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Nonequilibrium steady states of Markov processes give rise to nontrivial cyclic probability fluxes. Cycle
decompositions of the steady state offer an effective description of such fluxes. Here we present an iterative cycle
decomposition exhibiting a natural dynamics on the space of cycles that satisfies detailed balance. Expectation
values of observables can be expressed as cycle “averages,” resembling the cycle representation of expectation
values in dynamical systems. We illustrate our approach in terms of an analogy to a simple model of mass transit
dynamics. Symmetries are reflected in our approach by a reduction of the minimal number of cycles needed in
the decomposition. These features are demonstrated by discussing a variant of an asymmetric exclusion process.
Intriguingly, a continuous change of dominant flow paths in the network results in a change of the structure of
cycles as well as in discontinuous jumps in cycle weights.
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I. INTRODUCTION

A major challenge of statistical physics is to identify princi-
ples organizing the structure of steady states [1]. Equilibrium
systems are singled out by detailed balance, a symmetry in the
transition rates between different states that explicitly yields
the systems’ free energies [2,3] and thereby all its linear
thermodynamic properties. In nonequilibrium steady states
(NESSs), detailed balance is broken and nontrivial currents
can be identified.

Following Penrose [4], we idealize observable processes
as irreducible Markov processes on a finite state space. Here
irreducible means that the system can reach any state i from
any other state j with a finite number of transitions. On a
finite state space this implies ergodicity and hence ensures the
existence of a steady state [5].

Conservation of probability in the form of Kirchhoff’s law
induces probability flux cycles [2,3,6–11], and there are a
number of distinct ways to decompose the stationary dynamics
as cycles: Schnakenberg network theory (SNT [2]) and
subsequent work (see, e.g., Refs. [3,8]) is based on identifying
a fundamental set of cycles after identifying a spanning tree. A
recent approach further generalizes those results to a different
basis of oriented cycles [9]. From a more mathematical point
of view, Kalpazidou [7] and the Beijing school of Quians [10]
independently developed a rigorous formalism to describe
Markov processes on finite (and countably infinite) state
spaces using cycles. They distinguish between stochastic and
deterministic decomposition algorithms. The former leads to
the cycle decompositions used by Hill [11] and has an effective
dual description as a Markov process on the set of all possible
cycles. It also has the benefit that a cycle can be interpreted
as the so-called completion rate of this cycle within the
stochastic dynamics [7,10]. The latter, deterministic approach
is closely related to the algorithm used in the present work. It
is complementary to both SNT and Hill’s cycles.

Here we present a method to map NESS fluxes onto a
Markov process on a dual space of flux cycles. Detailed

balance is restored in that description, which allows us to define
a potential function as in the case of equilibrium systems.
Steady-state averages take the form of equilibrium averages
on the dual space.

The essence of our approach is best viewed in the ensemble
picture. Consider a large number of identical physical systems
with a finite number of states. Each system entering a certain
state i stays there for an average time 〈τi〉 and then proceeds
to another state j according to a fixed transition rate. Up to
normalization the flux may be seen as the number of systems
proceeding from one state to another per unit time. In Fig. 1
we present an elementary six-state example motivated by the
totally asymmetric simple exclusion process (TASEP) exam-
ple discussed below (see Fig. 3 and Tables I–III). The cycle
representation of the fluxes means to write them as a linear su-
perposition of cycle fluxes with a non-negative weight assigned
to each cycle. Such representations exist for any NESS [6,7].

The aim of this work is to explore consequences of this
point of view for NESSs, with emphasis on the relation of
cycles and nonequilibrium phase transitions.

The paper is organized as follows. In Secs. II–IV we
introduce cycles as a topological backbone of NESSs. In
Sec. V we compare the present approach to other physical
cycle theories [2,11]. We see that a natural stochastic dynamics
leads to detailed balance on the dual space of cycles in Sec. VI.
Section VII defines Boltzmann-like averages on cycle space.
They are related to physical current variables in Sec. VIII.
Finally, in Sec. IX we use a TASEP as an example to investigate
how phase-transitions and symmetries influence the cycle
structure. Appendix A describes useful thermodynamic and
electric analogies which also remain valid in the discrete case,
as explained in Appendix B.

II. MARKOV PROCESSES REVISITED

We start by briefly reviewing Markov processes on a finite
state space [2,3,5]. To better follow the line of arguments, it is
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FIG. 1. (Color online) Representation of a NESS in terms of linear superpositions of cycle fluxes. The numbers on the arrows (representing
the directed transitions) are the values of the fluxes. The steady-state fluxes between states 1 and 6 can be decomposed into cycle fluxes (labeled
by Greek letters) with positive weights. Two different decompositions are possible.

helpful to consider a sociophysical analogy: The cycles may
be interpreted as the lines of a mass transit system with the
peculiarity that the lines are running one way on closed loops.
The fluxes are proportional to the total amount of passengers
traveling from one station to another; i.e., from a state i to
a state j of the Markov process. The lines are represented
in different colors in Fig. 1. We imagine each passenger to
carry a (correspondingly colored) ticket indicating the line he
is currently using. Passengers can change lines in the stations.
To remain in a steady state this involves a random exchange
of tickets between passengers at stations.

We represent the process as a random walk on a graph
G = (V,E) with N = |V | vertices vi , i ∈ {1, . . . ,N} and
directed edges (i,j ) ∈ E. The vertices represent the states
of the system and are shown as gray circles displaying the
vertex indices 1, . . . ,6 in Fig. 1. A system entering vertex vi

will jump to another vertex vj with probability ai
j after having

stayed in state i for an exponentially distributed waiting time τi .
Consequently the (time-independent) transition rates per unit
time are wi

j := ai
j /〈τi〉. A system trajectory is the realization

of a random walk of one of the passengers through the transit
system. In terms of the transition matrix

Wi
j :=

{
wi

j for i �= j

−〈τi〉−1 ≡ −∑
k �=i w

i
k for i = j

(1)

or for the fluxes from i to j �= i,

φi
j (t) = pi(t)w

i
j , (2)

the equation for the evolution of the probability pi(t) to find
the system in a state i at time t takes the compact form

dpi

dt
=

∑
j

W
j

i pj =
∑
j �=i

(
φ

j

i − φi
j

)
. (3)

Here and in the following we suppress the explicit time
dependence and write, e.g., pi instead of pi(t). The first
equality in Eq. (3) stresses the linearity of the problem and is
useful for algebraic considerations. The second emphasizes the
physical concept of a master or continuity equation: In a steady
state the net influx must equal the net outflux,

∑
j �=i φi

j

∗ =∑
j �=i φ

j

i

∗
. In terms of the currents, I i

j := φi
j − φ

j

i , this node
condition,

0
!=

∑
j �=i

(
φi

j

∗ − φ
j

i

∗) =
∑
j �=i

I i
j

∗
, (4)

amounts to Kirchhoff’s current law, which expresses particle
(or probability) conservation at each vertex [12]. Here and in
the following the asterisk marks steady-state quantities.

Due to the continuity equation (3) every normalized initial
distribution remains normalized at all times, and it relaxes to
a steady state p∗

i [2].
Algebraically the steady-state probability distribution p∗

i

is a left eigenvector of W with eigenvalue zero. Ergodicity
ascertains the existence of a path i0 . . . in with a positive
ωi0,...,in := ∏n

j=1 w
ij−1

ij
for every pair of vertices i0 and in.

This ensures existence and uniqueness of the normalized
distribution obeying ∑

i

p∗
i = 1. (5)

In the physics literature a steady state is called an equilib-
rium if it obeys detailed balance; i.e., if the individual fluxes
between any two vertices i and j cancel:

I i
j

∗ = φi
j

∗ − φ
j

i

∗ = 0. (6)

Detailed balance further implies a weaker symmetry that is
sometimes called dynamical reversibility [13]. It means that if
a transition is allowed, so is its reverse:

wi
j > 0 ⇔ w

j

i > 0. (7)

The cycle decomposition does not need this symmetry in the
transition rates; i.e., we allow for unidirectional transitions.
Consequences of dynamically reversible systems are discussed
below.

For an equilibrium system the ratio of ωi0,...,in and the one
for the reverse path ωin,...,i0 depends only on the initial and
final point irrespective of the chosen path [2,3]. Examining the
above relation for paths starting from a fixed reference vertex
j one obtains an explicit representation of the steady-state
probability density:

p∗
i = p∗

j

ωj,...,i

ωi,...,j

=: p∗
j exp

(−U
(j )
i

)
. (8)

Then one can always write U
(j )
i = Ui + cj , where Ui is a

universal function and cj depends on the chosen reference
site. Consequently,

p∗
i = Z−1 exp(−Ui), (9a)
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where the partition function

Z =
∑

k

exp(−Uk) (9b)

secures normalization [Eq. (5)].

III. CYCLE REPRESENTATION AND TRANSFORM

The cycle transform is based on the idea that fluxes in a
steady state may be represented as superpositions of cycle
fluxes (see Fig. 1). A cycle α of length sα is an equivalence
class of ordered sets of sα vertices which form a self-avoiding
closed path, where paths differing only by a cyclic permutation
of vertices are identified. We quantify the number of systems
traversing each edge of α by the weight m∗

α . There can be
several cycles along an edge (i,j ), and the flux φi

j quantifies the
total number of systems traversing that edge per unit time. In
the remainder of this section we work out how the steady-state
fluxes can be represented by different cycles α with positive
weights m∗

α assigned to each of them.
To express the geometrical structure of the cycles we define

the indicator (or passage) functions χi
j,α and χi,α as

χi
j,α =

{
1 if α passes through the directed edge (i,j )

0 otherwise
(10a)

χi,α =
{

1 if α passes through vertex i

0 otherwise
(10b)

In the language of graph theory χi
j,α is the adjacency matrix

of a cycle. The following identities hold:∑
j

χ i
j,α =

∑
j

χ
j

i,α = χi,α, (11a)

∑
i

χi,α = sα, (11b)

where sα is the length of the cycle α. With their help we
formulate the ideas of the previous paragraph mathematically.
As we show below, there is a set of cycles {αk} with non-
negative flux densities m∗

α � 0 such that

φi
j

∗ =
∑

α

m∗
αχi

j,α (12)

for all pairs of vertices (i,j ).
To obtain a decomposition we choose an arbitrary enumera-

tion of all M possible cycles α1, α2, . . . , αM on G. The ambigu-
ity in choosing the order of this enumeration leads to different
decompositions constructed by the following algorithm:

Start the iteration for cycle α1 with a flux field φi
j

(1) = φi
j

∗

that contains the steady-state fluxes of the original system:
(1) Initialization:

φi
j

(1)
:= φi

j

∗
, for all i,j. (13)

Successively subtract the fluxes along different cycles. In the
kth step set m∗

αk
to be the minimum of the values of the flux

φi
j

(k)
along the edges contained in αk . The new flux field in

iteration k + 1 is the current one with m∗
αk

subtracted at the
edges traversed by cycle αk:

(2) Iteration:

m∗
αk

:= min
i,j

{
φi

j

(k)
: χi

j,αk
> 0

}
, (14a)

φi
j

(k+1)
:= φi

j

(k) − m∗
αk

χ i
jαk

. (14b)

The algorithm terminates after all possible cycles have been
considered:

(3) Termination condition:

k = M. (15)

We show below that at this point all edge fluxes have been
assigned to a cycle, and the remaining flux field is zero along
all edges:

φi
j

(M+1) = 0, for all i,j. (16)

IV. EXISTENCE OF A VALID DECOMPOSITION

The algorithm and its proof were first mentioned by
MacQueen [14] and later by Kalpazidou [6]. We briefly review
their argument. To show existence of the decomposition we
demonstrate that for every flux field satisfying the steady-state
condition Eq. (4), the algorithm terminates with zero fluxes
along all edges Eq. (16) and provides non-negative weights
which fulfill the defining equation (12). The algorithm always
terminates in finite time because M is finite. Since the weight
assigned to a cycle Eq. (14a) is the minimum of all φi

j

(k)
among

the edges of cycle αk , the new fluxes φi
j

(k+1)
assigned by

Eq. (14b) remain non-negative. Consequently, the steady-state
weights m∗

αk
are non-negative.

We prove Eq. (16) by contradiction. Suppose there is a flux
φi

j

(M+1) �= 0. If this flux fulfills the node condition, there is
a cycle which could have been assigned a larger weight m∗

αk
,

contradicting Eq. (14a). Hence, the remaining fluxes obey∑
j

(
φi

j

(M+1) − φ
j

i

(M+1)
)

�= 0. (17)

In contrast, for every steady state the initial flux field, Eq. (13)
fulfills the node condition (4). Iterating the initial flux field we
find

0 =
∑

j

(
φi

j

(k) − φ
j

i

(k)
)

=
∑

j

(
φi

j

(k+1) − φ
j

i

(k+1)
)

+ m∗
αk

∑
j

(
χi

j,αk
− χ

j

i,αk

)

=
∑

j

(
φi

j

(k+1) − φ
j

i

(k+1)
)
, (18)

where we used Eq. (11a) in the last line. In contradiction to
Eq. (17) this holds for every k � M , proving Eq. (16).

By construction the cycle fluxes obtained in this way fulfill
Eq. (12). We use Eq. (14b) and a telescope sum argument to
obtain

M∑
k=1

m∗
αk

χ i
j,αk

= φi
j

(1) − φi
j

(M+1) = φi
j

∗
,
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where in the last equation we used the algorithm initialization
[Eq. (13)], and Eq. (16).

V. NUMBER OF CYCLES

Kalpazidou pointed out [15] that the maximal number of
cycles needed is the Betti number MB = |E| − N + 1 used
in algebraic topology. This can also be seen directly from the
algorithm. After all, in a worst-case scenario each nontrivial
cycle reduces the flux along one edge. Because the iterated
flux field always fulfills the node condition (4), the number of
remaining edges at any vertex can never be exactly one. Then,
as the graph is connected, at some point in the algorithm,
|E| − N nontrivial weights m∗

α have been assigned, and the
remaining flux field consists of N nodes forming a cycle which
will be assigned the last nontrivial weight.

A minimal number of cycles with nonvanishing weights
cannot be stated in general. However, symmetries present in
the system that lead to the same fluxes at many edges may
decrease this number as in the example below.

The Betti number MB can also be related to the number of
cycles used in SNT [2]. In the latter theory, U undirected edges
yield a set of MSNT = U − N + 1 fundamental cycles. If the
system exhibits only unidirectional edges, MB = MSNT. In the
other limiting case dynamical reversibility holds and MB −
MSNT = U . The U additional numbers can be thought of as
the detailed balance, i.e., diffusive, part of the U bidirectional
transitions. Further, one can (by using the freedom of choice
in the enumeration) specify a set of disjoint cycles to be part
of the decomposition. A possible choice is to include the set of
two-cycles (of which there are U in a dynamically reversible
system). The result is a splitting of the fluxes in a detailed-
balance part (the set represented by the two-cycles) and the
remaining current part. This resembles the approach in Ref. [3]
but is conceptionally different because the decomposition here
does not discard the information stored in the two-cycles.

VI. DETAILED BALANCE DYNAMICS ON CYCLE SPACE

The set of weights {m∗
αk

} can be interpreted as a mapping
that transforms the original graph G = (V,E) into a new
one H = (C,EC); see Fig. 2. For instance, the vertex α ∈ C

represents the cycle α in G with the nonzero weight m∗
α

as identified by the algorithm. A directed edge (α,β) ∈ EC

indicates that two cycles share at least one vertex of G, i.e., one
state of the original system. Each edge (α,β) of the transformed
graph is associated with a transition rate bα

β . In the analogy of
the mass transit system ψα

β := m∗
αbα

β characterizes the number
of passengers changing from line α to line β in the stationary
system.

We shall call the operation G → H the cycle transform. By
virtue of Eq. (12) the steady-state fluxes can be calculated from
{m∗

α} and {χα
β }. If the steady-state distribution {p∗

i } is known,
the full Markovian dynamics on the original state space can be
reconstructed. In terms of cycles, the {p∗

i } can be interpreted
as loops associated with each vertex in G (see the discussion
of the discrete case below).

To find the rate constants bα
β we realize that in the steady

state at each vertex vi (i.e., station, in the sociophysical picture)
a constant number of passengers arrives per unit time. This
number is proportional to the overall influx

∑
γ χi,γ m∗

γ =∑
j �=i φ

j

i

∗
. The passengers carry tickets indicating which line

they are traveling on. Upon arrival at the station, a passenger
enters his ticket into a ticket machine that provides him with a
new one. The probability to draw a ticket for line β is given by
ratio of the weight of line β to the weights of all lines serving
station i:

b
(i)
β = m∗

β∑
γ χi,γ m∗

γ

. (19)

The total flux ψα
β from line α to line β is obtained by summing

the local exchange flux m∗
αb

(i)
β over all mutual stations where

χi,βχi,α = 1:

ψα
β =

∑
i

χi,βχi,αm∗
αb

(i)
β = m∗

α

∑
i

χi,βχi,α∑
γ χi,γ m∗

γ

m∗
β = ψβ

α .

(20)

A remarkable feature of this new formulation is that the cycle-
space fluxes fulfill detailed balance (ψα

β = ψβ
α for all α,β).

In the steady state this is a microscopically balanced ticket
exchange. It means, that on average, passengers arriving at a
station just exchange tickets with other passengers and board
the line for which their new ticket holds.

αβ

δ
ψα

δψδ
β

ψβ
α

ψα
β

ψδ
αψβ

δ

αγ

δ
ψα

δψδ
γ

ψγ
α

ψα
γ

ψδ
αψγ

δ

FIG. 2. (Color online) Transformed graph H obtained for the original graph G for the two decomposition of the flux field introduced in
Fig. 1.
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Because of detailed balance in H we can proceed along the
line indicated by Eq. (8). Replacing wi

j by bα
β , one obtains a

potential Hα , such that the occupation numbers m∗
α are given

by Boltzmann weights:

m∗
α = Z−1 exp(−Hα). (21)

Here the partition function

Z =
∑

α

τα exp(−Hα) (22)

includes the average cycle period τα = ∑
i χi,α〈τi〉. After all,

the weights m∗
α are not probabilities. According to Eqs. (1),

(2), and (12) they fulfill

∑
α

m∗
ατα =

∑
α

m∗
α

∑
i

χi,α〈τi〉 =
∑

i

p∗
i = 1.

In summary, the potential Hα is obtained from the NESS
fluxes φi

j

∗
by determining the population density m∗

α of the
cycles, followed by Eqs. (19), (20), and finally (8). Though our
approach does not require knowledge of the invariant measure
p∗

i ; the steady-state fluxes φi
j

∗
have to be known. From an

analytical point of view this requires the full solution of the
mathematical problem. However, in experiments fluxes might
be easier accessible than probabilities.

VII. AVERAGES ON CYCLE SPACE

For every well-defined mapping F : α 
→ Fα from the set
of cycles to the real numbers we define the cycle average:

〈F 〉C :=
∑

α

m∗
αFα. (23)

For instance, for the characteristic functions χi
j,α we have

〈χi
j 〉C = φi

j

∗
by Eqs. (12) and (23). On the other hand, 〈1〉C �=

1, because the edge fluxes are not normalized weights.
Now let us consider cycle-space observables related to

physical quantities. Consider some matrix F ∈ RN×N . We
can interpret this quantity as the change of some physical
observable due to the transitions between different states. We
define

JF (t) =
∑
i,j

F i
j φ

i
j (t) =: 〈F 〉2,t (24)

as the average flux of quantity F at time t . The last equivalence
is the definition of the average as the two-point probability-
density function (propagator) at time t . For antisymmetric F

one has JF = 1
2

∑
i,j F i

j I
i
j .

To connect this with the cycle transform we define an
observable

Fα =
∑
i,j

χ i
j,αF i

j , (25)

which is the integrated contribution of F along cycle α. With
the linearity of the averages

J ∗
F = lim

t→∞〈F 〉2,t =
∑
i,j

F i
j φ

i
j

∗ =
∑

α

∑
i,j

m∗
αχi

j,αF i
j = 〈F 〉C.

(26)

VIII. DYNAMICAL REVERSIBILITY AND
NONEQUILIBRIUM THERMODYNAMICS

Here we provide the connection of averages in the general
formalism to the ones needed to describe physical currents in
nonequilibrium systems. To that end we consider dynamically
reversible systems, Eq. (7). This is no constraint because in
physical systems one has reversible microscopic laws. This
means that for every microscopic “forward” trajectory leading
the system from state i to j also the time-reversed “backward”
trajectory from j to i is a solution of the equations of motion.
Remember that this is not needed for the application of the
cycle transform, as the example of Fig. 1 shows.

Dynamical reversibility allows the connection of Markov
process to (nonequilibrium) thermodynamics [2,4,11,16]. The
central quantities describing a NESS are the nonzero macro-
scopic currents I which are driven by macroscopic affinities A.
One can consistently define them also on the level of stochastic
transitions:

I i
j := φi

j − φ
j

i , (27a)

Ai
j := log φi

j − log φ
j

i . (27b)

Further, a connection with entropy production and therefore
heat dissipation can be made (see also the analogies given in
Appendix A). Observe that sgn(I i

j ) = sgn(Ai
j ). Consequently,

the positive total entropy production can always be expressed
[2] as

Ptot = 1

2

∑
i,j

Ai
j I

i
j . (28)

Cycle affinities are the integrated values, Eq. (25), of the
antisymmetric affinity matrix Ai

j . They are related to the
macroscopic thermodynamic affinities as was first realized by
Hill [11] and formulated somewhat differently by Schnaken-
berg [2]. With the decompositions introduced above one
generalizes the results of Schnakenberg [2] and Jiang et al. [10]

P ∗
tot = J ∗

A = 〈A〉C =
∑

α

m∗
αAα (29)

for the entropy production in the steady state to cycles obtained
by the deterministic algorithm presented above. In the context
of entropy production cycles are also used [8–10] for the well-
known fluctuation relations for the entropy production along
(a set of) individual random trajectories (see Refs. [17,18]).

IX. CHANGE OF DOMINANT PATHS: TWO-PARTICLE
FOUR-SITE DRIVEN TASEP

In this section we illustrate the consequences of a parameter
change on the selection of paths in a variant of a totally
asymmetric simple exclusion process (TASEP) [19]. Consider
a one-dimensional periodic lattice (i.e., a ring) with four sites.
On the lattice we put two particles and allow them to move
in only one direction.1 Each site can be occupied only by one

1Note that though the process is physically motivated, the system is
lacking dynamic reversibility.
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TABLE I. The six possible configurations for the TASEP ex-
ample. The corresponding network of states is shown in Fig. 3.
Transitions 5 → 1 and 6 → 4 involve a particle leaving at the right
site and entering at the left site.

State Configuration State Configuration

1 •◦•◦ 2 ◦••◦
3 •◦◦• 4 ••◦◦
5 ◦◦•• 6 ◦•◦•

particle so the particles are not independent of each other. The
rates for particles jumping from one site to the next are all
equal (and set to unity) but one, which is set to a value x > 0.
Particles are accelerated or slowed at that site. The system’s
state is represented by binary 4-tupels with “•” representing
an occupied and “◦” an empty site; see Table I. Figure 3(a)
shows the network of states with its positive transition rates.
The rate for a particle jumping over the edge from the last to
the first site has magnitude x. This corresponds to transitions
5 → 1 and 6 → 4, as they are the ones utilizing the periodic
boundary conditions; see Table I.

The steady-state distribution is

p = (x(1 + x),x(1 + x),x(1 + x),2x2,2,2x)/C(x),

C(x) = 2 + 5x + 5x2,

leading to the steady-state fluxes:

φ1
2 = φ2

6 = φ1
3 = φ3

6 = [x/C(x)](1 + x),

φ6
4 = φ4

1 = [x/C(x)]2x, (30)

φ6
5 = φ5

1 = [x/C(x)]2.

For x = 2 the fluxes are the ones of the initial example (Fig. 1)
up to a factor of 2/C(2) = 1

16 .
We now take a closer look at the four cycles present in the

system. The cycles correspond to four different gaits of the
particles characterized by the step size and whether the front
or back particle particle moves first. The distinction between
front and back is arbitrary, due to the periodicity of the system.
Particles cannot overtake, so one can distinguish particles.
In this case, completing any of the cycles leads to a state
that has the particles switched. Completing two cycles would

TABLE II. (Color online) The four different cycles of the TASEP
example. Each cycle corresponds to a different “gait” of the two
particles. Gaits are characterized by step size (1 or 2) and whether the
front or back particle moves first (f or b).

cycle sequence gait graph

α •◦•◦→•◦◦•→◦•◦•→••◦◦ (1 → 3 → 6 → 4) 1f
α

β •◦•◦→◦••◦→◦•◦•→◦◦•• (1 → 2 → 6 → 5) 1b
β

γ •◦•◦→•◦◦•→◦•◦•→◦◦•• (1 → 3 → 6 → 5) 2f
γ

δ •◦•◦→◦••◦→◦•◦•→••◦◦ (1 → 2 → 6 → 4) 2b
δ

then bring the system to its original configuration. The full
characterization is shown in Table II.

One can easily check that the algorithm given in Sec. III
leads to only two possible decompositions for any positive x.
As said above, which of those two decompositions is realized
depends on the ordering of cycles. Further one can see that
there are three regions for x corresponding to qualitatively
different decompositions (see Table III). For x > 1 we always
end up with nonzero weights for one of the decompositions
shown in Fig. 1, which are {α,γ,δ} or {α,β,δ}. For 0 < x < 1
we have a qualitatively different behavior as the decomposition
will feature either {α,β,γ } or {β,γ,δ}. At the transition point
x = 1 the possible decompositions,{α,β} or {γ,δ}, consist of
two cycles.

We now look at the number of cycles needed for the
decomposition and compare it to the cycles used in other
theories. The Betti number for this system is MB = 8 − 6 +
1 = 3. It agrees with the number of fundamental cycles used
in SNT, MSNT = MB , because we have only unidirectional
transitions. In the highly symmetric case x = 1 our algorithm
yields a smaller number of cycles, 2 < 3 = MB . Table III
summarizes the decompositions and numerical values of the
weights in the three regions.

The crucial point is that the decomposition structure
changes at the transition point x = 1, meaning that some zero
weights suddenly become positive while others go to zero. We
can also note this by only looking at one cycle, which we fix to
be the first one to be considered by the algorithm, i.e., α1. By

1

2 3 4 5

6

1

1 1

x1

1 x

1

1

2 3 4 5

6

1+x

1+x 2

2
1+x

1+x
2x

2x

FIG. 3. The network of states for the TASEP example. The rates shown in (a) lead to the steady state shown in (b). For x = 2 the fluxes
are proportional to the ones shown in the original example (Fig. 1). (a) Transition rates of the TASEP example with a variable jump rate x for
transitions involving a particle jump over the boundary. (b) Dependence of the steady-state fluxes on x. For clarity, the edge fluxes shown are
divided by the common factor x/C(x); cf. Eq. (30).
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TABLE III. Different decompositions depending on x. A transi-
tion happens at x = 1. The numerical values shown are the weights
divided by the common factor x/C(x).

Region Fluxes Decompositions

x > 1 2 < 1 + x < 2x (x + 1)α + (x − 1)δ + 2β,

(x + 1)δ + (x − 1)α + 2γ

x = 1 2 = 1 + x = 2x 2α + 2β, 2γ + 2δ

x < 1 2 > 1 + x > 2x (x + 1)β + (1 − x)γ + 2xα,
(x + 1)γ + (1 − x)β + 2xδ

that, its appearance in the decomposition is ensured. Then at
the transition point x = 1 we observe a discontinuous change
in the derivative dmα1/dx of its weight from 1 to 2.

These discontinuous changes in the structure of cycles and
their weights are related to a change in the dominant paths
in the network of states. In our example, this is triggered by
the change from accelerating to decelerating a particle when
it crosses the periodic boundary.

The TASEP with a modified transition (or bond) rate on
a periodic one-dimensional lattice has been introduced in
Ref. [20], where it was observed that a fast bond leads only to
local correlations, whereas a slow bond can have long-range
effects (due to particles piling up). An exact formula for the
stationary measure of the slow bond system remains an open
problem, and it would be interesting to investigate possible
connections with the changes in cycle structures.

X. CONCLUSION AND OUTLOOK

In this work we presented a mapping, the cycle transform,
that generally applies to steady states of Markov processes on a
finite state space. It can be used to transform a nonequilibrium
steady state represented by a graph G into an equilibrium
steady state on a graph H whose vertices are appropriately
chosen cycles in G.

The presented mapping is obtained by using a deterministic
algorithm rather than a stochastic algorithm [7,10]. Therefore
the theory lies between theories based on all possible flux
cycles (see Hill’s theory [11]) and theories using fundamental
current cycles (see SNT [2,8]). The nonuniqueness of our
decomposition can be used to separate detailed balance contri-
butions (two-cycles) from nonequilibrium currents (nontrivial
cycles).

Further, the connection between averages defined on the
space of cycles to steady-state averages was made. For
physical systems, a natural symmetry on G, called dynamical
reversibility, allows us to relate the method to currents in
nonequilibrium thermodynamics.

The suggested approach also has interesting parallels to the
theory of dynamical systems, especially chaos theory [10,21].
In chaos theory cycles, i.e., unstable periodic orbits of the
dynamical system, play a crucial role. They lie dense in
phase space such that trajectories can be seen as a realization
of a random-walk dynamics between cycles, similar to the
dynamics in cycle space considered in the present study.
Expectation values in such systems can also be calculated
using cycle expansions.

Finally, we illustrated the method by exploring a TASEP
example where one can interpret the cycles as different
periodic gaits. It exhibits a crossover of the preferred paths
in response to a parameter change. This is reflected in a
discontinuous change of weights of the cycles. In addition,
there is a topological change: At the transition point, the
structure of the cycle decomposition changes.

In forthcoming work, the cycle transform might serve
as another perspective on thermodynamic machines where
different cycles represent the different operation modes. A
well-studied example is the steady-state dynamics of the
molecular motor kinesin [22]. For such small machines
thermal fluctuations play a crucial role. The cycle-transform
representation of the entropy production (29) is an important
perspective to this problem. Cycle affinities and cycle currents
can be used to formulate fluctuation relations [8,9,17].
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APPENDIX A: AN ELECTRIC AND
THERMODYNAMIC ANALOGY

In this section we introduce an analogy relating Markov
processes, thermodynamics, and electrical circuits. Different
electric analogies have been presented in the literature that are
suitable for different purposes (see, e.g., Refs. [3,5]). Hill also
noticed the connection of the logarithmic ratios of fluxes and
transition rates with differences of free energies [11]. The
appropriate analogies are summarized in Table IV. In this
analogy the quantities defined above have the properties of
their electrical counterparts: U , I , A, and E are asymmetric,
and the resistance R is symmetric and positive. The definition
of the fluxes (2) obeys Kirchhoff’s equation [12],

Ui
j + E i

j = Ri
j I

i
j , (A1)

which states that if no current is flowing between two
nodes with a battery-like element connecting them, a voltage
difference U is created. This voltage is the negative of the
electromotance E of the battery. However, if a current is
running over a resistor R, it obeys an Ohmic law and the voltage
drops by R · I . Kirchhoff’s current law (“node rule”) amounts
to Eq. (4). Kirchhoff’s voltage law (“mesh rule”) states that

TABLE IV. Electric and thermodynamic analogies. FED denotes
free-energy differences as in Hill’s theory [11].

Symbol Analogy Thermodynamic Electric

Vi − log pi Potential
Ui

j log[pi/pj ] Total differential Voltage
I i
j φi

j − φ
j

i Current
Ai

j log[φi
j /φ

j

i ] Affinity, gross FED –
E i

j log[wi
j /w

j

i ] Basic FED Electromotance
Ri

j U
j

i /I i
j – Resistance

Psys
1
2

∑
i,j U i

j I
i
j System entropy change Power
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integrating the voltage differences around a closed cycle is
zero. This also holds in our analogy. It is the basis for the
identification of U with a total differential in thermodynamics.

Finally, the quantity Psys describes the change of the
system’s Gibbs entropy Ssys := −∑

i pi log pi as the systems
undergoes its dynamics,

Psys = d

dt
Ssys. (A2)

It vanishes in the steady state and can be related to the
irreversible entropy production Ptot by defining an entropy
flux to the medium [2,3]:

Pmed = 1

2

∑
i,j

(
φi

j − φ
j

i

)
log

wi
j

w
j

i

. (A3)

One then finds Ptot = Psys + Pmed. Introducing thermody-
namic analogues one obtains Pmed = 1

2

∑
i,j I i

jE i
j such that

Ptot = 1
2

∑
i,j I i

j (Ui
j + E i

j ). Hence, the definitions of Table IV
are consistent with the definitions made earlier, and Ai

j =
Ui

j + E i
j .

The analogy is not perfect, however. Consider a simple
cycle with the same current flowing through all nodes. Then
the potential difference between two nonadjacent nodes i

and j cannot be obtained from an effective resistance (or
electromotance) which is the sum of the individual resistances
(or electromotances) of the edges connecting i to j as it would
be the case in an electrical network.

APPENDIX B: DISCRETE CASE

If time is measured in discrete units τ one obtains a Markov
chain. In that case one has transition probabilities 0 � ai

j � 1

rather than transition rates wi
j . Instead of a waiting time τi

one has a staying probability ai
i �= 0. The transition matrix is

(A)ij ≡ ai
j and the evolution of the probability distribution pi

obeys

pi(t + 1) =
∑

j

a
j

i pj (t). (B1)

With the normalization for the transition probabilities∑
j

ai
j = 1 (B2)

and defining discrete time fluxes (i.e., joint probabilities)
φi

j (t) = pi(t)ai
j one can rewrite (B1) into a master equation

pi(t + 1) − pi(t) =
∑
j �=i

(
φ

j

i − φi
j

)
. (B3)

The steady-state condition is formally identical to Eq. (4).
Therefore, all relations for the cycle representation also hold
in the discrete case.

Further, the analogies presented in Table IV hold if one
substitutes the transition rates wi

j for the jump probabilities ai
j .

Still, there is a subtle difference we would like to point out:
The cycle transform introduced above uses only fluxes φi

j with
i �= j . Therefore, the number of variables to be specified is
N (N − 1). In the discrete case, it is straightforward to include
the disjoint loop fluxes φi

i into the cycle transform by specify-
ing N additional variables. One can then uniquely reconstruct
the transition matrix A and the steady-state probabilities p∗

i

from the fluxes by using (B1) and the definition of the fluxes.
As in the continuous-time case, to reconstruct the full steady
state one has to specify N additional variables that do not
directly influence the cycle transform algorithm.
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