝑓3|𝑓(𝑥2) = 𝑓2, 𝑓(𝑥1) =
𝑓1) = 𝑝(𝑓(𝑡3) = 𝑓3|𝑓(𝑥2) = 𝑓2) ∀𝑡𝑗, 𝑓𝑗, example: di�usion, counter-example: random
draw from an urn without replacements

∙ Martingales: Markov processes with the property ⟨𝑓(𝑡2)|𝑓(𝑡1) = 𝑡1⟩ = 𝑓1, example:
di�usion, counter-example: di�usion with drift

Example: Poisson Process

Poisson Process

For a Poisson process events occur independently with rate 𝑟 at random times 𝑡𝑗

𝑓(𝑡) =
∞∑︁

𝑗=−∞

𝛿(𝑡− 𝑡𝑗) (2.25)

The property 𝑥 =
∫︀ 𝑇

0
𝑓(𝑡) counts events and yields a Poisson distribution for 𝜆 = 𝑟𝑡.

The waiting times 𝑡 = 𝑡𝑗+1 − 𝑡𝑗 are exponentially distributed, i.e. 𝑝(𝑡) = 𝑟 exp(−𝑟𝑡).

The last property can be proven by taking a look at the CDF for which we have

𝑃 (𝑡 ≥ 𝜃 + d𝑡) = 𝑃 (𝑡 ≥ 𝜃)− 𝑟 d𝑡 𝑃 (𝑡 ≥ 𝜃)

so that

d

d𝑡
𝑃 (𝑡 ≥ 𝜃) = −𝑟 d𝑡 𝑃 (𝑡 ≥ 𝜃) ⇒ 𝑃 (𝑡 ≥ 𝜃) ∼ exp(−𝑟𝑡)
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Example: Gaussian White Noise

Poisson Process

Gaussian White Noise is described by a function 𝜉(𝑡) : R → R with the following
properties

i) ⟨𝜉(𝑡)⟩ = 0

ii) ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 2𝐷𝛿(𝑡− 𝑡′)

iii)
∫︀ 𝑡2
𝑡1

d𝑡 𝜉(𝑡) ∼ 𝑁(0, 2𝐷[𝑡2 − 𝑡1])

Gaussian white noise can be considered as the idealization of thermal random forces,
corresponding to 𝜏𝑐 → 0

Remark: Gaussian White Noise and Mathematics

Strictly speaking, 𝜉 itself cannot be de�ned mathematically. Instead mathematicians
de�ne a so-called Wiener process

𝑊 (𝑡) =

∫︁ 𝑡

0

d𝑡′ 𝜉(𝑡′) (2.26)

so that 𝑊 (𝑡) exists and is continuous with probability 1.
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3 Langevin Equation and Fokker-Planck

Equation

3.1 Langevin equation

Langevin theory describes non-equilibrium systems by postulating a stochastic process,
thus adding a noise term to fundamental equations. In its original form, Langevin theory
was used to describe Brownian motion, e.g. of a particle suspended in a �uid.

Definition of the Langevin equation

The Langevin equation is a stochastic di�erential equation for the particle velocity

�̇� = 𝑓(𝑥)⏟ ⏞ 
drift

+
√
2𝐷 𝜉(𝑡)⏟  ⏞  

randomnoise

(3.1)

∙ 𝜉(𝑡) represents Gaussian white noise

∙ it describes di�usion in an e�ective potential 𝑈(𝑥) = −
∫︀ 𝑥

0
d𝑥′ 𝑓(𝑥′)

Generalization

�̇�𝑖 = 𝑓𝑖(�⃗�) +
𝑚∑︁
𝑗=1

𝑔𝑖𝑗(�⃗�)𝜉𝑗(𝑡) (3.2)

with 𝑖 = 1, . . . , 𝑛 and 𝜉𝑗(𝑡) being independent Gaussian white noise functions ⟨𝜉𝑗(𝑡)𝜉𝑙(𝑡′)⟩ =
𝛿𝑗𝑙𝛿(𝑡− 𝑡′)

Example 1: Double-well Potential

Example 2: Escape over a Barrier

Numerics for the Langevin Equation



3 Langevin Equation and Fokker-Planck Equation

Euler Scheme

The Langevin equation �̇� = 𝑓(𝑥) +
√
2𝐷 𝜉(𝑡) leads, using the Euler scheme, to the

following update-rule

�̂�𝑛+1 = �̂�𝑛 + 𝑓(�̂�𝑛) d𝑡+
√
2𝐷 d𝑡𝑁𝑛 (3.3)

with 𝐷 = 𝐷0, 𝑡𝑖 = 𝑖 d𝑡, 𝑥𝑖 = 𝑥(𝑡𝑖), 𝑁𝑛 ∼ 𝑁(0, 1) and |�̂�𝑛 − 𝑥𝑛| ∼ 𝒪(d𝑡3/2)

3.2 Fokker-Planck-Equation

Derivation of Fokker-Planck-Equation

Repetition: Ordinary Diffusion

For the example of ordinary di�usion

�̇� = 𝜉(𝑡), 𝑥(0) = 0 with ⟨𝑥(𝑡)⟩ = 0
⟨︀
𝑥2(𝑡)

⟩︀
= 2𝐷𝑡 (3.4)

the probability density is given by

𝑝(𝑥, 𝑡) =
1

(2𝜋)

1

2𝐷𝑡
exp

(︂
− 𝑥2

4𝐷𝑡

)︂
(3.5)

full�lling the Di�usion equation

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑝(𝑥, 𝑡)

𝜕𝑥2
(3.6)

Considering the general case �̇� = 𝑓(𝑥) +
√
2𝐷 𝜉(𝑡) we would like to �nd an operator �̂�

such that

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= �̂�𝑝(𝑥, 𝑡) (3.7)

Therefore we discretize time and take a look how a sub-ensemble of 𝑝(𝑥, 𝑡) at 𝑥𝑛 will evolve
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3.2 Fokker-Planck-Equation

during a time step from 𝑝(𝑥, 𝑡𝑛) to 𝑝(𝑥, 𝑡𝑛+1). For this we are using the Markov-Property:

𝑝(𝑥, 𝑡𝑛+1|𝑥0, 𝑡0) =
∫︁

d𝑥𝑛 𝑝(𝑥, 𝑡𝑛+1, 𝑥𝑛, 𝑡𝑛|𝑥0, 𝑡0)

=

∫︁
d𝑥𝑛 𝑝(𝑥, 𝑡𝑛+1|𝑥𝑛, 𝑡𝑛) 𝑝(𝑥𝑛, 𝑡𝑛|𝑥0, 𝑡0)

=

∫︁
d𝑥𝑛𝑁(𝑥𝑛 + 𝑓(𝑥𝑛), 2𝐷 d𝑡)𝑝(𝑥𝑛, 𝑡𝑛|𝑥0, 𝑡0)

This is already an implicit solution in terms of a convolution of the probability density
with a family of normal distributions, but it is of few practical use.

A Remark about Units

Unlike probabilities, probability densities for positions have units of inverse length!
Therefore we are integrating over a two-point probability density have units of inverse
length squared

[𝑝(𝑥, 𝑡𝑛+1|𝑥0, 𝑡0)] = m−1

[𝑝(𝑥, 𝑡𝑛+1, 𝑥𝑛, 𝑡𝑛|𝑥0, 𝑡0)] = m−2

So let us de�ne the following abbreviations in order to evaluate this convolution further

𝑝(𝑥, 𝑡𝑛) =

∫︁
d𝑥𝑛𝐼(𝑥𝑛, 𝑦)|𝑦=𝑥−𝑥𝑛 with 𝐼(𝑥𝑛, 𝑦) = 𝑝(𝑥𝑛)𝑛(𝑥𝑛, 𝑦),

and 𝑛(𝑥𝑛, 𝑦) = 𝑁(𝑓(𝑥𝑛)d𝑡, 2𝐷d𝑡)

The integrand 𝐼(𝑥, 𝑦) will contribute only for small 𝑦 = 𝒪(d𝑡), which means 𝑥𝑛 ≈ 𝑥, so
we can Taylor expand 𝐼(𝑥𝑛, 𝑦) in 𝑥𝑛 around 𝑥:

𝐼(𝑥𝑛, 𝑦) = 𝐼(𝑥, 𝑦) +
𝜕𝐼(𝑥𝑛, 𝑦)

𝜕𝑥𝑛

⃒⃒
𝑥𝑛=𝑥

(𝑥𝑛 − 𝑥) +
𝜕2𝐼(𝑥𝑛, 𝑦)

𝜕𝑥2𝑛

⃒⃒
𝑥𝑛=𝑥

(𝑥𝑛 − 𝑥)2

2
(3.8)
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Inserting this into the convolution integral leads to

𝑝(𝑥, 𝑡𝑛+1) =

∫︁
d𝑦 𝐼(𝑥, 𝑦)|𝑥𝑛=𝑥−𝑦

=

∫︁
d𝑦

(︂
𝑝(𝑥)𝑛(𝑥, 𝑦)− 𝜕

𝜕𝑥
(𝑝(𝑥)𝑛(𝑥, 𝑦) 𝑦) +

𝜕2

𝜕𝑥2
(𝑝(𝑥)𝑛(𝑥, 𝑦)

𝑦2

2
)

)︂
= 𝑝(𝑥)

∫︁
d𝑦 𝑛(𝑥, 𝑦)− 𝜕

𝜕𝑥

(︂
𝑝(𝑥)

∫︁
d𝑦 𝑛(𝑥, 𝑦) 𝑦

)︂
+

𝜕2

𝜕𝑥2

(︂
𝑝(𝑥)

∫︁
d𝑦 𝑛(𝑥, 𝑦)

𝑦2

2

)︂

The integrals that are occuring in this step are know as Kramers-Moyal coe�cients:

∫︁
d𝑦 𝑛(𝑥, 𝑦) = 1∫︁
d𝑦 𝑛(𝑥, 𝑦) 𝑦 = 𝑓(𝑥) d𝑡∫︁
d𝑦 𝑛(𝑥, 𝑦)

𝑦2

2
= 𝐷 d𝑡+

1

2
[𝑓(𝑥)]2 = 𝐷 d𝑡+𝒪(d𝑡2)

which give us

𝑝(𝑥, 𝑡𝑛+1) = 𝑝(𝑥, 𝑡𝑛)−
𝜕

𝜕𝑥
[𝑝(𝑥, 𝑡𝑛)𝑓(𝑥) d𝑡] +

𝜕2

𝜕𝑥2
[𝑝(𝑥, 𝑡𝑛)𝐷] d𝑡 (3.9)

and thus

𝑝(𝑥, 𝑡𝑛+1)− 𝑝(𝑥, 𝑡𝑛)

d𝑡
= − 𝜕

𝜕𝑥
[𝑝(𝑥, 𝑡𝑛)𝑓(𝑥)] +

𝜕2

𝜕𝑥2
[𝑝(𝑥, 𝑡𝑛)𝐷] (3.10)

Taking the time step to zero, we have �nally derived the Fokker-Planck equation.

Fokker-Planck equation

The Fokker-Planck equation is a partial di�erential equation, which reads

𝜕

𝜕𝑡
𝑝(𝑥, 𝑡) = − 𝜕

𝜕𝑥
[𝑝(𝑥, 𝑡) 𝑓 ] +𝐷

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡) (3.11)

The structure of the Fokker-Planck equation is similar to the Schrödinger equation, i.e.
solution methods from QM can be borrowed (take a look at the Risken book!).
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3.2 Fokker-Planck-Equation

Application to the Diffusion Potential

We consider the di�usion potential 𝑈(𝑥) (now we care about physical units!)

�̇� = −1

𝛾

𝜕𝑈

𝜕𝑥
+ 𝜉 (3.12)

and look for the steady state 𝜕𝑈
𝜕𝑡

= 0. Hence, the Fokker-Planck equation reads

0 = ∇⃗[(
1

𝛾
∇⃗𝑈)𝑝] +𝐷∇⃗2𝑝 = ∇⃗[

1

𝛾
∇⃗𝑈𝑝+𝐷∇⃗𝑝]

⇒ 𝑐 =
1

𝛾
∇⃗𝑈𝑝+𝐷∇⃗𝑝

thus, if 𝑐 = 0, we get

𝜕

𝜕𝑥
ln 𝑝 =

∇⃗𝑝
𝑝

= −1

𝛾

∇⃗𝑈
𝑝

(3.13)

and

𝑝 ∼ exp

(︂
− 𝑈

𝛾𝐷

)︂
= exp

(︂
− 𝑈

𝑘𝐵𝑇

)︂
(3.14)

with 𝐷 = 𝑘𝐵𝑇
𝛾
, i.e. we recover the Boltzmann distribution. If 𝑐 would not be zero,

the solution could not be normalized. Another explanation, why 𝑐 = 0, is based on the
Fokker-Planck-equation being interpreted as conservation equation

�̇� = −∇⃗𝐽 with 𝐽 =
1

𝛾
∇⃗𝑈𝑝+𝐷∇⃗𝑝 (3.15)

of the current 𝐽 . At equilibrium, the current must vanish and thus we have

lim
𝑡→∞

𝐽 = 𝑐 = 0 (3.16)
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3 Langevin Equation and Fokker-Planck Equation

Eigenvalue Spectrum of �̂�

The probability density can be expressed in terms of eigenfunctions of the operator �̂�

�̂�𝜑𝑛(𝑥) = 𝜆𝑛𝜑𝑛(𝑥) (3.17)

through

𝑝(𝑥, 𝑡) =
∑︁

𝑎𝑛𝜑𝑛(𝑥) exp(𝜆𝑛𝑡) (3.18)

If 𝜆0 = 0, then this corresponds to a steady state 𝜑0 and the slowest decaying mode
determines hopping rates.

But why are the 𝜆𝑛 real? We have �̂� ̸= �̂�*, which means �̂� is not Hermitian.

⟨
�̂�𝑔, ℎ

⟩
=

∫︁
d𝑥 (�̂�𝑔)ℎ =

∫︁
d𝑥 𝑔�̂�*ℎ =

⟨
𝑔, �̂�*ℎ

⟩
∀𝑔(𝑥), ℎ(𝑥) (3.19)

so by partial integration we see that

�̂�*ℎ = 𝑓
𝜕ℎ

𝜕𝑥
+𝐷

𝜕2ℎ

𝜕𝑥2
(3.20)

If 𝑓(𝑥) = −𝜕𝑈(𝑥)
𝜕𝑥

we can de�ne a Hermitian operator via

𝐴 = 𝑇−1𝐿𝑇 with 𝑇 = exp

(︂
+
𝛽𝑈

2

)︂
, 𝛽 =

1

𝐷
(3.21)

The newly constructed operator is self-adjoint 𝐴 = 𝐴* and thus all eigenvalues are real.
𝐴 and �̂� do have the same eigenvalues.

Backward Fokker-Planck Equation

𝑝 = 𝑝(𝑥1, 𝑡|𝑥0, 0) = 𝑝(𝑥1, 0|𝑥0,−𝑡), which gives the backward Fokker-Planck equation

�̇� = �̂�𝑥1𝑝 = �̂�*
𝑥0
𝑝 =

[︂
+𝑓(𝑥)

𝜕

𝜕𝑥0
+𝐷

𝜕2

𝜕𝑥20

]︂
𝑝(𝑥1, 0 |𝑥0,−𝑡) (3.22)
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3.2 Fokker-Planck-Equation

Boundary Conditions Matter

1) Re�ecting Boundary Conditions (No-Flux / Robin B.C.)

The probability current �̇� = −𝐽 vanishes

𝐽(𝑥1) = 𝐽(𝑥2) = 0 (3.23)

and ∫︁ 𝑥2

𝑥1

d𝑥 𝑝(𝑥, 𝑡) = 1 (3.24)

so the steady-state distribution 𝑝*(𝑥) = 𝜑0(𝑥) exists. This is similar for a con�nement
potential lim𝑥→𝑥1,𝑥2 𝑈(𝑥) → ∞

2) Absorbing Boundary Conditions

We have 𝑝(𝑥2, 𝑡) = 0 (Dirichlet Boundary Conditions) and therefore

0 >
d

d𝑡

∫︁
d𝑥 𝑝(𝑥, 𝑡) =

∫︁
d𝑥

d𝑝(𝑥, 𝑡)

d𝑡
=

∫︁ 𝑥2

−∞
−𝜕𝐽
𝜕𝑥

= −𝐽(𝑥2) (3.25)

So no steady-state solution exists (non-trivial / normalizable to one) and all eigenvalues
are strictly negative.

Boundary Conditions and Functional Analysis

Changing the boundary conditions changes also the eigenvalues and the adjoint op-
erator (boundary terms might pop up) and thus you will get each time a di�erent
operator in terms of functional analysis.
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4 Dynkin Equation

4.1 Mean First Passage Times and Dynkin Equation

We consider di�usion in some potential landscape 𝛾�̇� = −𝜕𝑈
𝜕𝑥

+ 𝜉(𝑡) with initial conditions
𝑝(𝑥, 0) = 𝛿(𝑥− 𝑥1) and boundary conditions 𝑝(𝑥2, 𝑡) = 0.

Mean First Passage Time (MFPT)

𝜏(𝑥2|𝑥1) =
∫︁ ∞

0

d𝑡 𝑡𝐽(𝑥2, 𝑡|𝑥1, 0) (4.1)

Our aim is to derive an equation for 𝜏 . If Δ𝑡 is small and �x (and we ask which positions
can we reach within Δ𝑡) we have

𝜏(𝑥2|𝑥1) = Δ𝑡+

∫︁ 𝑥2

−∞
d𝑥′ 𝜏(𝑥2|𝑥′)𝑝(𝑥′,Δ𝑡|𝑥1, 0)

and we take the derivative with respect to Δ𝑡

0 = 1 +

∫︁ 𝑥2

−∞
d𝑥′ 𝜏(𝑥2|𝑥′)�̂�𝑥′𝑝 = 1 +

∫︁ 𝑥2

−∞
d𝑥′ �̂�*

𝑥′𝜏(𝑥2|𝑥′)𝑝

so if Δ𝑡→ 0 then 𝑝(𝑥′,Δ𝑡|𝑥1, 0) → 𝛿(𝑥− 𝑥1) and we get the Dynkin equation

− 1 = �̂�*
𝑥1
𝜏(𝑥2|𝑥1) (4.2)

Application to Diffusion

Let consider once again the example of di�usion

𝛾�̇� = −𝜕𝑈
𝜕𝑥

+ 𝜉(𝑡) ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 2𝐷𝛿(𝑡− 𝑡′) (4.3)



4 Dynkin Equation

with the initial condition 𝑝(𝑥, 0) = 𝛿(𝑥 − 𝑥1) and boundary conditions 𝑝(𝑥2, 𝑡) = 0. Let
𝑣 = 𝜕

𝜕𝑥1
𝜏(𝑥2, 𝑥1) so the Dynkin equation reads

− 1 = 𝐷𝑣′ − 𝑈 ′

𝛾
𝑣 (4.4)

which we multiply with 1
𝐷
exp(−𝛽𝑈)

− 1

𝐷
exp(−𝛽𝑈) = 𝑣′ exp(−𝛽𝑈)− 𝛽𝑣 exp(−𝛽𝑈) = d

d𝑥1
[𝑣 exp(−𝛽𝑈)] (4.5)

to get

𝑣 = − 1

𝐷
exp(−𝛽𝑈)

[︂∫︁ 𝑥1

−∞
d𝑥′ exp(−𝛽𝑈) + 𝑐

]︂
(4.6)

If we assume lim𝑥→−∞ 𝑈(𝑥) = +∞ then |𝑣| < ∞, 𝑐 = 0 and with one more integration
we get

𝜏(𝑥2, 𝑥1) =
1

𝐷

∫︁ 𝑥2

𝑥1

exp(𝛽𝑈(𝑥′))

[︃∫︁ 𝑥′

−∞
d𝑥′′ exp(−𝛽𝑈(𝑥′′))

]︃
(4.7)

the second integration constant must be zero due to 𝜏(𝑥2, 𝑥2) = 0

4.2 Kramers Escape Rate Theory

We assume 𝛽Δ𝐸 ≫ 1 and calculate 𝜏(𝑥2|𝑥1).
∫︀
d𝑥′′ is sizeable only nearby 𝑥𝑎,

∫︀
d𝑥′ is

sizeable only nearby 𝑥𝑏. We do a standard trick: quadratic expansion around 𝑥𝑎 and 𝑥𝑏

𝑈(𝑥′′) = 𝑈(𝑥𝑎) +
1

2
𝑈 ′′(𝑥𝑎)(𝑥

′′ − 𝑥𝑎)
2 + . . . (4.8)

with 𝑈 ′′(𝑥𝑎) = 𝑘𝑎 = 𝛾/𝜏𝑎, which introduces a time-scale and

𝑈(𝑥′) = 𝑈(𝑥𝑏) +
1

2
𝑈 ′′(𝑥𝑏)(𝑥

′ − 𝑥𝑏)
2 + . . . (4.9)
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4.3 Diffusion to Capture

with 𝑈 ′′(𝑥𝑏) = −𝑘𝑏 = −𝛾/𝜏𝑏. So lets evaluate our integrals

∫︁ 𝑥′

−∞
d𝑥′′ exp

(︂
−1

2
𝛽𝑈 ′′(𝑥𝑎)(𝑥

′′ − 𝑥𝑎)
2

)︂
≈
∫︁ ∞

−∞
d𝑥′′ exp

(︂
−1

2
𝛽𝑈 ′′(𝑥𝑎)(𝑥

′ − 𝑥𝑎)
2

)︂
=

√
2𝜋𝜎2

with 𝜎2 = 𝜏𝑎
𝛽𝛾

and

∫︁ 𝑥′

−∞
d𝑥′′ exp

(︂
+
1

2
𝛽𝑈 ′′(𝑥𝑏)(𝑥

′ − 𝑥𝑏)
2

)︂
≈
∫︁ ∞

−∞
d𝑥′′ exp

(︂
+
1

2
𝛽𝑈 ′′(𝑥𝑏)(𝑥

′ − 𝑥𝑏)
2

)︂
=

√︂
2𝜋

𝜏𝑏
𝛽𝛾

so

𝜏(𝑥2, 𝑥1) =
1

𝐷

2𝜋
√
𝜏𝑎𝜏𝑏

𝛽𝛾
exp(𝛽Δ𝐸) = 2𝜋

√
𝜏𝑎𝜏𝑏 exp(𝛽Δ𝐸) (4.10)

Kramers escape

𝑟 =
1

𝜏(𝑥2, 𝑥1)
∼ exp(−𝛽Δ𝐸)⏟  ⏞  

Arrheniusfactor

(4.11)

4.3 Diffusion to Capture

As an example we consider a di�using particle released between two absorbing plates.
The question is: What is the probability of getting absorbed at either of the two plates?

𝑃 (𝑥, 𝑡 = 0) = 𝛿(𝑥− 𝑥0)

𝑃 (𝑥1, 𝑡) = 𝑃 (𝑥2, 𝑡) = 0

The probability of becoming absorbed at 𝑥 = 𝑥1 when starting at 𝑥0 reads 𝜋1(𝑥0). We
have 𝜋1(𝑥1) = 1 and 𝜋1(𝑥2) = 0.

We will now consider a time step Δ𝑡 as we did for the derivation of the Dynkin equation
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4 Dynkin Equation

in order to �nd an explicit expression for 𝜋1(𝑥0):

𝜋1(𝑥0) =

∫︁ 𝑥2

𝑥1

d𝑥 𝜋1(𝑥)𝑃 (𝑥,Δ𝑡|𝑥0, 0)

Now we take the partial derivative with respect to Δ𝑡

0 =

∫︁ 𝑥2

𝑥1

d𝑥 𝜋1(𝑥)
𝜕

𝜕Δ𝑡
𝑃 (𝑥,Δ𝑡|𝑥0, 0)⏟  ⏞  

�̂�𝑃

and perform partial integration

0 =

∫︁ 𝑥2

𝑥1

d𝑥 �̂�*𝜋1(𝑥) 𝑃 (𝑥,Δ𝑡|𝑥0, 0)⏟  ⏞  
→ 𝛿(𝑥−𝑥0) forΔ𝑡→0

so we obtain

0 = �̂�*𝜋1(𝑥)

Thus, 𝜋1(𝑥0) must be a linear function and taking the boundary conditions into account
we have 𝜋1(𝑥0) =

𝑥2−𝑥0

𝑥2−𝑥1
.

Another way to solve this is the method of images. So

𝑃 (𝑥, 𝑡) = 𝑁(𝑥0, 2𝐷𝑡)−𝑁(2𝑥1 − 𝑥0, 2𝐷𝑡)−𝑁(2𝑥2 − 𝑥0, 2𝐷𝑡) (4.12)

and 𝜋1 could be calculated directly. (Stream of anti-particles is released and cancels at
the boundary).

4.4 Polya’s theorem

Di�usion in R𝑑 to a d-dimensional absorbing ball and we ask for 𝑝(𝑅0). For 𝑑 = 1 and
𝑑 = 2 we have 𝑝(𝑅0) = 1, but for the critical dimension 𝑝(𝑅0) =

𝑅1

𝑅0

Characteristic arrival time must scale with
√︀
𝑅2

0/𝐷 with a power-law tail∼ 𝑡−3/2 exp(−(𝑅0 −𝑅1)
2/4𝐷𝑡)

and the mean �rst passage time diverges.
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5 Synchronization

5.1 Active Oscillators

An example of an active oscillator is the

Van-der-Pol oscillator

𝑚�̈�− 𝛾(
1

4
Λ− 𝑥2)�̇�+ 𝑘𝑥 = 0 (5.1)

It is a special form of a

Hopf oscillator

�̇� = 𝑖𝜔0𝑧 + 𝜇(Λ− |𝑧|2)𝑧 with 𝑧 ∈ C (5.2)

and a phase oscillator with �̇� = 𝜔0.

Hopf normal form of Van-der-Pol oscillator

We set 𝑦 = �̇�, 𝜔 =
√︀
𝑘/𝑚. The idea is to introduce 𝑧 ≈ 𝑥− 𝑖

𝜔
𝑦, so we do the ansatz (in

order to avoid quartic terms / the method is called Center Manifold technique)

𝑧 =
∞∑︁
𝑘

∞∑︁
𝑙

𝑑𝑘,𝑙𝑥
𝑙𝑦𝑘−𝑙

= 𝑥− 𝑖

𝜔
𝑦 + 𝑑10𝑦 + 𝑑33𝑥

3 + 𝑑32𝑥
2𝑦 + 𝑑31𝑥𝑦

2 + 𝑑30𝑦
3 + . . .

The back transformation is given by

𝑥 =
𝑧 + 𝑧

2
+ 𝑒1𝑧

3 + 𝑒2𝑧
2𝑧 + 𝑒3𝑧𝑧

2 + 𝑒4𝑧
3 . . .

𝑦 = 𝑖𝜔
𝑧 − 𝑧

2
+ 𝑓1𝑧

3 + 𝑓2𝑧
2𝑧 . . .



5 Synchronization

so that

�̇� = ℎ(𝑧, 𝑧) = 𝐹𝑧 +𝐺𝑧2𝑧 + h.o.t. (5.3)

and for appropriate 𝑑𝑘,𝑙 we have i) no quadratic terms, ii) no term in 𝑧 and iii) no terms
proportional to 𝑧3, 𝑧𝑧2, 𝑧3. We �nd that

𝐹 = 𝑖𝜔0 +
𝛾

8𝑚
Λ +𝒪(Λ2)

𝐺 =
𝛾

8𝑚
+𝒪(Λ)

and we get

�̇� = 𝑖(𝜔𝑐 − 𝜔1|𝑧|2)𝑧 + 𝜇(Λ− |𝑧|2) (5.4)

with 𝜔𝑐 = 𝜔0, 𝜔1 = 𝒪(Λ) and 𝜇 = 𝛾
8𝑚

5.2 Hopf-oscillator with noise

We now add a noise term to the Hopf-oscillator

�̇� = 𝑖𝜔0𝑧 + 𝜇(Λ− |𝑧|2)𝑧 + (𝑖𝜉𝜙 + 𝜉𝐴)𝑧 (5.5)

with

⟨𝜉𝜙(𝑡)𝜉𝜙(𝑡′)⟩ = 2𝐷𝜙𝛿(𝑡− 𝑡′) ⟨𝜉𝐴(𝑡)𝜉𝐴(𝑡′)⟩ = 2𝐷𝐴𝛿(𝑡− 𝑡′) ⟨𝜉𝜙(𝑡)𝜉𝐴(𝑡′)⟩ = 0

and map 𝑧 on a phase 𝜙 and amplitude 𝐴 via 𝑧 = 𝐴𝑒𝑖𝜙 so that

(︃
�̇�

𝐴
+ 𝑖�̇�

)︃
𝑧 = �̇� = . . . (5.6)

and

�̇�

𝐴
+ 𝑖�̇� = 𝑖𝜔0 + 𝜇(𝐴2

0 − 𝐴2) + 𝑖𝜉𝜙 + 𝜉𝐴 (5.7)
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5.2 Hopf-oscillator with noise

Assuming Λ > 0 and Λ = 𝐴2
0, we get a noisy phase oscillator

�̇� = 𝜔0 + 𝜉𝜙 (5.8)

and an Ornstein-Uhlenbeck process

𝐴 = 𝐴0 + 𝑎

�̇� = 𝜇(𝐴0 + 𝑎)(−2𝑎𝐴0 + 𝑎2) + 𝜉𝐴 = −2𝜇𝐴0𝑎+ 𝜉𝐴 +𝒪(𝑎2)
(5.9)

with the properties

⟨𝑎(𝑡)⟩ = 0 ⟨𝑎(𝑡)𝑎(𝑡′)⟩ = 𝐷𝐴𝜏 exp

{︂
−|𝑡− 𝑡′|

𝜏

}︂
𝜏 =

1

2𝜇𝐴0

Remark

If we consider an ensemble average, the amplitude �uctuations will decay with 𝜏 :

�̄�(𝑡) = ⟨𝑎(𝑡)⟩ with
d

d𝑑
�̄� = − �̄�

𝜏

Manifestation of Phase Noise

We de�ne a phase correlation function

𝐶(𝑡) = ⟨exp(𝑖𝜙(𝑡0)) exp(−𝑖𝜙(𝑡0 + 𝑡))⟩ (5.10)

with |𝐶(𝑡) = exp(−𝐷𝜙𝑡)|, so

𝑧(𝑡0)

𝐴0

𝑧

𝐴0

≈ exp(𝜙(𝑡0)− 𝜙(𝑡0 + 𝑡)) → exp(𝑖𝜔0𝑡) if 𝐷𝜙 = 0

And we can have a look at the power spectral density

𝑆𝑦(𝜔) = |𝑦(𝜔)|2 (5.11)

with 𝑦 = exp(𝑖𝜙) and its Fourier transform 𝑦(𝜔).
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5 Synchronization

Two coupled oscillators

Two oscillators are coupled by the coupling 𝑐 leading to the ODE system

�̇�𝐿 = 𝜔𝐿 + 𝑐(𝜙𝐿 − 𝜙𝑅)

�̇�𝑅 = 𝜔𝑅 + 𝑐(𝜙𝑅 − 𝜙𝐿)
(5.12)

with a phase di�erence of 𝛿 = 𝜙𝐿 − 𝜙𝑅

�̇� = Δ𝜔 + 𝑐(𝛿)− 𝑐(−𝛿) (5.13)

and Δ𝜔 = 𝜔𝐿 − 𝜔𝑅 and

𝑐(𝛿) = 𝑐(𝛿 + 2𝜋) =
∑︁
𝑛

𝐶 ′
𝑛 cos(𝑛𝛿) + 𝐶 ′′

𝑛 sin(𝑛𝛿) (5.14)

Only the odd coupling terms contribute to synchronization, often 𝑐(𝛿) is dominated by
the �rst Fourier mode and we end up at the Adler equation (𝜆 = −2𝑐′′1)

�̇� = Δ𝜔 − 𝜆 sin(𝛿) (5.15)

If |Δ𝜔| < |𝜆|, we have 𝛿* = sin−1
(︀
Δ𝜔
𝜆

)︀
. The stability of the �xpoints is determined by by

𝛾�̇� = −𝜕𝑈
𝜕𝛿

and the e�ective potential 𝑈 = −𝛾Δ𝜔𝛿 − 𝛾𝜆 cos(𝛿).

Images missing!

Synchronization in the Presence of Noise

If we consider two coupled oscillators

�̇�1 = 𝜔1 −
𝜆

2
sin(𝜙1 − 𝜙2) + 𝜉1(𝑡) (5.16)

�̇�2 = 𝜔2 −
𝜆

2
sin(𝜙2 − 𝜙1) + 𝜉2(𝑡) (5.17)

we get the Adler equation with 𝛿 = 𝜙1 − 𝜙2 and Gaussian white noise 𝜉

�̇� = Δ𝜔 − 𝜆 sin(𝛿) + 𝜉 (5.18)
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5.2 Hopf-oscillator with noise

Remark: How to add two noise terms

𝜉(𝑡) = 𝜉𝐿(𝑡)− 𝜉𝑅(𝑡)

with ⟨𝜉(𝑡)⟩ = 0 and

⟨𝜉(𝑡)𝜉(𝑡′)⟩ = ⟨𝜉𝐿(𝑡)𝜉𝐿(𝑡′)⟩+ ⟨𝜉𝑅(𝑡)𝜉𝑅(𝑡′)⟩+ ⟨𝜉𝐿(𝑡)𝜉𝑅(𝑡′)⟩
= 2𝐷𝐿𝛿(𝑡− 𝑡′) + 2𝐷𝑅𝛿(𝑡− 𝑡′) + 0

= 2(𝐷𝐿 +𝐷𝑅)𝛿(𝑡− 𝑡′)

It is

𝛾�̇� = −𝜕𝑈
𝜕𝛿

+ 𝜉 (5.19)

and 𝑈 = −Δ𝜔𝛿 − 𝜆 cos(𝛿). So what is the e�ect of noise? The steady state probability
density reads

𝑝*(𝛿) ∼ exp

(︂
− 𝑈(𝛿)

𝑘𝐵𝑇eff

)︂
=

1

2𝜋𝐼0(𝑁𝐷)
exp

(︂
− 𝜆

𝐷
cos(𝛿)

)︂
(5.20)

with 𝐷 = 𝑘𝐵𝑇eff𝛾 and Δ𝜔 = 0. So the �rst e�ect of noise is, that steady states are
smeared out. The second e�ect are phase slips that occur

𝛿 ≈ 0 −→ 𝛿 ≈ 2𝜋 with rate 𝐺+

𝛿 ≈ 0 −→ 𝛿 ≈ −2𝜋 with rate 𝐺−

We can compute 𝐺± using Kramers escape rate theory

𝛾

𝜏𝑎
= 𝑈 ′′|𝛿=𝛿𝑎 ⇒ 𝜏𝑎 =

1√
𝜆2 −Δ𝜔2

𝛾

𝜏𝑏
= 𝑈 ′′|𝛿=𝛿𝑏 ⇒ 𝜏𝑏 = 𝜏𝑎
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5 Synchronization

and so

𝐺+ = 2𝜋𝜏𝑎 exp

(︂
−Δ𝐸

𝐷/𝛾

)︂
(5.21)

The calculation for 𝐺− goes analogously and we have

𝐺+

𝐺−
= exp(+2𝜋Δ𝜔/𝐷) (5.22)

and for Δ𝜔 = 0 it is

𝐺+ = 𝐺− =
𝜆

2𝜋
exp

(︂
−2𝜆

𝐷

)︂
(5.23)

The theory can be also extended to many oscillators.
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6 Itō versus Stratonovich Calculus

If we are given an ODE, e.g. �̇� = 𝑓(𝑥), what does this mean? To answer this question, we
are going to take a constructive approach and interpret the ODE as a rule to construct
the solution. So we estimate the values 𝑥𝑖 = 𝑥(𝑖 d𝑡) and then take the limit d𝑡→ 0.

6.1 Numerical Motivation

Deterministic ODE

For a deterministic ODE we have various options to chose scheme in order to solve them
numerically. One could use either an explicit scheme like the Euler scheme

𝑥𝑖 = 𝑥𝑖−1 + 𝑓(𝑥𝑖−1) d𝑡 (6.1)

and implicit scheme

𝑥𝑖 = 𝑥𝑖−1 + 𝑓(𝑥𝑖) d𝑡 (6.2)

or a mixed scheme

𝑥𝑖 = 𝑥𝑖−1 +
1

2
[𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)] (6.3)

and all schemes will converge to the same limit.

Stochastic Differential Equations

Also for stochastic di�erential equations such as �̇� = 𝑓(𝑥)+
√︀
2𝐷(𝑥)𝜉 we may chose either

an explicit scheme (Itō)

𝑥𝑖 = 𝑥𝑖−1 + 𝑓(𝑥𝑖−1) d𝑡+
√︀

2𝐷(𝑥𝑖−1)𝑁𝑖

√
d𝑡 (6.4)



6 Itō versus Stratonovich Calculus

with 𝑁𝑖 ∈ 𝑁(0, 1) or a mixed scheme (Stratonovich)

𝑥𝑖 = 𝑥𝑖−1 +
1

2
[𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)] d𝑡+

1

2
[
√︀

2𝐷(𝑥𝑖−1) +
√︀
2𝐷(𝑥𝑖)]𝑁𝑖

√
d𝑡 (6.5)

It is important to note, that this time both schemes are di�erent. (A purely implicit
scheme for SDE is not discussed, because such schemes are rarely used in practice.) We
can see this by doing the expansion

𝑥𝑖 = 𝑥𝑖−1 + 𝑓(𝑥𝑖−1) d𝑡+𝒪(d𝑡3/2) + 𝑔(𝑥𝑖−1)𝑁𝑖

√
d𝑡+ 𝑔′(𝑥𝑖−1)𝑔(𝑥𝑖−1)𝑁

2
𝑖 d𝑡 (6.6)

with ⟨𝑁2
𝑖 ⟩ = 1, so that the last term can not be neglected!

6.2 Different Interpretations

Having a look at the chain rule, one can see that the Itō and Stratonovich interpreta-
tion are indeed two di�erent sorts of calculus. In Stratonovich interpretation we get the
ordinary chain rule

(S) 𝑦 = 𝑦(𝑥), �̇� =
𝜕𝑦

𝜕𝑥
�̇� (6.7)

By contrast, in Itō interpretation we have �̇�𝑘 = 𝑓𝑘 + 𝑔𝑘𝑙𝜉𝑙 with ⟨𝜉𝑘(𝑡)𝜉𝑙(𝑡′)⟩ = 𝛿𝑘𝑙𝛿(𝑡 − 𝑡′)
and the Itō chain rule applies

(I) 𝑦 = 𝑦(𝑥), �̇� =
𝜕𝑦

𝜕𝑥𝑗
�̇�𝑗 +

1

2

𝜕2𝑦

𝜕𝑥𝑘𝜕𝑥𝑙
𝑔𝑘𝑚𝑔𝑚𝑙 (6.8)

Switching between Itō and Stratonovich

In Itō and Stratonovich calculus, respectively, we have

(S) �̇�𝑘 = ℎ𝑆𝑘 + 𝑔𝑘𝑙𝜉𝑙

(I) �̇�𝑘 = ℎ𝐼𝑘 + 𝑔𝑘𝑙𝜉𝑙
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6.2 Different Interpretations

with ℎ𝐼𝑘 = ℎ𝑆𝑘 + 1
2
𝜕𝑔𝑘𝑙
𝜕𝑥𝑚

𝑔𝑚𝑙. The Fokker Planck Equation reads for these cases

�̇� =
𝜕

𝜕𝑥𝑘

[︂
−
(︂
ℎ
𝐼/𝑆
𝑘 + 𝛼

𝜕𝑔𝑘𝑙
𝜕𝑥𝑚

𝑔𝑚𝑙

)︂
𝑃 +

1

2

𝜕

𝜕𝑥𝑚
(𝑔𝑘𝑙𝑔𝑚𝑙𝑃 )

]︂
(6.9)

with 𝛼 = 0 for Itō and 𝛼 = 1/2 for Stratonovich calculus.

Wong-Zakai Theorem

If �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝜉 is a SDE with coloured noise of �nite correlation 𝜏 , then taking
𝜏 → 0 yields a Stratonovich SDE with Gaussian white noise.

Example of Colored Noise (Ornstein-Uhlenberg process)

𝜏𝜉 = −𝜉 + 𝜂 and ⟨𝜂(𝑡)𝜂(𝑡′)⟩ = 𝛿(𝑡− 𝑡′) ⇒ ⟨𝜂(𝑡)𝜂(𝑡′)⟩ ∼ exp
(︁
−−|𝑡−𝑡′|

𝜏

)︁
Toy example I: Geometric Brownian Motion

We consider the example of (I) �̇� = 𝑥𝜉, which corresponds to (S) �̇� = 𝑥𝜉 −𝐷𝑥. Now
we ask about the time evolution of the �rst moment 𝑚(𝑡) = ⟨𝑥(𝑡)⟩? In Itō calculus we
have

d

d𝑡
𝑚(𝑡) = ⟨�̇�⟩ (𝐼)

= ⟨𝑥𝜉⟩ = ⟨𝑥⟩ ⟨𝜉⟩⏟ ⏞ 
=0

= 0 (6.10)

so 𝑚(𝑡) = 𝑚0. Note that 𝑦 = ln(𝑥) ⇒ �̇� = 𝜉 −𝐷 ⇒ 𝑦(𝑡) ∼ 𝑁(−𝐷𝑡,𝐷𝑡)

Toy example II

Next, let's do something forbidden and take (S) �̇� = 𝑥𝜉, which correspond to (I) �̇� =
𝑥𝜉 +𝐷𝑥. It is

d

d𝑡
𝑚(𝑡) = ⟨�̇�⟩ (𝐼)

= ⟨𝑥𝜉 +𝐷𝑥⟩ = 0 +𝐷𝑚 (6.11)

in Itō calculus this time we get 𝑚 = 𝑚0 exp(𝐷𝑡).
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6 Itō versus Stratonovich Calculus

Example: Rotational diffusion in 2D

We have �̇� = 𝜉 and the unit vectors

�⃗�1 =

⎛⎜⎜⎝cos(𝜙)

sin(𝜙)

⎞⎟⎟⎠ , �⃗�2 =

⎛⎜⎜⎝− sin(𝜙)

cos(𝜙)

⎞⎟⎟⎠
and

(S) �̇�1 = 𝜉�⃗�2, �̇�2 = 𝜉�⃗�1 (6.12)

In Itō calculus we have

�⃗�1 =

⎛⎜⎜⎝𝑥1
𝑥2

⎞⎟⎟⎠ , �⃗�2 =

⎛⎜⎜⎝𝑥3
𝑥4

⎞⎟⎟⎠
with

˙⃗𝑥 = �⃗�𝜉, �⃗� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥3

𝑥4

−𝑥1

−𝑥2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and with

∑︀
𝑚

𝜕𝑔𝑘
𝜕𝑥𝑚

𝑔𝑚 = 2𝐷(−�⃗�) it is

(I) �̇�1 = 𝜉�⃗�2 −𝐷�⃗�1, �̇�2 = 𝜉�⃗�1 −𝐷�⃗�2 (6.13)
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6.3 Rotational Diffusion in 3D

Extended Example: persistent random walk (2D)

Consider �⃗� = 𝑣0�⃗�1 where (�⃗�1, �⃗�2) is subject to rotational di�usion. Our proposition is that

𝐶(𝑡) = ⟨�⃗�1(𝑡) · �⃗�1(𝑡)⟩ = exp(−𝐷𝑡) (6.14)

with persistence time 𝑡𝑝 =
1
𝐷
and persistence length 𝑙𝑝 = 𝑣0𝑡𝑝.

Proof:

d
d𝑡
𝐶(𝑡) =

⟨
�⃗�1(𝑡) · ˙⃗𝑒1(𝑡)

⟩
= ...

6.3 Rotational Diffusion in 3D

As another example we consider rotational di�usion in 3D with the rotational di�usion
coe�cient (instance of the Fluctuation-Dissipation-Theorem!)

𝐷rot =
𝑘𝐵𝑇

8𝜋𝜂𝑟3
(6.15)

and the parameterization

ℎ⃗3 = (cos(𝜓), sin(𝜓) cos(𝜗), sin(𝜓) sin(𝜗))𝑇

�⃗�1 = −𝜕ℎ⃗3
𝜕𝜓

�⃗�2 = −ℎ⃗3 × �⃗�1

ℎ⃗1 = cos(𝜙)�⃗�1 + sin(𝜙)�⃗�2 ℎ⃗2 = ℎ⃗3 × ℎ⃗1

The equations of motion are given by the Frenet-Serret equations for Stratonovich calculus

˙⃗
ℎ3 = 𝜉2ℎ⃗1 − 𝜉1ℎ⃗2

(𝑆)
˙⃗
ℎ1 = 𝜉3ℎ⃗2 − 𝜉2ℎ⃗3
˙⃗
ℎ2 = 𝜉1ℎ⃗3 − 𝜉3ℎ⃗1

with ⟨𝜉𝑖(𝑡)𝜉𝑗(𝑡′)⟩ = 𝛿𝑖,𝑗𝛿(𝑡− 𝑡′)2𝐷rot and

(S) �̇� = sin(𝜙)𝜉1 + cos(𝜙)𝜉2 (6.16)
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6 Itō versus Stratonovich Calculus

which is equivalent to

(I) �̇� = sin(𝜙)𝜉1 + cos(𝜙)𝜉2⏟  ⏞  
=𝜉(𝑡)

+𝐷rot cot(𝜓) (6.17)

in Ito calculus and

⟨𝜉(𝑡)𝜉(𝑡′)⟩ = ⟨[sin(𝜙(𝑡))𝜉1 + cos(𝜙(𝑡))𝜉2][sin(𝜙(𝑡
′))𝜉1 + cos(𝜙(𝑡′))𝜉2]⟩

= sin(𝜙(𝑡)) sin(𝜙(𝑡′)) ⟨𝜉1(𝑡)𝜉1(𝑡′)⟩+ cos(𝜙(𝑡)) cos(𝜙(𝑡′)) ⟨𝜉2(𝑡)𝜉2(𝑡′)⟩
= [sin2(𝜙) + cos2(𝜙)]2𝐷rot𝛿(𝑡− 𝑡′) = 2𝐷rot𝛿(𝑡− 𝑡′)

We know that the steady state distribution must be isotropic, so let's check this. The
question is: What is 𝑃 *(𝜓) for isotropic distribution of ℎ⃗3? We have the height ℎ =
1 − cos(𝜓), so 𝐴 = 2𝜋𝑟ℎ, d𝐴 = 2𝜋 dℎ. Thus 𝑃 *(ℎ) = 1

2
. Furthermore, it is 𝑃 *(ℎ) dℎ =

𝑃 *(𝜓) d𝜓 with dℎ = sin(𝜓) d𝜓 and so 𝑃 *(ℎ) = 1
2
sin(𝜓)

The equation of motion can be also rewritten introducing a potential 𝑈

(I) �̇� = 𝐷rot cot(𝜓) + 𝜉 = −1

𝛾

𝜕

𝜕𝜓
𝑈 + 𝜉 (6.18)

with 𝑈 = −𝐷rot𝛾 ln(sin(𝜓)) = 𝑘𝐵𝑇 ln(sin(𝜓)) and 𝛾 = 8𝜋𝜂𝑟3. Thus

𝑃 *(𝜓) ∼ exp

(︂
− 𝑈

𝑘𝐵𝑇

)︂
∼ exp(ln(sin(𝜓))) ∼ sin(𝜓) (6.19)

An Interpretation of 𝑈(𝜓) is obtained be taking a look at the entropy 𝑆 = 𝑘𝐵 ln(sin(𝜓))

and the free energy 𝐹 = −𝑇𝑆 = −𝐷rot𝛾 ln(sin(𝜓)) = 𝑈 . Here, knowing ℎ⃗3 corresponds
to the microstate and knowing ℎ to the macro state.

6.4 How to derive a correct Langevin equation?

1) can be considered as a limit case of coloured noise 𝜏𝑐 → 0, then take Wong-Zakai-
theorem

2) small number �uctations (eg. for chemical reactions, so suppose you have 𝑁 particles
with sort 1 to 2 with rate 𝑟2 and 2 to 1 with rate 𝑟1, so one can derive a continuum limit
of a master equation)
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6.4 How to derive a correct Langevin equation?

3) only thermal �uctuations 𝑇 = const and then use 𝑃 * ∼ exp(−𝛽𝑈)

Master Equation for a Two-State System

Let 𝑃 (𝑛) be the probability, that 𝑛 entities are in state 2. Then, the Dynamic equation
/ Master equation for 𝑃 (𝑛) is given by

�̇� (𝑛, 𝑡) = 𝑟1(𝑛+ 1)𝑃 (𝑛+ 1, 𝑡)− 𝑟1𝑛𝑃 (𝑛, 𝑡) + 𝑟2(𝑁 − (𝑛− 1))𝑃 (𝑛− 1, 𝑡)− 𝑟2(𝑁 − 𝑛)𝑃 (𝑛, 𝑡)

= 𝑟1(𝐸
+ − 1)𝑛𝑃 + 𝑟2(𝐸

− − 1)(𝑁 − 𝑛)𝑃

with the shift operators 𝐸±

(𝐸+𝑓)(𝑛) = 𝑓(𝑛+ 1) and (𝐸−𝑓)(𝑛) = 𝑓(𝑛− 1)

In order to go to a continuum limit we let 𝑥 = 𝑛
𝑁

and treat 𝑥 as a continuous variable.
Then we do a Taylor expansion of our fancy step operators

(𝐸±𝑓)(𝑥) = 𝑓(𝑥± 1

𝑁
) = 𝑓(𝑥)± 𝑓 ′(𝑥)

1

𝑁
+

1

2
𝑓 ′′(𝑥)

1

𝑁2
+ . . .

which we feed back so that we get

�̇� (𝑥, 𝑡) = 𝑟1
𝜕

𝜕𝑥
(𝑥𝑃 ) +

𝑟1
2𝑁

𝜕2

𝜕𝑥2
(𝑥𝑃 )− 𝑟2

𝜕

𝜕𝑥
[(1− 𝑥)𝑃 ] +

𝑟2
2𝑁

𝜕2

𝜕𝑥2
[(1− 𝑥)𝑃 ]

= (𝑟1 + 𝑟2)
𝜕

𝜕𝑥
[(𝑥− 𝑥*)𝑃 ] +

1

2𝑁

𝜕2

𝜕𝑥2
[(𝑟1 + (𝑟1 − 𝑟2)𝑥)𝑃 ]

with 𝑥* = 𝑟2
𝑟1+𝑟2

. In the steady state we have 𝑟0 = 𝑟1 = 𝑟2 and the master equation

�̇� = −∇⃗𝐽 with 𝐽 = 0 at equilibrium, thus 𝑃 *(𝑥) ∼ exp
(︁
− (𝑥− 1

2
)2

2𝜎2

)︁
and 𝜎2 = 1

4𝑁

Langevin equation

(I) �̇� = (𝑟1 + 𝑟2)(𝑥
* − 𝑥) +

√︂
𝑟1𝑥+ 𝑟2(1− 𝑥)

2𝑁⏟  ⏞  
=𝑔(𝑥)

𝜉 (6.20)
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6 Itō versus Stratonovich Calculus

(S) �̇� = (𝑟1 + 𝑟2)(𝑥
* − 𝑥) +

√︂
𝑟1𝑥+ 𝑟2(1− 𝑥)

2𝑁⏟  ⏞  
=𝑔(𝑥)

𝜉 − 1

2

𝑟1 − 𝑟2
4𝑁

(6.21)

so at 𝑁 ≫ 1 we have 𝑥 ≈ 𝑥* thus 𝑔(𝑥) ≈ 𝑔(𝑥*) and 𝑃 *(𝑥) = 𝑁(𝑥*, 𝜎2), 𝜎2 = 1
𝑁

𝑟1𝑟2
(𝑟1+𝑟2)2

6.5 Numerical integration of nonlinear SDE

For the Ito SDE (I) �̇� = 𝑓(𝑥)+𝑔(𝑥)𝜉(𝑡), ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 𝛿(𝑡−𝑡′) we have the Euler-Maruyama
scheme

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓(𝑥𝑡)Δ𝑡+ 𝑔(𝑥𝑡)𝑁𝑡, 𝑁𝑡 ∼ 𝑁(0,Δ𝑡)

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓(𝑥𝑡)Δ𝑡+ 𝑔(𝑥𝑡)𝑁
′
𝑡

√
d𝑡, 𝑁 ′

𝑡 ∼ 𝑁(0, 1)

For the Stratonovich SDE (S) �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝜉(𝑡) we have the Euler-Heun scheme

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + 𝑓(𝑥𝑡)Δ𝑡+
1
2
[𝑔(𝑥𝑡) + 𝑔(�̄�𝑡)]𝑁𝑡, 𝑁𝑡 ∼ 𝑁(0, 1)

with �̄�𝑡 = 𝑥𝑡 + 𝑔(𝑥𝑡)𝑁𝑡
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7 Fluctuation-Dissipation-Theorem

7.1 Historical Examples

Example 1: Diffusion (Einstein 1905)

The relation found be Einstein for ordinary di�usion in 1905

𝐷 =
𝑘𝐵𝑇

𝛾
(7.1)

is an instance of the �uctuation dissipation theorem. The di�usion coe�cient 𝐷 captures
the mean square displacement ⟨𝑥2(𝑡)⟩ = 2𝐷𝑡 (�uctuations) and the right part captures
the dissipated energy via the hydrodynamic mobility 1

𝛾
= 1

6𝜋𝜂𝑎
so that the velocity is given

by 𝑣 = 1
𝛾
𝐹 .

Example 2: Electrothermal noise (Johnson, Nyquist 1927)

It was found that even a shorted circuit
consisting of just one resistor does show
a �nite current, which is zero on average
⟨𝐼⟩ = 0, but has the �uctuation spectrum

𝑆
(𝜔)
𝐼 = 2

𝑘𝐵𝑇

𝑅𝜋
(7.2)

with ~𝜔 ≪ 𝑘𝐵𝑇 . The inverse resistance plays the role of a linear response coe�cient
𝐼 = 1

𝑅
𝑈 .



7 Fluctuation-Dissipation-Theorem

7.2 FDT for classical systems

Lets consider a system described by the Hamiltonian 𝐻1 = 𝐻0 − 𝑓𝐴 for times 𝑡 < 0,
with the probability density 𝑝1(𝑥) ∼ exp(−𝛽𝐻1). At 𝑡 = 0 we switch o� the in�uence of
the observable 𝐴, thus 𝑝(𝑥, 𝑡) → exp(−𝛽𝐻0) for 𝑡 → ∞. The average of 𝐴 is given by
⟨𝐴⟩ =

∫︀
d𝑥𝐴(𝑥)𝑝(𝑥, 𝑡) and we have the microstate 𝑥 = (𝑝1, . . . , 𝑝𝑁 , 𝑞1, . . . , 𝑞𝑁).

Fluctuation Dissipation Theorem

The FDT relates the �uctuation spectrum on the left side to the dissipative response
to an external �eld on the right side of

𝑆𝐴(𝜔) =
2𝑘𝐵𝑇

𝜔
Im(�̃�𝐴(𝜔)) (7.3)

In order to show that the Fluctuation Dissipation Theorem holds we need to key concepts:

∙ Boltzman distribution 𝑝0 ∼ exp(−𝛽𝐻0) with 𝛽 = 1
𝑘𝐵𝑇

∙ time propagator 𝑃 (𝑥1, 𝑡1|𝑥0, 𝑡0)

Fluctuation Spectrum

The auto-correlation function is given by

𝐶𝐴(𝜏) = ⟨𝐴(𝑡)𝐴(𝑡+ 𝜏)⟩ − ⟨𝐴⟩2 (7.4)
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7.2 FDT for classical systems

which is independent of 𝑡 at thermal equilibrium and it is an even function 𝐶𝐴(𝜏) =
𝐶𝐴(−𝜏). It is related to the time propagator by

𝐶𝐴(𝜏) =

∫︁
d𝑥0 d𝑥1𝐴(𝑥0)𝐴(𝑥1)𝑝0(𝑥0)𝑃 (𝑥1, 𝑡+ 𝜏 |𝑥0, 𝑡)− ⟨𝐴⟩2 (7.5)

The power spectral density is then the Fourier transform

𝑆𝐴(𝜔) = 𝐶𝐴(𝜔) =

∫︁
d𝜏 𝐶𝐴(𝜏)𝑒

𝑖𝜔𝜏 (7.6)

in the non-unitary Fourier transform with angular frequency.

Wiener-Kinchin Theorem

The Fourier transform exists and has the usual properties.

Formally:
⟨
𝐴(𝜔)𝐴*(𝜔′)

⟩
= 𝑆𝐴(𝜔)𝛿(𝜔 − 𝜔′), 𝐴(𝜔) is not mathematically strictly de�ned

Linear Response Function

Let a system possess the Hamiltonian 𝐻(𝑥, 𝑡) = 𝐻0(𝑥) − 𝐴(𝑥)𝑓(𝑡). Then, the linear
response is expresses by

⟨𝐴(𝑡)⟩ = ⟨𝐴⟩0 +
∫︁ ∞

−∞
d𝜏 𝜒𝐴(𝜏)𝑓(𝑡− 𝜏) +𝒪(𝑓 2) (7.7)

which de�nes the linear response function 𝜒𝐴(𝜏). Causality implies that 𝜒𝐴(𝜏) = 0 for all
𝜏 < 0.

The Fourier transform reads

�̃�𝐴(𝜔) =

∫︁ ∞

−∞
d𝜏 𝜒𝐴(𝜏)𝑒

𝑖𝜔𝜏 (7.8)
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7 Fluctuation-Dissipation-Theorem

Example: Oscillating Field

𝑓(𝑡) = 𝑓0 cos(𝜔𝑡) = Re 𝑓0𝑒
𝑖𝜔𝑡 (7.9)

then

⟨𝐴(𝑡)⟩ = ⟨𝐴⟩0 + [Re ˜𝜒𝐴(𝜔)]𝑓0 cos(𝜔𝑡)− [𝐼𝑚 ˜𝜒𝐴(𝜔)]𝑓0 sin(𝜔𝑡) (7.10)

so 𝑓(𝑡) oscillates with the frequency of driving with amplitude 𝑓0| ˜𝜒𝐴(𝜔)| and with phase

lag arg( ˜𝜒𝐴(𝜔)). The power performed by the external �eld is given by 𝑅 = −𝑓(𝑡) d
d𝑡
𝐴(𝑥(𝑡))

with the time-average ⟨𝑅⟩ = 1
2
𝜔𝑓 2

0 Im
˜𝜒𝐴(𝜔). So the imaginary part Im �̃�𝐴(𝜔) charac-

terises the dissipative response of the system.

Derivation of the fluctuation-dissipation-theorem

Let 𝑓(𝑡) = 𝑓0Θ(−𝑡). We �rst compute the partition function 𝑍1 =
∫︀
d𝑥 exp{−𝛽𝐻1} with

𝑓1(𝑥) =
1

𝑍1

exp{−𝛽𝐻1} ≈ 𝑝0(𝑥)[1 + 𝛽𝑓0(𝐴(𝑥)− ⟨𝐴⟩0)] (7.11)

For 𝑡 ≥ 0 we have

⟨𝐴(𝑡)⟩ =
∫︁

d𝑥𝐴(𝑥)𝑝(𝑥, 𝑡) =

∫︁
d𝑥𝐴(𝑥)

∫︁
d𝑥0 𝑃 (𝑥, 𝑡|𝑥0, 𝑡0)𝑝1(𝑥0)

=

∫︁
d𝑥𝐴(𝑥)

∫︁
d𝑥0 𝑃 (𝑥, 𝑡|𝑥0, 𝑡0)𝑝0(𝑥0)[1 + 𝛽𝑓0𝐴(𝑥)− 𝛽𝑓0 ⟨𝐴⟩0]

= ⟨𝐴⟩0 + 𝛽𝑓0 ⟨𝐴(𝑡)𝐴(0)⟩ − 𝛽𝑓0 ⟨𝐴⟩20
= ⟨𝐴⟩0 + 𝛽𝑓0𝐶𝐴(𝑡)

We also know that

⟨𝐴(𝑡)⟩ = ⟨𝐴⟩0 +
∫︁ ∞

−∞
d𝜏 𝜒𝐴(𝜏)𝑓(𝑡− 𝜏) (7.12)
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7.2 FDT for classical systems

The derivative with respect to time reads

𝜒𝐴(𝑡) =

{︃
𝛽 d

d𝑡
𝐶𝐴(𝑡) 𝑓𝑜𝑟 𝑡 > 0

0 𝑓𝑜𝑟 𝑡 < 0

Remark: Even and Odd Functions

Every function 𝐹 (𝑡) can be separated into an even and an odd part

𝐹 (𝑡) =

{︃
𝐹 ′(𝑡) = 1

2
[𝐹 (𝑡) + 𝐹 (−𝑡)] (even) ⇒ 𝐹 ′(𝜔) = Re𝐹 (𝜔)

𝐹 ′′(𝑡) = 1
2
[𝐹 (𝑡)− 𝐹 (−𝑡)] (odd) ⇒ 𝐹 ′(𝜔) = 𝑖 Im𝐹 (𝜔)

Caution: The prime ′ indicates the even part, not a derivative!

so 𝐶𝐴(𝑡) is even, thus
d
d𝑡
𝐶𝐴(𝑡) is odd and as we take only the odd parts 𝜒

′′
𝐴(𝑡) =

1
2
𝛽 d

d𝑡
𝐶𝐴(𝑡)

and so 𝑖 Im �̃�𝐴(𝜔) =
1
2
𝛽(+𝑖𝜔)𝛿𝐴(𝜔)

In classical mechanics we have 1
𝛽
= 𝑘𝐵𝑇 , in quantum mechanics we have ~𝜔 = coth 𝛽~𝜔

2

Example: Optical Trap

An optical trap can be described by

𝑘𝑥+ 𝛾�̇� = 𝛾𝜉(𝑡) with ⟨𝜉(𝑡)⟩ = 0 (7.13)

The �uctuation dissipation theorem is telling us that

𝑆𝑥(𝜔) =
2𝑘𝐵𝑇

𝜔
Im �̃�𝑥(𝜔) =

2𝑘𝐵𝑇/𝛾

(𝑘/𝛾)2 + 𝜔2
(7.14)

and one can measure 𝑆𝑥(𝜔) to estimate 𝑘. As a generalized example we consider

𝑛∑︁
𝑘=0

𝑎𝑘𝑥
(𝑘)(𝑡) = 𝜉(𝑡) (7.15)
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7 Fluctuation-Dissipation-Theorem

for which we do a a Fourier transformation in order to get

𝑛∑︁
𝑘=0

𝑎𝑘(𝑖𝜔)
𝑘

⏟  ⏞  
=�̃�−1

𝐴 (𝜔)

�̃�(𝜔) = 𝜉(𝜔) (7.16)

so

�̃�(𝑡) = �̃�𝐴(𝑡)𝜉(𝜔)

𝜒(𝑡) =

∫︁ ∞

0

d𝜏 𝜒𝐴(𝜏)𝜉(𝑡− 𝜏)

We have

𝑆𝑥(𝜔)𝛿(𝜔 − 𝜔′) = ⟨�̃�(𝜔)�̃�*(𝜔′)⟩

= �̃�𝐴(𝜔)�̃�
*
𝐴(𝜔

′)
⟨
𝜉(𝜔)𝜉(𝜔′)

⟩
= |�̃�𝐴(𝜔)|22𝐷𝛿(𝜔 − 𝜔′)

so

𝑆𝑥(𝜔) = |�̃�𝐴(𝜔)|22𝐷 =
2𝑘𝐵𝑇

𝜔
Im �̃�𝐴(𝜔) (7.17)

2𝐷 = 2𝑘𝐵𝑇
1
𝜔
Im �̃�𝐴(𝜔)

|�̃�𝐴(𝜔)|2
(7.18)

For the special case (𝑎2𝑘+1 = 0) except 𝑎1 = 𝛾 it is

�̃�𝐴 =
1

𝑅(𝜔)− 𝑖𝜔𝛾
⇒ Im �̃�𝐴 =

𝜔𝛾

𝑅2(𝜔) + 𝜔2𝛾2
(7.19)

so 𝐷 = 𝑘𝐵𝑇𝛾
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8 Equilibrium vs Non-Equilibrium

Living systems can violate the FDT, the FDT is a hallmark of equilibrium systems.

8.1 Detailed Balance

Detailed Balance

continuous state space (Fokker-Planck-Equation)

d

d𝑡
𝑝(𝑥, 𝑡) = �̂�𝑝(𝑥, 𝑡) (8.1)

discrete state space (Master Equation)

d

d𝑡
𝑃𝑗(𝑡) = 𝑃𝑖(𝑡)𝐿𝑖𝑗 (8.2)

We say the dynamics obeys the "'detailed balance"', if

∙ there exists an equilibrium distribution 𝑃 * and 𝑃 *
𝑗 , respectively

∙ the joint probability is symmetric 𝑃 *(𝑥′, 𝜏 |𝑥, 0) = 𝑃 *(𝑥, 𝜏 |𝑥′, 0) and 𝑃 *(𝑖, 𝜏 |𝑗, 0) =
𝑃 *(𝑗, 𝜏 |𝑖, 0) / 𝐿𝑗𝑖𝑃

*
𝑗 = 𝐿𝑖,𝑗𝑃

*
𝑖 , respectively

This means that there is zero net current at equilibrium 𝑖 
 𝑗. A simple example is the
Boltzmann distribution for a canonical ensemble, where you have states 0, 1, 2, . . . with
energies 𝐸0, 𝐸1, 𝐸2, . . . so

𝑃 *
𝑖 =

1

𝑍
exp(−𝛽𝐸𝑖) (8.3)

and

𝐿𝑗𝑖

𝐿𝑖𝑗

= exp(−𝛽(𝐸𝑖 − 𝐸𝑗)) (8.4)



8 Equilibrium vs Non-Equilibrium

A counter example would be a circular current 1 → 2 → 3 → 1 with rate 𝑟 giving

�̂� =

⎛⎜⎜⎜⎜⎜⎜⎝
−𝑟 𝑟 0

0 −𝑟 𝑟

𝑟 0 −𝑟

⎞⎟⎟⎟⎟⎟⎟⎠ (8.5)

with eigenvalue 𝜆1 = 0 with corresponding eigenvector �⃗�1 =
(︀
1
3
, 1
3
, 1
3

)︀𝑇
and 𝜆2 = 𝜆*3 =(︁

−3
2
+ 𝑖

√
3
2

)︁
𝑟 resulting in a net current at equilibrium, thus breaking detailed balance.

Proof of Detailed Balance for Hamiltonian Systems

We consider a system characterised by some Hamiltonian 𝐻 obeying the Hamilton equa-
tions

�̇�𝑖 = −𝜕𝐻
𝜕𝑞𝑖

𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖
(8.6)

with the macroscopic observable 𝑦 = 𝑌 (𝑞, 𝑝) and the detailed balance holds, if

(i) 𝐻 is even in 𝑝𝑖

(ii) 𝑌 is even in 𝑝𝑖

Then the time propagator 𝑇 ful�lls the condition

𝑃 (𝑦′, 𝜏 |𝑦, 0) = 𝑇𝜏 (𝑦
′|𝑦)𝑃 *(𝑦) = 𝑇𝜏 (𝑦|𝑦′)𝑃 *(𝑦′) = 𝑃 (𝑦, 𝜏 |𝑦′, 0) (8.7)

Nota Bene

We always have

𝑇𝜏 (𝑦
′|𝑦)𝑃 *(𝑦) = 𝑇−𝜏 (𝑦|𝑦′)𝑃 *(𝑦) (8.8)

as we can play backwards the dynamics in time.
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8.1 Detailed Balance

For the proof of this we make use of time reversal notation

𝑡 = −𝑡 𝑞𝑖 = 𝑞𝑖 𝑝𝑖 = −𝑝𝑖 (8.9)

We start by looking at a trajectory in (𝑞, 𝑝)-phase space and for every point 𝑥′ = (𝑞′, 𝑝′)
we apply time reversal �̄�′ = (𝑞′, 𝑝′). By (i) we conclude that 𝐻(𝑥) = 𝐻(�̄�) and thus
𝑃 *(𝑥) = 𝑃 *(�̄�) (even in 𝑝𝑖 means in our case symmetric in time!). Also we have 𝑋 =
𝑌 −1(𝑦) and by (ii) 𝑋 = �̄� as 𝑌 is even.

We can express the probability to observe 𝑦′ at time 𝜏 after observing 𝑦 at time 0 by the
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8 Equilibrium vs Non-Equilibrium

integral over the phase space region 𝑋 ∩ 𝑇−𝜏 (𝑋
′) of the equilibrium probabilities 𝑃 *(𝑥)

𝑇𝜏 (𝑦
′|𝑦)𝑃 *(𝑦) = 𝑃 (𝑦′, 𝜏 |𝑦, 0) =

∫︁
𝑋∩𝑇−𝜏 (𝑋′)

d𝑥𝑃 *(𝑥)

As we have 𝑃 *(𝑥) = 𝑃 *(�̄�) we can also change area of integration within phase space to
𝑋 ∩ 𝑇−𝜏 (𝑋 ′)

∫︁
𝑋∩𝑇−𝜏 (𝑋′)

d𝑥𝑃 *(𝑥) =

∫︁
𝑋∩𝑇−𝜏 (𝑋′)

d𝑥𝑃 *(𝑥)

From the diagram above we see that the states in the lower red circle 𝑇𝜏 (�̄�
′) are corre-

sponding to the states in the upper blue circle 𝑇−𝜏 (𝑋
′) under time reversal

𝑇−𝜏 (𝑋 ′) = 𝑇𝜏 (�̄�
′) (8.10)

and so we have

𝑋 ∩ 𝑇−𝜏 (𝑋 ′) = �̄� ∩ 𝑇−𝜏 (𝑋 ′) = �̄� ∩ 𝑇𝜏 (�̄� ′) = 𝑋 ∩ 𝑇𝜏 (𝑋 ′) (8.11)

in order to get

∫︁
𝑋∩𝑇−𝜏 (𝑋′)

d𝑥𝑃 *(𝑥) =

∫︁
𝑋∩𝑇𝜏 (𝑋′)

d𝑥𝑃 *(𝑥) = 𝑃 (𝑦, 𝜏 |𝑦′, 0) = 𝑇𝜏 (𝑦|𝑦′)𝑃 *(𝑦′) (8.12)

So at equilibrium we cannot distinguish whether a dynamics is played forward or backward
in time.

8.2 Increase of Relative Entropy

We consider a Master equation for a Markov chain

𝑃
(𝑛+1)
𝑗 =

∑︁
𝑖

𝑃 𝑛
𝑖 𝑇𝑖𝑗 (8.13)

with the probability 𝑃 𝑛
𝑖 to be in state i at time 𝑡 = 𝑡𝑛 and a matrix of transition prob-

abilities (𝑇𝑖𝑗) ful�lling
∑︀
𝑇𝑖𝑗 = 1. For a stationary distribution with 𝑃 *

𝑗 > 0 so that
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8.2 Increase of Relative Entropy

𝑃 *
𝑗 =

∑︀
𝑖 𝑃

*
𝑖 𝑇𝑖𝑗 for all 𝑗 we de�ne the relative entropy (Kullberg-Leibler Divergence) as

𝐷𝑛 = 𝐾𝐿(𝑃 𝑛||𝑃−𝑘) =
∑︁

𝑃 𝑛
𝑖 ln

(︂
𝑃 𝑛
𝑖

𝑃 *
𝑖

)︂
(8.14)

Theorem

𝐷𝑛+1 ≤ 𝐷𝑛

This theorem is a direct consequence of convexity of 𝐷𝑛. For 𝑃 *
𝑖 = 1

𝑁
one �nds that

𝐷𝑛 = −
∑︀
𝑃𝑖 ln(𝑃𝑖)− ln(𝑁), so the entropy increases with time.
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