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1 Diffusion & Random Walk

1.1 Random Walker

The random walk can be used to model a variety of different phenomena just like
e the motion of a particle during diffusion
e the spread of mosquito infestation in a forest
e propagation of sound waves in a heterogeneous material

e money flow

Model: Random Walker

A random walker can be considered as particle moving in steps of length [, while
choosing each time a random, uncorrelated direction. Uncorrelated means that

(T - Tm) = P0pm (1.1)

for averaging over a certain probability distribution.
Thus, the displacement of a random walker after n steps is given by
N
F=) &, with (&) =0 (1.2)
n=1

The mean square displacement (AZ)? equals the variance o>

As we have (AZ)?> ~ N and At ~ N, the relation (AA?Q is a constant in the continuum

limit, which is quite unusual that a square term in the numerator appears.




1 Diffusion & Random Walk

1.2 Continuum Limit: Diffusion Equation

We now consider the step sizes Ay of a random walker becoming infinitesimally small,
with p(Ay) being the probability for step Ay:

(5) = [ a2y Bup(ag) =0 (13)
o J i 2\ Oij
(Agi Agy) = [ d"Ay [Ay; Ay; p(Ag)] = (A9)*) (1.4)
fori,j =1,2, ..., d vector components.

We can express the probability for a displacement of & after N steps py(Z) through the
elementary relation

Pu(d) = [ a8y Pys(F - ADPT (1.5
Now we do a Taylor expansion of Py(Z)

» q » o, 1 »
PN(.Z') ~ /ddAy P(Ay) |:PN1<£L'> — AylaZPN,1<£L‘> -+ §AyZAy]@8]PN,1(x)

— Py_1(Z) + %623\[1(:5)

We can define a continuum probability density p(Z,t) after the time ¢t = NA¢
p(Z,t) = p(&, NAt) := Py (%) (1.6)
and now we can take the limit

Op .. Py(%) — Py_1(7)
ot Aliglo At

(1.7)

((A9)?)
At

This continuum limit exists, if D can be treated as a constant, i.e. if is finite for

At — 0. The resulting equation is known as the diffusion equation.
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1.2 Continuum Limit: Diffusion Equation

Diffusion Equation

The diffusion equation for a probability density p(Z,t) reads

op(Z,t -
PEY _ b (1.8)
ot
which we can also rewrite with the the definition of a current J = —Dﬁp
dp e
—=-V-J 1.9
ot (1.9)

Solving the diffusion equation

The diffusion equation can be solved e.g. by doing a Fourier transformation of both sides

o= DE*p (1.10)

leading to the k-space solution
p(k,t) = F(p(Z,t)) = exp(—Dth) (1.11)

A Fourier transform backwards gives the fundamental solution (Green’s function)

N 1 x?

with the mean square spread o2 ~ kt
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1 Diffusion & Random Walk

1.3 Random Force Model

Another way to approach diffusion is by considering a colloidal particle suspended in a
fluid experiencing random forces f(¢) due to the interaction with the fluid molecules.

Model: Random Forces
The motion of a particle under random forces f(t) in one dimension can be described
by Newtons law

mi +yi = f(t) (1.13)

For long time scales 7,,, >> %, inertia is negligible and we just have yi = f(¢). The
random force is characterized through

e (f(t)) =0 (by symmetry)
e a vanishing correlation (f(¢)f(t+ 7)) — 0 for 7 — 7,

for averaging over a certain probability distribution.

An important property of the random force is stationarity

1 [e.9]

?/ dr (F()f(t+7)) = 2D (1.14)
with [D] = m?s™!

Concept: Diffusion

Diffusion is a net movement of particles from a region of high to a region of low
concentration due to random motion of the single particles.

Formal Solution

A formal solution to the equation of motion without taking inertia into account reads

1 t
z(t) = z(0) + ;/0 dty f(t1) (1.15)
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1.3 Random Force Model

For Az = z(t) — z(0) we get for the mean deviation

(Ax(t)) = % / dt (f(t)) = 0 (1.16)

by symmetry and for the mean square deviation

o1 ([ ) ([ o)
_%/ dtl/ dts (f(t1)f(t2))
_ 71 / at, / F(ts + 7))

_ L / dt, / dr (f(t)f(ty + 7)) + O(Dry)

72
1 t
7" Jo

Calculating D = D(T))
In order to calculate D(T') we do a trick and add an elastic spring to the model
kx +~yi = f(t) (1.17)
So at first we might ask what happens in reaction to a pulse response?
kx 4+ ~& = pod(t) with x(t) =0]t <0 (1.18)

The solution to this scenario is given by

o(t) = pox(t),  x(t) = %exp(—f)@u), o= (1.19)

We get back to the full problem, where the formal solutions reads

x(t) = /000 dr f(t — 7)x(7) (1.20)
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1 Diffusion & Random Walk

with (x(t)) = 0 by symmetry and

(Ar?) = L </0°° dm f(t - Tl)x<ﬁ)) (/Ooo drs f(t - TQ)X(72)>>

~
:/0 dTl/o dro (f(t — ) f(t — 1)) x(71)x(72)

———
:’%2 exp(fifljm)
o o 1 21 + 7
:/ dTl/ dr {(f(t —n)f(t — 1 — 7)) —zexp(— 10 )
0 —T1
:/ dﬁ/ dr (f(t — ) f(t— 7 — 7)) —2€Xp<— 0 ”) +O(D7,,)
0 —00
1 [ 2 o
=% [Tanew (<2 [ artre - s - n - mpexn(-2)
8 0 —00
~1, Tm<<o
1 2 _ 7
At this point we would like to make use of the equipartition theorem
k5 kgT
= = — 1.21
)= =
As we have
ko k-~ kgT
- —_—'p=2=" 1.22
<2x > 2k 2 (1.22)
we obtain the Stokes-Einstein-relation
kgT
D=2 (1.23)
Y

Repetition: Equipartition Theorem

In thermal equilibrium, the systems energy, given by a Hamiltonian H, is distributed
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1.3 Random Force Model

on its degrees of freedom x,, via

(onge ) = ST (1.2

’Z’ —_—
" 0x,,

This holds for a microcanonical and canonical ensemble and relates temperature to
the systems average energies.
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2 Probability Theory

2.1 Mathematical Foundations

Concept: Probability

Let X be a set of states, then we have the following axioms of probability:
e is a function 0 < P(A) <1 for some A C X

e P(A)+ P(B)=P(AUB)—- P(ANB)

The probability density is analogously a function p(x) : R — R* and it relates to the

probability itself by

P(A):/Adxp(x) (2.1)

for A C X. If [x] = m, then [p] = m~'. Note that it is also called probability density

function PDF(z) = p(x) and the cumulative density function is given by

CDF(z) = /x da’ p(z") (2.2)

—0o0
Important properties of probability distributions are its moments and its cumulants.

Moments

The moments of a probability distributions p(z) are given by

i = {2y = / () (2.3)

[e.e]

with the characteristic function

(exp(t)) = Zun;—n, (2.4)

n=0



2 Probability Theory

Cumulants

The cumulants are given by the mean value k; = yy, the variance ky = py — p? and
higher order cumulants such as ks = u3 — 3pou1 + 2u3. More generally we have

t’n

In (exp(tz)) = kn— (2.5)

n!

2.2 Probability in Physics

Usually, probability is regarded as relative frequency of an event A occuring N, times for
the total number of measurements being N

P(A) = lim 24 (2.6)

Practically, a probability is determined by
e the experiment being repeated very often with the same initial macrostate
e replacing the physical system by an idealized model for stochastic simulations

(Talk by Jan Nagel: Gott wiirfelt nicht. Oder doch? —> Uncertainty in initial conditions
leads to a dice producing a stochastic behavior.)

Example Weather Forecast

For an event R = "rain tomorrow" we know that it is raining 116 out of 365 days in
Dresden: P(R|Dresden) = 31 = 18%. Our forecast is getting more accurate if we

consider also seasonal changes and thus specific the month being October with 8 days of
rain out of 31 in total: P(R|Dresden, October) = & = 25.8%

Another approach is based on persistence of conditions, i.e. to make a rain prediction
for tomorrow based on the weather today. E.g. according to Caskey 1963 we have
P(R | current local weather) = z and P(R |raintoday) = 44%, P(R |dry today) = 17%

Last but not least we can sample macrostate that is consistent with measurement data
an calculate the probabilities for rain from deterministic models (Navier-Stokes-equations
/ mathematical forecasting) P(R | current global weather).

10 Made with 'IEX by Benjamin Wolba



2.3 Important Probability Distributions

2.3 Important Probability Distributions

Normal Distribution

The normal distribution is given by

_ 1 (@ —p)?
p(z) = WeXp{ 57

| = Vo 27)
with the moments and cumulants being

= pu, po = pi* + 0%, pg = 1’ + 3o’
klzu,k2:02,kj20 for ]23

Bernoulli Distribution

For a Bernoulli trial you have two outcomes with probabilities p and 1 — p. If you now
perform n independent trials you will get &k times the first outcome with probability

Plean) = ()t = 23)

with (k) = np and (k%) — (k)* = np(1 — p). In many practical cases one can do a normal
approximation by p(k,n) = N(np,np(1 — p)).

Poisson Distribution

We consider the continuous time limit of the Binomial distribution. Therefore we intro-
duce a time t; = 2T = jdt with dt = L and A\ = np being the total number of expected
events. The event rate is given by r = 7% = £ with [r] =s7".

Now take the limit n — oo with A = const and p = %, so we get the Poisson distribution
/\k

- (2.9)

p(k’, )‘> = eXp(_)‘>

with g = (k) = \, 0% = (k%) — (k)> = A\. An approximation is p(k, \) = N(\, \) for very
large \.
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2 Probability Theory

Remark: Why is the concept of time being used here?

The poisson distribution is an example of a stochastic Poisson process
1) =36t ~1,) (2.10)

and so k = fOT f(t).

Power-law distribution
E.g. the jump distribution of animals pursuing food foraging (Levy walk) or to describe
the distribution of Facebook contacts (o = 2.2) are described by a power-law distribution

of the form

p(z) ~z=* for z>1 (2.11)

It has some unpleasant properties such as ¢ = oo for a < 3.
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2.4 Normal Approximation

2.4 Normal Approximation

Proof | Using Stirling’s Approximation

We would like to approximate the Bernoulli distribution

pli) = ()= 212

by means of a normal distribution. Therefore we introduce a small deviation ¢ such that
g=1—p, k=np+ne andp(k,n)%0f0r5>>\/¢ﬁ.

Trick number one in order to continue is to use Stirling’s approximation

nl ~ /2 (ﬁ) (2.13)
e

which leads us to

n

2mn n k ek
k.)nfkp q

T V2rky/2n(n — k) kF(n -
N
|7 o0 () (725)

To do the second trick and apply x*¥ = exp(kIn(z)) we need to evaluate the following two
expressions

p(k,n)

which means
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2 Probability Theory

B o bem et 3
=0-¢ 2np an + O(e”)
_ 12(p+q  1(k—np)
2 g npq
Thus
1 (k —np)?
k = - 2.14
R (2.14)
with 02 = npq

Proof Il Using the Central-Limit-Theorem

Central-Limit-Theorem

Consider sequence of z1, ...z, independent, identically distributed, random variables
with mean p and variance o?. We define the empirical mean by

1
T = —(z1+ -+ z,) = empirical mean (2.15)
n
We normalize it to a random variable with expectation value zero

_rok
o= (2.16)

Then the probability distribution p(z) — N(0,1) for large n ("convergence in distri-
bution") or equivalently CDF(z) — Erf(z) for almost all z € R

As a second, more elegant proof we consider n independent random variables z; with
j=1,...,n and

(2.17)

€L

) 1| with probability p
0 | with probability¢g =1 —p
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2.4 Normal Approximation

As we define the empirical mean via
T =—(x1 4 -+ x,) = empirical mean (2.18)
n

with k& = nz we get p(k,n) = p(Z) ~ N(np,npq) by the Central-Limit-Theorem. The
idea of the proof is to compute the cumulants of x;

ki=p, ko =0%. .. (2.19)
and then to show that the cumulants of z; are given by

1 1

k1 =0 ko=1 ky~— ki~ —... 2.20
1 5 2 5 3 \/ﬁa 4 n ( )
and
> 1
lim In (21) = 7}5{3@; t' =1 - ot° (2.21)

then we have z — N(0, 1). To show this behavior of the cumulants we take a look at the
functions

Cu(t) = (at)  with Cou(t) = Cu(at), a € R (2.22)

with ((ax)?) = o’ (27) and k,, ; = o’k, ; for all cumulants, i.e. Vj € N. Use this for z, z:

Cilt) = C, (%) c., (%) -+ Gl (%) - (G))

giving us

In(C.(t)) = nln (cx (Oj—ﬁ>) _ %\t/ﬁ (2.23)
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2 Probability Theory

and so we get

1 J
]{fzJ’ =N (n) l{xJ‘ (224)
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2.5 Stochastic Processes

2.5 Stochastic Processes

Stochastic Process

A stochastic process is a random function f(t) : R — R, i.e. a family of random
variables parameterized by ¢.

Terminology

e conditional probability density: p(f(t2) = fo|f(z1) = f1)
e Markov property: For ¢35 > to > t; it holds that p(f(t3) = fs|f(z2) = fo, f(x1) =
f1) =p(f(ts) = f3|f(z2) = fa) Vt;, f;, example: diffusion, counter-example: random

draw from an urn without replacements

e Martingales: Markov processes with the property (f(t2)|f(t1) = t1) = f1, example:
diffusion, counter-example: diffusion with drift

Example: Poisson Process

Poisson Process

For a Poisson process events occur independently with rate r at random times ¢;

fley=">" d(t—t;) (2.25)

j==o0

The property x = fOT f(t) counts events and yields a Poisson distribution for A = rt.
The waiting times ¢ = ¢;,1 — t; are exponentially distributed, i.e. p(t) = rexp(—rt).

The last property can be proven by taking a look at the CDF for which we have
P(t>0+dt) = P(t > 0)—rdt P(t > 0)

so that

%P(t > 9) = —rdt P(t > (9) = P(t > 9) ~ exp(—rt)
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2 Probability Theory

Example: Gaussian White Noise

Poisson Process

Gaussian White Noise is described by a function £(t) : R — R with the following
properties

i) (€(t) =0
ii) (§(1)E()) =2Ds(t —1')
if) [ dt&(t) ~ N(0,2D[ts — t])

(Gaussian white noise can be considered as the idealization of thermal random forces,
corresponding to 7, — 0

Remark: Gaussian White Noise and Mathematics

Strictly speaking, ¢ itself cannot be defined mathematically. Instead mathematicians
define a so-called Wiener process

W(t) = /0 €t (2.26)

so that T () exists and is continuous with probability 1.
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3 Langevin Equation and Fokker-Planck
Equation

3.1 Langevin equation

Langevin theory describes non-equilibrium systems by postulating a stochastic process,
thus adding a noise term to fundamental equations. In its original form, Langevin theory
was used to describe Brownian motion, e.g. of a particle suspended in a fluid.

Definition of the Langevin equation

The Langevin equation is a stochastic differential equation for the particle velocity

= f(x)+ V2DE(t) (3.1)
:i/f-t/ random noise

e {(t) represents Gaussian white noise

e it describes diffusion in an effective potential U(zx) = — [ da’ f(2/)

Generalization

& = f:(Z) + Z 9i;(F)&;(t) (3.2)

withi =1,...,n and () being independent Gaussian white noise functions (&;(¢)&(t')) =
di0(t —t')

Example 1: Double-well Potential

Example 2: Escape over a Barrier

Numerics for the Langevin Equation



3 Langevin Equation and Fokker-Planck Equation

Euler Scheme

The Langevin equation & = f(x) + V2D £(t) leads, using the Euler scheme, to the
following update-rule

Fri1 = & + f(3n) dt + V2D AN, (3.3)

with D = Dy, t; = idt, z; = x(L;), N, ~ N(0,1) and |&, — x,| ~ O(dt*/?)

3.2 Fokker-Planck-Equation

Derivation of Fokker-Planck-Equation

Repetition: Ordinary Diffusion

For the example of ordinary diffusion
@ =¢&(t), z(0) =0 with (z(t)) =0 (z*(t)) = 2Dt (3.4)

the probability density is given by

1 1 i
p(x,t) = @r) 2Dt exp (_4_Dt) (3.5)

fullfilling the Diffusion equation

op(wt) _ Ol

ot Ox? (3:6)

Considering the general case & = f(z) + V2D &(t) we would like to find an operator L
such that

ap(;t’ ) = Lp(z,t) (3.7)

Therefore we discretize time and take a look how a sub-ensemble of p(z, t) at z,, will evolve
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3.2 Fokker-Planck-Equation

during a time step from p(z,t,) to p(x,t,+1). For this we are using the Markov-Property:

p(x,tn+1|x0,t0) — /dxnp<xatn+17xmtn|x07t0)
=/¢mmxaﬂum%mumm%xw

= /dxn N(zp, + f(x),2D dt)p(zy, t,|xo, to)

This is already an implicit solution in terms of a convolution of the probability density
with a family of normal distributions, but it is of few practical use.

A Remark about Units

Unlike probabilities, probability densities for positions have units of inverse length!
Therefore we are integrating over a two-point probability density have units of inverse
length squared

1

[p(l', tn+1|x07 tO)] =m
= m_2

[p(x7 tn-i—la T, Z571‘1‘07 tO)]

So let us define the following abbreviations in order to evaluate this convolution further

mmm:/mgmwmmmlmm<w%w=mmm%m,
and n(x,,y) = N(f(x,)dt,2Ddt)

The integrand I(z,y) will contribute only for small y = O(dt), which means z,, ~ z, so
we can Taylor expand I(x,,y) in x, around x:

Ol(an,y) (2o — )

Ox2 Tn=1 2

I(ZL’n,y):](l‘,y)—l— ZL‘n—ZL‘)—}-
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3 Langevin Equation and Fokker-Planck Equation

Inserting this into the convolution integral leads to

l’ tn+1 :/dyl(m7y |$n =Tr—y

 (pointe. §4<>nwwno+§;@wﬂmayﬁ§0

p(x) /dyn z,y) — <p(;p)/dyn(x,y) y) + 68_; (p(x)/dyn(x,y) y;)

The integrals that are occuring in this step are know as Kramers-Moyal coefficients:

/dyn(az,y) =1

[t
[aunto

= f(z)dt

oS, @

= Ddt + %[f(:c)]2 = Ddt + O(dt?)

which give us

) = plo ) — oo, ) @) &)+ oo t)D] At (39)
and thus
A t) 2P0t O g p@)] 4 e t)D)  (310)

Taking the time step to zero, we have finally derived the Fokker-Planck equation.

Fokker-Planck equation

The Fokker-Planck equation is a partial differential equation, which reads

O plat) =~ fp(e 1) 1+ Dospl 1) 3.11)

The structure of the Fokker-Planck equation is similar to the Schrédinger equation, i.e.
solution methods from QM can be borrowed (take a look at the Risken book!).
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3.2 Fokker-Planck-Equation

Application to the Diffusion Potential

We consider the diffusion potential U(z) (now we care about physical units!)

. 10U

and look for the steady state %—[{ = 0. Hence, the Fokker-Planck equation reads

<
-

0=l

1 .
=c=—-VUp+ DVp
Y

. . L1 .
VU)p] + DV?p = V[;VU}) + DVp]

thus, if ¢ = 0, we get

0 ﬁp 1VU
—Inp=—=—— 3.13
Oz p v op (3.13)

and
U U

~ N, - 3.14
S s
with D = %, i.e. we recover the Boltzmann distribution. If ¢ would not be zero,

the solution could not be normalized. Another explanation, why ¢ = 0, is based on the
Fokker-Planck-equation being interpreted as conservation equation

S 1. .
p=-VJ with J=-VUp+ DVp (3.15)
g
of the current J. At equilibrium, the current must vanish and thus we have

limJ=c=0 (3.16)

t—00

Made with 'IEX by Benjamin Wolba 23



3 Langevin Equation and Fokker-Planck Equation

Eigenvalue Spectrum of L

The probability density can be expressed in terms of eigenfunctions of the operator L

Lou(x) = Muton(2) (3.17)

through

Zangbn x) exp(Ant) (3.18)

If Ay = 0, then this corresponds to a steady state ¢y and the slowest decaying mode
determines hopping rates.

But why are the ), real? We have L # L*, which means L is not Hermitian.

<f/g, h> = /dm (I:g)h: /dxgi*h: <g,[3*h> Vg(x), h(x) (3.19)

so by partial integration we see that

2
L*h = f@ + D? (3.20)
If f(z) = 75
A=T'LT with T—exp(+5—) ﬁ— (3.21)

The newly constructed operator is self-adjoint A = A* and thus all eigenvalues are real.
A and L do have the same eigenvalues.

Backward Fokker-Planck Equation

p = p(x1, t|xg,0) = p(xq,0|xg, —t), which gives the backward Fokker-Planck equation

0 0?
p = Lx1p onp = _'_f( )8_5130 + Daxo (xla 0 ’ 2o, _t) (322)
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3.2 Fokker-Planck-Equation

Boundary Conditions Matter

1) Reflecting Boundary Conditions (No-Flux / Robin B.C.)

The probability current p = —J vanishes

and

/x2 dep(z,t) =1 (3.24)

1

so the steady-state distribution p*(x) = ¢o(z) exists. This is similar for a confinement
potential lim, ,, ,, U(z) — o0

2) Absorbing Boundary Conditions

We have p(z3,t) = 0 (Dirichlet Boundary Conditions) and therefore

d B dp(z,t) eooJ
0> pp dxp(x,t)—/dx & —/ e J(2) (3.25)

—0o0

So no steady-state solution exists (non-trivial / normalizable to one) and all eigenvalues
are strictly negative.

Boundary Conditions and Functional Analysis
Changing the boundary conditions changes also the eigenvalues and the adjoint op-

erator (boundary terms might pop up) and thus you will get each time a different
operator in terms of functional analysis.
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4 Dynkin Equation

4.1 Mean First Passage Times and Dynkin Equation

We consider diffusion in some potential landscape y& = —%—Z +£(t) with initial conditions
p(x,0) = 6(x — x1) and boundary conditions p(xs,t) = 0.

Mean First Passage Time (MFPT)

T($2|$1) = / dtt:](l’g,t‘l’l,()) (41)
0

Our aim is to derive an equation for 7. If At is small and fix (and we ask which positions
can we reach within At) we have

2

T(xo|21) = At+/ da’ 7(xq|2")p(2', At|zy,0)

—00

and we take the derivative with respect to At

2

0=1 +/ da’ 7(x|a’) Lyp = 1 +/ da’ L7 (o2 )p

—00 —00

so if At — 0 then p(a, At|z1,0) — d(z — x1) and we get the Dynkin equation

—1= ﬁ;lT(x2|m1) (4.2)

Application to Diffusion

Let consider once again the example of diffusion

vE = -+ E(t) (€)= 2Do(t — 1) (4.3)



4 Dynkin Equation

with the initial condition p(z,0) = d(x — x1) and boundary conditions p(z2,t) = 0. Let

v = 8%17'(:(;2, x1) so the Dynkin equation reads
U/
—1=Dv - —v (4.4)
Y
which we multiply with % exp(—5U)
| , d
~ (= HU) =/ expl—5U) — foexp(—5U) = -lvexp(~50)  (45)
to get
1 “
v=-5 exp(—pU) {/ da’ exp(—8U) + c} (4.6)

If we assume lim,_, o, U(z) = +oo then |v] < oo, ¢ = 0 and with one more integration
we get

/

o) =35 [ ew(BU) [ | daexs(-sU(")

—00

(4.7)

the second integration constant must be zero due to 7(zq,22) =0

4.2 Kramers Escape Rate Theory

We assume SAE > 1 and calculate 7(xa|z1). [ da” is sizeable only nearby x,, [ da’ is
sizeable only nearby x,. We do a standard trick: quadratic expansion around x, and x

1
U(") = Ula) + 50" (2a) (@ — 2 + ... (45)
with U"(z,) = ks = /T4, which introduces a time-scale and

U) = Ulz) + %U”(a:b)(x’ C o). (4.9)
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4.3 Diffusion to Capture

with U"(xp,) = —ky = —7/7. So lets evaluate our integrals
v " 1 " " 2 > " 1 " ! 2
dx eXp _EBU (l'a)(l' - ma) ~ dz exp _éﬁU (l‘a)(m - xa)
= V2mwo?

with 02 = Z= and
By

!

/f da" exp (+%BU”(%)(I’ — xb)Q) R~ /00 dz" exp (+%6U”(mb)(x’ - xb)2)

Th

=, [2m—

By

SO
1 27/T,
T(IQ, 1'1) = 5% eXp(ﬁAE) = 277\/7—a7—b eXp(ﬁAE) (410)
Y
Kramers escape
1
r=——— ~exp(—fAE) (4.11)
(22, 71)  —_—m——

Arrheniusfactor

4.3 Diffusion to Capture

As an example we consider a diffusing particle released between two absorbing plates.
The question is: What is the probability of getting absorbed at either of the two plates?

P(z,t=0)=6(x —x)
P(.Tl,t :P(Ilfg,t) =0

The probability of becoming absorbed at x = z; when starting at xy reads m (o). We
have 71 (z1) = 1 and m(x2) = 0.

We will now consider a time step At as we did for the derivation of the Dynkin equation
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4 Dynkin Equation

in order to find an explicit expression for 7 (z¢):

m1(zo) = /3172 dz 7 (z) P(x, At|xg, 0)

x1

Now we take the partial derivative with respect to At

O:/ dxﬁl(x)%P(x,At]a:O,O)

xr1 7

g

p

and perform partial integration

X2 .
O—/ dz L*m(x) P(z, At|zo, 0)
- ——_———

— §(z—x0) for At—0

so we obtain
0= L*m(z)

Thus, m1(x¢) must be a linear function and taking the boundary conditions into account

we have 7y (zo) = 2=

Another way to solve this is the method of images. So
P(z,t) = N(x¢,2Dt) — N(2x1 — x9,2Dt) — N(2x9 — x0,2Dt) (4.12)

and 7 could be calculated directly. (Stream of anti-particles is released and cancels at
the boundary).

4.4 Polya's theorem

Diffusion in R? to a d-dimensional absorbing ball and we ask for p(Ry). For d = 1 and

d = 2 we have p(Ry) = 1, but for the critical dimension p(Ry) = g—é

Characteristic arrival time must scale with \/R2/D with a power-law tail ~ t=3/2 exp(—(Ry — R;)?/4Dt)
and the mean first passage time diverges.
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5 Synchronization

5.1 Active Oscillators

An example of an active oscillator is the

Van-der-Pol oscillator

1
mi—y(é—lA—acQ)x'%—kx =0 (5.1)

It is a special form of a

Hopf oscillator

3 =iwez + (A — |2}z with z¢€C (5.2)
and a phase oscillator with ¢ = wy.
Hopf normal form of Van-der-Pol oscillator

We set y = @, w = \/k/m. The idea is to introduce z &~ z — Ly, so we do the ansatz (in
order to avoid quartic terms / the method is called Center Manifold technique)

= Z dy, ! y
kool
=T — ;?J + dioy + dssx® + ds22%y + dsray® + dsoy® + ..
The back transformation is given by

ZtZz 3 2= -2 =3
5 +e12” ez +e3zz” +eq” ...

xr =

-z
+ f122 + 2%z

.z
Y =iw



5 Synchronization

so that
2=h(z,2) = Fz+Gz*2 + ho.t. (5.3)

and for appropriate dj; we have i) no quadratic terms, ii) no term in z and iii) no terms
proportional to 23, 272, z3. We find that

: v 2
F = —A A
two + S + O(A?)

Y
S A
G 8m+(9( )

and we get
¢ = i(we — wil2l*)z + p(A = |2 (5.4)

with w, = wp, wi = O(A) and p = L
5.2 Hopf-oscillator with noise
We now add a noise term to the Hopf-oscillator

£ =iwoz + p(A = |2*)z + (i€, + €a)2 (5.5)
with

(o)) = 2Dp0(t — ') (a(t)€a(t)) = 2Dad(t —t') (L (1)a(t)) =0

and map z on a phase ¢ and amplitude A via z = Ae’¥ so that

(%—l—igb)z:,é:... (5.6)

and

A
7 i = o+ (A — A%) +ilp + Ca (5.7)
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5.2 Hopft-oscillator with noise

Assuming A > 0 and A = A2, we get a noisy phase oscillator
Qb = wo + fgo (58)
and an Ornstein-Uhlenbeck process

A:A0+CL

i = 1Ay + a)(=2aAo + @) + €4 = —21doa + £ + O(a) 9

with the properties

@) =0 (a(t)a(t)) = DATeXp{_M} __ 2:70

T

Remark

If we consider an ensemble average, the amplitude fluctuations will decay with 7:

_ : d _ a
a(t) = (a(t)) with K Tkl
Manifestation of Phase Noise
We define a phase correlation function
C(t) = {exp(i(to)) exp(—ig(to + 1)) (5.10)

with |C(t) = exp(—D,t)|, so

(Y 2
2(to) e exp(p(to) — ¢(to +t)) — expliwgt) if D, =0
Ay A

And we can have a look at the power spectral density
Sy(w) = §(w)? (5.11)

with y = exp(ip) and its Fourier transform g(w).
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5 Synchronization

Two coupled oscillators

Two oscillators are coupled by the coupling c leading to the ODE system

o1 = wr, + (oL — ¢r)

$r =wr +c(pr — L) (5-12)
with a phase difference of 0 = ¢ — pgr
0 = Aw + ¢(0) — ¢(—9) (5.13)
and Aw = wy — wg and
c(6) = (0 +27) = Z C/) cos(nd) + C sin(nd) (5.14)

Only the odd coupling terms contribute to synchronization, often ¢(d) is dominated by
the first Fourier mode and we end up at the Adler equation (A = —2cf)

0 = Aw — Asin() (5.15)

If |Aw| < |)], we have 6* = sin™! (%) The stability of the fixpoints is determined by by
o = —%—(g and the effective potential U = —yAwd — yA cos(0).

Images missing!
Synchronization in the Presence of Noise

If we consider two coupled oscillators

b1 =wn — S sinlipy — ) + &0 (5.16)

: A
pr=w2— 5 sin(pa — 1) + &2(1) (5.17)
we get the Adler equation with § = 1 — 9 and Gaussian white noise £

0 = Aw — Asin(d) 4 ¢ (5.18)
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5.2 Hopft-oscillator with noise

Remark: How to add two noise terms

§(t) = €u(t) — Er(?)

with (£(t)) = 0 and

(E(BE)) = (ELt)se(t) + (Er(B)ERE)) + (€L(B)ER(E))
=2D16(t —t') +2Dré(t — t') + 0
= 2(Dy, + Dg)d(t —t')

It is

: ouU
75 = —8—6 —f—f (519)

and U = —Awd — Acos(d). So what is the effect of noise? The steady state probability
density reads

p*(8) ~ exp (— ki(z(j)ﬁ) = m exp <—% cos(é)) (5.20)

with D = kgT,gy and Aw = 0. So the first effect of noise is, that steady states are
smeared out. The second effect are phase slips that occur

0~0— d~27 with rate G
d~0— 0~ 27 with rate G_

We can compute G4 using Kramers escape rate theory

1
T U'ls=s, = Ta = s
Ta )\2 —ACUQ

P)/ 1
—=U"szs, > ="1,4
Ty
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5 Synchronization

and so

G, = 2w, exp <_Di/5>

The calculation for G_ goes analogously and we have

% = exp(+27Aw/D)

and for Aw =0 it is

A 2)
G+ = G, = %exp (—5)

The theory can be also extended to many oscillators.
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6 1to versus Stratonovich Calculus

If we are given an ODE, e.g. & = f(x), what does this mean? To answer this question, we
are going to take a constructive approach and interpret the ODE as a rule to construct
the solution. So we estimate the values x; = x(i dt) and then take the limit dt — 0.

6.1 Numerical Motivation

Deterministic ODE

For a deterministic ODE we have various options to chose scheme in order to solve them
numerically. One could use either an explicit scheme like the Euler scheme

rp=x;i 1+ f(x;q)dt (6.1)
and implicit scheme
x; =i+ f(x;)dt (6.2)
or a mixed scheme
5=z () + 7 ) (6.3

and all schemes will converge to the same limit.
Stochastic Differential Equations

Also for stochastic differential equations such as & = f(z)++/2D(x)§ we may chose either
an explicit scheme (It0)

T, =T;_1+ f(xi—l) dt + v/ QD(IZ_1>NZ\/E (64)



6 Ito versus Stratonovich Calculus

with N; € N(0,1) or a mixed scheme (Stratonovich)

m,»:m'i_l#—%[f(xz 1)+ fxy)]dt + = \/2D (zi_1) + /2D(x;)] N\/_ (6.5)

It is important to note, that this time both schemes are different. (A purely implicit
scheme for SDE is not discussed, because such schemes are rarely used in practice.) We
can see this by doing the expansion

T; = X1+ f(xi—l) dt + O(dts/z) + g(ZL‘Z_l)NZ\/E + g/(ZEi_l)g(iL‘i_l)NE dt (66)

with (N?) =1, so that the last term can not be neglected!

6.2 Different Interpretations

Having a look at the chain rule, one can see that the [to and Stratonovich interpreta-
tion are indeed two different sorts of calculus. In Stratonovich interpretation we get the
ordinary chain rule

(6.7)

By contrast, in It interpretation we have &y = fr + gi& with (&,(¢)& (1)) = dpd(t — t')
and the Ito chain rule applies

B . (9y 1 82

Switching between Itc and Stratonovich

In Ito and Stratonovich calculus, respectively, we have

(S) dp = hi + gu&
() @y = b} + gué
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6.2 Different Interpretations

with hl = hy + égﬁ—’igml. The Fokker Planck Equation reads for these cases

5 0 /8 Gkl Lo
P = o { (hk +aax gml) P+ 50z, (9r1gmiP) (6.9)

m

with a = 0 for It6 and o = 1/2 for Stratonovich calculus.

Wong-Zakai Theorem

If © = f(x) + g(x)€ is a SDE with coloured noise of finite correlation 7, then taking
7 — 0 yields a Stratonovich SDE with Gaussian white noise.

Example of Colored Noise (Ornstein-Uhlenberg process)
76 = —€+n and (n(t)n(t) = 6(t —t') = (n(t)n(t)) ~ eXP(-#)

Toy example |I: Geometric Brownian Motion

We consider the example of (I) & = z£, which corresponds to (S) & = x{ — Dz. Now
we ask about the time evolution of the first moment m(t) = (x(¢))? In Ito calculus we
have

£) =0 (6.10)

=0

—~
~
~—
—~
8
~
I
—~
8
m
~
|
—~
~
—~

so m(t) = mo. Note that y = In(z) = y =& — D = y(t) ~ N(—Dt, Dt)

Toy example Il

Next, let’s do something forbidden and take (S) 4 = z&, which correspond to (I) & =
x&+ Dx. Tt is

d LD
() = (&) = (a€ + D) =0+ Dm (6.11)

in Ito calculus this time we get m = mgexp(Dt).
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6 Ito versus Stratonovich Calculus

Example: Rotational diffusion in 2D

We have ¢ = £ and the unit vectors

cos() —sin(y)

0L
I

D1
I

sin(yp) cos(p)

and
(S) €1 =&, éx=¢Ee

In Ito calculus we have

T T3
€1 = P €2 =
X2 Ty
with
T3
Ty
rT=g§, §=

and with 3, 2% g = 2D(-7) it is

m

(I) él = 552 — Dgl, ég = 551 — Dgg
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6.3 Rotational Diffusion in 3D

Extended Example: persistent random walk (2D)

Consider 7 = vy€; where (€7, €3) is subject to rotational diffusion. Our proposition is that
C(t) = (é1(t) - €1(t)) = exp(—Dt) (6.14)

with persistence time ¢, = % and persistence length [, = vot,.

Proof:

do) =(am &) = ..

6.3 Rotational Diffusion in 3D

As another example we consider rotational diffusion in 3D with the rotational diffusion
coefficient (instance of the Fluctuation-Dissipation-Theorem!)

kT

= 6.15
8mnr3 (6.15)

rot

and the parameterization

hs = (cos(1), sin(v) cos(9), sin(v) sin(9))”

1:——3 G2 = —h3 X gy

oY
ﬁl = COS(QO)gl + Sin(@)gg ]_Yig = 53 X ]_7:1

The equations of motion are given by the Frenet-Serret equations for Stratonovich calculus

hs = Ehy — &by
(S) hy = Eshy — Ehs
By = E1hy — &y

with <§(t>£j(t/)> = 5,7]5@ — t/)QDrOt and

(S) ¥ = sin(¢)&1 + cos()& (6.16)
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6 Ito versus Stratonovich Calculus

which is equivalent to

I = éin(gp)& + cos(go)fg—i—Dmt cot (1)) (6.17)
=€)

in Ito calculus and

(€@DE)) = ([sin(p(t))&1 + cos(ip(t))&a][sin((t))€1 + cos(p(t'))&2])

= sin(p(t)) sin(p(t)) (€1(1)§1(1)) + cos(ip(t)) cos(p(t)) (&2(t)&2(t))
= [sin?(p) + cos?(¢)]2D,06(t — ') = 2D,016(t — 1)

We know that the steady state distribution must be isotropic, so let’s check this. The
question is: What is P*(¢) for isotropic distribution of hs? We have the height h =
1 — cos(¢), so A = 2nrh, dA = 2w dh. Thus P*(h) = 3. Furthermore, it is P*(h)dh =
P*(1) dyp with dh = sin(z)) dip and so P*(h) = & sin(y)

2

The equation of motion can be also rewritten introducing a potential U

(I) = Dyogcot(y)) + & = —l%U + £ (6.18)

with U = — D,y In(sin(¢))) = kT In(sin(v))) and v = 8rnr®. Thus

P(w) ~ oo~ ) ~ explinsin(u) ~ sinfe) (6.19)

kT

An Interpretation of U(v) is obtained be taking a look at the entropy S = kg In(sin(¢)))
and the free energy F' = —T'S = — D,y In(sin(¢)) = U. Here, knowing hs corresponds
to the microstate and knowing h to the macro state.

6.4 How to derive a correct Langevin equation?

1) can be considered as a limit case of coloured noise 7. — 0, then take Wong-Zakai-
theorem

2) small number fluctations (eg. for chemical reactions, so suppose you have N particles
with sort 1 to 2 with rate r9 and 2 to 1 with rate rq, so one can derive a continuum limit
of a master equation)
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6.4 How to derive a correct Langevin equation?

3) only thermal fluctuations 7' = const and then use P* ~ exp(—3U)

Master Equation for a Two-State System

Let P(n) be the probability, that n entities are in state 2. Then, the Dynamic equation
/ Master equation for P(n) is given by

P(n,t) =ri(n+ 1)P(n+ 1,t) —rnP(n,t) + ro(N — (n — 1))P(n — 1,t) — ro(N — n)P(n, t)
=r(EYt —1)nP +ryo(E~ —1)(N —n)P

with the shift operators E*

(E¥f)(n) = f(n+1) and (E”f)(n)=f(n—1)

In order to go to a continuum limit we let x = & and treat x as a continuous variable.

Then we do a Taylor expansion of our fancy step operators

1 1 1 1
+ . il / - < opn -
(B*f)() = fla+ 1) = f@) % f@)5 + 5 @) 55+
which we feed back so that we get
P(x,t) =7 2(ncP) + T—18—2(xP) —r 2[(1 —z)P] + 28—2[(1 —x)P]
T o 2N Ox? >0z 2N Ox?
0 . 1 0?
= (r +T2)%[($ —x")P] + ﬁ@[(ﬁ + (r1 — r2)z) P
with z* = ﬁfm. In the steady state we have ry = r; = ry and the master equation
P = —V.J with J = 0 at equilibrium, thus P*(z) ~ exp(—(I;U%)2> and 0% = &
Langevin equation
1
() &= (r+m)(a —z)+ \/“x trl-o), (6.20)
—g(x)
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6 Ito versus Stratonovich Calculus

rz+ry(l —x) Iry—mr

(S) 33:(7“1+7’2)(x*—3:)+\/ 5N 5—2 v (6.21)

=g()

so at N > 1 we have z ~ x* thus g(z) ~ g(z*) and P*(x) = N(z*,0?), 02 = %@fﬂip

6.5 Numerical integration of nonlinear SDE

For the Ito SDE (1) & = f(x)+g(x)&(t), (£(¢)E(t')) = 0(t—t') we have the Euler-Maruyama
scheme

Topar = Ty + f(20) At + g(2) Ny, Ny ~ N(0, At)
Tient = Ty + f(xt)At + g(xt)Nt/\/aa Nt/ ~ N(Ov 1)

For the Stratonovich SDE (S) @ = f(x) + g(x)&(t) we have the Euler-Heun scheme
Topne = ¢ + f(2) At + %[9(%) + g(T¢)| Ny, Ny ~ N(0,1)

with Ty = x4 + g(CUt>Nt
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7 Fluctuation-Dissipation-Theorem

7.1 Historical Examples

Example 1: Diffusion (Einstein 1905)

The relation found be Einstein for ordinary diffusion in 1905
D=— (7.1)

is an instance of the fluctuation dissipation theorem. The diffusion coefficient D captures
the mean square displacement (22(t)) = 2Dt (fluctuations) and the right part captures

the dissipated energy via the hydrodynamic mobility “ly = 6# so that the velocity is given

™ma
-1
byv—vF.

Example 2: Electrothermal noise (Johnson, Nyquist 1927)

—> | It was found that even a shorted circuit
consisting of just one resistor does show
a finite current, which is zero on average
(I = 0, but has the fluctuation spectrum

kT
9B

S§w> " “Rn

(7.2)

R

with hw < kgT. The inverse resistance plays the role of a linear response coefficient
I=41U.
R



7 Fluctuation-Dissipation-Theorem

7.2 FDT for classical systems

Ft) g (A(1)) o

(A) Transient

( Dynamics
(A)

R0

- f(]

~Y

>
t

Lets consider a system described by the Hamiltonian H; = Hy — fA for times t < 0,
with the probability density pi(z) ~ exp(—SH;). At t = 0 we switch off the influence of
the observable A, thus p(x,t) — exp(—fSHy) for ¢ — co. The average of A is given by
(A) = [dz A(x)p(z,t) and we have the microstate © = (p1,...,pn, q1,-- -, qN)-

Fluctuation Dissipation Theorem

The FDT relates the fluctuation spectrum on the left side to the dissipative response
to an external field on the right side of

 2kpT
N w

Sa(w)

Im(Ya(w)) (7.3)

In order to show that the Fluctuation Dissipation Theorem holds we need to key concepts:
e Boltzman distribution py ~ exp(—FH) with 5 = kBLT

e time propagator P(xq,t1|xo, o)

Fluctuation Spectrum

The auto-correlation function is given by

Ca(r) = (A A(t + 7)) — (4)? (7.4)
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7.2 FDT for classical systems

which is independent of ¢ at thermal equilibrium and it is an even function Cy(7) =
Ca(—7). Tt is related to the time propagator by

Ca(r) = /dxo da1 A(wo) A(z1)po(z0) Pla, t + 7|zo,t) — (A)? (7.5)

The power spectral density is then the Fourier transform

Sa(w) = Cy(w) = /dT Cu(r)e™” (7.6)

in the non-unitary Fourier transform with angular frequency.

Wiener-Kinchin Theorem

The Fourier transform exists and has the usual properties.

Formally: <f1(w)fl* (w’)> — S4(w)d(w — '), A(w) is not mathematically strictly defined

Linear Response Function

Let a system possess the Hamiltonian H(z,t) = Hy(x) — A(x)f(t). Then, the linear
response is expresses by

o0

(A1) = (A), + / dr xa()f(t — 1) + O(f?) (7.7)

—0o0

which defines the linear response function x 4(7). Causality implies that x 4(7) = 0 for all
T <0.

The Fourier transform reads
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7 Fluctuation-Dissipation-Theorem

Example: Oscillating Field

f(t) = focos(wt) = Re foe™* (7.9)

then

(A(t)) = (A)y + [Re xa(w)] focos(wt) — [Imxa(w)] fosin(wt) (7.10)

so f(t) oscillates with the frequency of driving with amplitude fo[xa(w)| and with phase
lag arg(xa(w)). The power performed by the external field is given by R = — f(t) < A(x (%))

with the time-average (R) = iwf§Im ya(w). So the imaginary part Im x4 (w) charac-
terises the dissipative response of the system.

Derivation of the fluctuation-dissipation-theorem

Let f(t) = foO(—t). We first compute the partition function Z; = [ dxexp{—/FH;} with

fi() = Zi exp{—BH,} ~ po(x)[1 + Bfo(A(z) — (A),) (7.11)

For t > 0 we have

(A1) = /dxA(x)p(a:,t) = /da:A(x)/dxo P(z,t|xg, to)p1(zo)

= /dx A(z) /dxo P(x,t|xo, to)po(xo)[1 + BfoA(x) — Bfo (A)]

= (A)g + Bfo (A(£)A(0)) — Bfo (A)g
(A)y + BfoCalt)

We also know that

A0 = A+ [ dra@se-1) (7.2
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7.2 FDT for classical systems

The derivative with respect to time reads

B B%CA(t) for t>0
xalt) = {O for t<0

Remark: Even and Odd Functions

Every function F'(t) can be separated into an even and an odd part

F(t) = F'(t) = $[F(t) + F(-t)] (even) = F'(w) = Re F(w)
F'(t) = 3[F(t) = F(=)] (0dd) = F'(w)=iIm F(w)

Caution: The prime " indicates the even part, not a derivative!

so Ca(t) is even, thus $C4(t) is odd and as we take only the odd parts x/j(t) = 82 C4(t)

2P dt
and s0 i Im X 4(w) = 36(+iw)da(w)

In classical mechanics we have % = kg7, in quantum mechanics we have Aw = coth %

Example: Optical Trap
An optical trap can be described by

kx 4+~ =~&(t) with  (£(¢)) =0 (7.13)
The fluctuation dissipation theorem is telling us that

2kpT 2kgT
= 2T o w) = 2RI

= ®p+ R

(7.14)

and one can measure S,(w) to estimate k. As a generalized example we consider

S wa®(e) = (1) (7.15)
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7 Fluctuation-Dissipation-Theorem

for which we do a a Fourier transformation in order to get

> aniw)* X(w) = €w) (7.16)

X(t) = Xa(t)E(w)
x(t) = /0 dr xa(T)é(t — 1)
We have
Sy (w)3(w — ') = (X(W)T (W)
= Xa@)Xa () (Ew)EW))
— [%a(w)[22D8(w — o)
5u(w) = [Ra(@)?2D = 220 1 54 (w) (7.17)
o %Im )ZA(W)
2D = QkBT—IXA P (7.18)

For the special case (agx11 = 0) except a; = 7y it is

. 1 T < wy
- = & Imvy=—-—
XA ' XA R?(w) 4 w?~?

) i (7.19)

so D = kgT~y
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8 Equilibrium vs Non-Equilibrium
Living systems can violate the FDT, the FDT is a hallmark of equilibrium systems.

8.1 Detailed Balance

Detailed Balance

continuous state space (Fokker-Planck-Equation)

S p(a,1) = Lo, 1) (8.1)

discrete state space (Master Equation)

T i (t) = Pi(t) Ly (8.2)

We say the dynamics obeys the "'detailed balance'’, if
e there exists an equilibrium distribution P* and P}, respectively

e the joint probability is symmetric P*(2’, 7|z,0) = P*(x, 7|2’,0) and P*(i,7|j,0) =
P*(4,70i,0) / L P} = L Py, respectively

This means that there is zero net current at equilibrium 7 = j. A simple example is the

Boltzmann distribution for a canonical ensemble, where you have states 0,1,2,... with
energies Fy, By, Fs, ... S0
. 1
P = — exp(—BE)) (5.3)
and
- = exp(—B(E; — Ej)) (8.4)



8 Equilibrium vs Non-Equilibrium

A counter example would be a circular current 1 — 2 — 3 — 1 with rate r giving

—-r r 0
L= 0O —-r r (8.5)
r 0 —r

with eigenvalue \; = 0 with corresponding eigenvector €] = (%, %, %)T and Ay = \j =

(—% + z‘/7§> r resulting in a net current at equilibrium, thus breaking detailed balance.

Proof of Detailed Balance for Hamiltonian Systems

We consider a system characterised by some Hamiltonian H obeying the Hamilton equa-
tions

Pi=—5- 4= 5 (8.6)

with the macroscopic observable y = Y (¢, p) and the detailed balance holds, if
(i) H is even in p;
(i) Y is even in p;

Then the time propagator T fulfills the condition

P(y',7ly,0) = T-(y'|y) P*(y) = T-(yly" ) P*(y') = Py, 7|y, 0) (8.7)

Nota Bene

We always have

T (y'|ly) P (y) = T (yly") P (y) (8.8)

as we can play backwards the dynamics in time.
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8.1 Detailed Balance

r = (Q7p) !/ / /
o /\/.
o .®
' = (7,0
For the proof of this we make use of time reversal notation
t=—t G=4q¢ Di=—Di (8.9)

We start by looking at a trajectory in (g, p)-phase space and for every point 2’ = (¢, p’)
we apply time reversal ¥’ = (¢,p'). By (i) we conclude that H(x) = H(Z) and thus
P*(z) = P*(Z) (even in p; means in our case symmetric in time!). Also we have X =
Y~1(y) and by (ii) X = X as Y is even.

X =Yy

Py, 7ly,0)

.
-
.
.
-
- -
_______
...........

T (X')
X' = X'

We can express the probability to observe y' at time 7 after observing y at time 0 by the
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8 Equilibrium vs Non-Equilibrium

integral over the phase space region X N7T_,(X’) of the equilibrium probabilities P*(x)
T:(y'ly)P*(y) = Py, 7]y, 0) = / da P*(x)
XAT_ - (X)

As we have P*(x) = P*(Z) we can also change area of integration within phase space to
X AT, (X))

/ dz P*(z) = / dz P*(z)
XOT_(X') XAT_,(X')

From the diagram above we see that the states in the lower red circle T, (X’) are corre-
sponding to the states in the upper blue circle 7", (X’) under time reversal

T (X') = T(X) (8.10)

and so we have

XNT (X)=XNT . (X)=XNT.(X)=XNT(X) (8.11)

in order to get
/ do P*(z) = / de P*(x) = Py, 71y, 0) = T,uly)P'(y)  (8.12)
XAT_, (X7 XNTy(X7)

So at equilibrium we cannot distinguish whether a dynamics is played forward or backward
in time.

8.2 Increase of Relative Entropy

We consider a Master equation for a Markov chain

with the probability P to be in state i at time ¢ = ¢,, and a matrix of transition prob-
abilities (Tj;) fulfilling » Tj; = 1. For a stationary distribution with P > 0 so that
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8.2 Increase of Relative Entropy

= >, P’ T, for all j we define the relative entropy (Kullberg-Leibler Divergence) as

D, = KL(P"|P7*)=> P'ln ( n) (8.14)

Theorem
Dn+1 S Dn
This theorem is a direct consequence of convexity of D,. For P; = 1 one finds that

— > P In(P;) — In(N), so the entropy increases with time.
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