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Phase-coupled oscillators serve as paradigmatic models of networks of weakly interacting oscillatory

units in physics and biology. The order parameter which quantifies synchronization so far has been found

to be chaotic only in systems with inhomogeneities. Here we show that even symmetric systems of

identical oscillators may not only exhibit chaotic dynamics, but also chaotically fluctuating order

parameters. Our findings imply that neither inhomogeneities nor amplitude variations are necessary to

obtain chaos; i.e., nonlinear interactions of phases give rise to the necessary instabilities.
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Introduction.—Models of coupled oscillators describe
various collective phenomena in natural and artificial sys-
tems, including the synchronized flashing of fireflies, the
dynamics of superconducting Josephson junctions, oscil-
latory neural activity, and oscillations in chemical reaction
kinetics [1]. In particular, phase-coupled models serve as
paradigmatic approximations for many weakly coupled
limit cycle oscillators [2,3]. The Kuramoto model (and
its extensions) provides the gold standard in this field
because it suitably describes the dynamics of a variety of
real systems, is extensively studied numerically and rea-
sonably understood analytically [4,5]. Each oscillator k
with phase ’kðtÞ 2 R=2�Z ¼: T on the 1-torus T changes
with time t according to

d’k

dt
¼ !k þ 1

N

XN
j¼1

gð’k � ’jÞ (1)

for all k 2 f1; . . . ; Ng. For the original Kuramoto model the
coupling function g has a single Fourier mode, g ¼ sin.
The dimension of such systems can be reduced to low
dimensions [6–8], implying dynamics that is either peri-
odic or quasiperiodic. For coupling functions with two or
more Fourier components the collective dynamics may be
much more complicated. For example, stable heteroclinic
switching may emerge [9,10]. More irregular, chaotic
dynamics of system (1) is observed for nonidentical oscil-
lators only [11,12], raising the question whether inhomo-
geneities are necessary for the occurrence of such
dynamics. To the best of our knowledge, the only hint
that chaotic dynamics might exist for symmetric phase-
oscillator networks are attractors with irregular structure
in phase space found recently in a system of N ¼ 5
oscillators [9].

The complex order parameter

RðtÞ ¼ 1

N

XN
j¼1

expði’jðtÞÞ 2 C (2)

where i ¼ ffiffiffiffiffiffiffi�1
p

constitutes an important characteristic for
coupled oscillator systems. In particular, its absolute value
jRðtÞj quantifies their degree of synchrony with jRðtÞj ¼ 1
if all oscillators are in phase. For the original Kuramoto
system the full complex order parameter (2) acts as a mean
field variable enabling closed-form analysis [13].
In homogeneous, globally coupled systems (1) it re-

mains unknown whether or not there exists any coupling
function g that gives rise to chaotic order parameter
fluctuations. Synchronous solutions, antisynchronous
splay states as well as the dynamics of cluster states (where
’k ¼ ’j for at least one k � j) all yield a periodic com-

plex order parameter RðtÞ. For any invariant solutions on
tori, RðtÞ is either periodic or quasiperiodic. The most
irregular dynamics of RðtÞ observed so far is due to hetero-
clinic cycles where RðtÞ is nonperiodic as it ‘‘slows down’’
each cycle. Even if chaotic dynamics does emerge within
the system, it may average out due to symmetry, possibly
resulting in a regular dynamics of the order parameter.
In this Letter, we answer the question whether chaotic

dynamics, and moreover, chaotic order parameter fluctua-
tions may arise for some g even in the absence of inhomo-
geneities in (1). We show that indeed chaos is not
possible for N < 4. By contrast, for N ¼ 4, chaotic attrac-
tors can appear in a specific family of coupling functions g.
Interestingly, attractors of all theoretically possible sym-
metries exist and we provide further examples of attracting
chaos for N ¼ 5 and N ¼ 7. The existence of chaos for
infinite families of N � 4 implies that chaos occurs in
systems with certain N >N0 for any N0 2 N and suggests
that chaos is likely to occur in many high-dimensional
systems with a suitable choice of g.
No chaos for N ¼ 2 and N ¼ 3.—Let TN be the

N-dimensional torus and let SN denote the group of per-
mutations of N symbols. Suppose M is a differentiable
manifold and let � be a group that acts on M. Recall that
a vector field X on M is called � equivariant if X
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‘‘commutes’’ with the action of �, i.e., X � � ¼ �̂ � X for
all � 2 � where �̂ denotes the induced action on the
tangent space.

Equivariance implies restrictions of the dynamics speci-
fied by the vector field. We study the dynamical system on
TN given by the ordinary differential equations (1). Let us
henceforth assume that the system is homogeneous, i.e.,
!k ¼ ! for all k 2 f1; . . . ; Ng. This system is SN � T1

equivariant where SN acts by permuting indices and T1

through a phase shift. Recall some basic properties of this
system [2]. Introducing phase differences c j :¼ ’j � ’1

for all j 2 f1; . . . ; Ng eliminates the phase-shift symmetry.
Write ’ ¼ ð’1; . . . ; ’NÞ and c ¼ ðc 1; . . . ; c NÞ. The re-
duced system on TN�1 is given by

_cj ¼ 1

N

�XN
k¼1

gðc j � c kÞ �
XN
k¼1

gð�c kÞ
�

(3)

for all j 2 f2; . . . ; Ng.
For any partition P ¼ fP1; . . . ; Pmg of f1; . . . ; Ng (that is

Pr � f1; . . . ; Ng, Sm
j¼1 Pj ¼ f1; . . . ; Ng, and Pr \ Ps ¼ ;

for r � s) the subspaces

FP :¼ f’jj; k 2 Pr for any r ) ’j ¼ ’kg � TN (4)

are flow invariant. The subspaces divide TN�1 in ðN � 1Þ!
invariant (N � 1)-dimensional simplices [2]; one of which

C :¼ fc j0 ¼ c 1 < c 2 � � �< c N < 2�g � TN�1 (5)

we refer to as the canonical invariant region. There is a
ZN :¼ Z=NZ symmetry on the canonical invariant region
and the ‘‘splay state’’ (the phase-locked state with c j ¼
2�j=N) is the only fixed point of this action at the centroid
of this region.

The reduction of symmetry has implications for the
existence of chaos in low dimensions. For N ¼ 2 and
N ¼ 3 the phase space of the reduced system is a one,
resp. two-dimensional torus. This means that by the
Poincaré-Bendixon theorem [14] chaos is not possible in
these systems for N < 4.

Chaos and symmetry for N ¼ 4.—We choose a parame-
trization of the coupling function g in (1) by considering a
truncated Fourier series

gð’Þ ¼ X4
k¼1

ak cosðk’þ �kÞ: (6)

In particular, we restrict ourselves to the two parameter
family given by the parametrization

ð�1; �2; �3; �4Þ ¼ ð�1;��1; �1 þ �2; �1 þ �2Þ (7)

where �1 and �2 are real valued parameters and a1 ¼ �2,
a2 ¼ �2, a3 ¼ �1, and a4 ¼ �0:88 are constants.

For N ¼ 4, chaotic attractors do indeed exist. The
dynamics of the absolute value of the order parameter
exhibits chaotic fluctuations and exponential divergence
of trajectories, cf. Fig. 1. To explore parameter space, we

calculated the maximal Lyapunov exponent �max from the
variational equations [15]. There are regions in (�1, �2)-
parameter space in which �max is greater than zero,
cf. Fig. 2. As might be expected, there is fine structure in
this region, for example, islands where the trajectory con-
verges to a stable limit cycle. Lines of period doubling
cascades [16] bound the chaotic region and end in a
homoclinic flip bifurcation with an inclination flip [17]
(details not shown). Exploring initial conditions revealed
the coexistence of chaotic attractors and stable limit cycles
in part of the chaotic region.
Chaotic attractors in equivariant dynamical system can

exhibit symmetries themselves. Let A be a chaotic attractor
as defined in [18], i.e., a Lyapunov-stable, closed,
and connected set that is the !-limit set of a trajectory,
for a dynamical system on a manifold M given by
a �-equivariant vector field. The subgroup StabðAÞ :¼
f� 2 �j�ðaÞ ¼ a for all a 2 Ag is the group of instanta-
neous symmetries of the attractor; i.e., at any point in time
the action of StabðAÞ keeps every point in A fixed.
Furthermore, we define �ðAÞ :¼ f� 2 �j�ðAÞ ¼ Ag to be

FIG. 1. Trajectories of the absolute value of the order parame-
ter jRðtÞj fluctuate chaotically (N ¼ 4). Two trajectories with
small difference in initial condition diverge from each other
(coupling function (7) for parameter values �1 ¼ 0:1104 and
�2 ¼ 0:5586).
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FIG. 2. Chaos for N ¼ 4. Maximal Lypunov exponents are
positive in a region of parameter space. The initial condition
was fixed and the coupling function parametrized by (7).
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the set of symmetries on average, and we have
StabðAÞ � �ðAÞ as a subgroup.

The subdivision of the phase space by flow-invariant
regions restricts the possible symmetries of chaotic attrac-
tors. The possible symmetries on average of any chaotic
attractor A � C with trivial instantaneous symmetries
StabðAÞ ¼ f1g are limited to subgroups of ZN since they
are contained in one of the invariant simplices (C or one of
its images under the group action) with that symmetry. For
N ¼ 4, any chaotic attractor of this type must have trivial
instantaneous symmetry. Thus, the possible symmetries on
average are limited to subgroups of Z4, i.e., �ðAÞ � Z4. In
fact, we have found examples of chaotic attractors for each
possible symmetry in systems of N ¼ 4 and coupling
functions given by (7) (Fig. 3). Note that this definition
of attractor is somewhat restrictive—Milnor attractors may
display a wider range of symmetries including different
instantaneous symmetries at the same time.

Chaos for N > 4.—Analyzing the same region of pa-
rameter space for N > 4 yields attracting chaos in systems
of N ¼ 5 and N ¼ 7 oscillators in large regions. Figure 4
shows an overlay of regions for three different N; regions

are shaded where the Lyapunov exponent exceeds 0.01 and
darker areas indicate that several N satisfy this condition.
Clearly, there is a single coupling function for which
attracting chaos is present for all N ¼ 4, N ¼ 5, and
N ¼ 7. Intriguingly, we did not find chaotic attractors for
any N 2 f6; 8; 9; . . . ; 13g in the entire region of parameter
space considered in Fig. 4.
The parametrization of the coupling function by a trun-

cated Fourier series raises the question of how many
Fourier components the coupling function needs to contain
for chaos to occur. For N ¼ 5 we also measured positive
Lyapunov exponents when the coupling was chosen to
be through the simpler coupling function gð’Þ ¼
�0:2 cosð’þ �1Þ � 0:04 cosð2’� �2Þ as in [9]. Hence,
in dimension five, coupling functions with only two
Fourier components suffice to generate chaotic dynamics
whereas for N ¼ 4, we did not find an example with less
than four components.
From the above, it is clear that for systems of size

N ¼ KM with K 2 f4; 5; 7g there are chaotic invariant
sets lying in flow-invariant subspaces for coupling func-
tions yielding positive �max, cf. Fig. 4. For instance, for
K ¼ 4, these spaces are given by partitions P¼fP1; . . . ;P4g
with jPjj ¼ M for j 2 f1; . . . ; 4g. For N large we similarly

calculated positive maximal Lyapunov exponents for the
system reduced to asymmetric 4-cluster states given by
partitions P ¼ fP1; . . . ; P4g with jP1j=N ¼ 1=4þ q and

FIG. 3. All possible symmetries of the chaotic attractors for different parameters for N ¼ 4. We have �1 ¼ 0:138 in panel (a),
�1 ¼ 0:0598 in panel (b), �1 ¼ 0:1104 in panel (c), and �2 ¼ 0:5586 in all panels. The projection is a � ¼ S4 equivariant map,
x1 ¼ sinð’2 � ’4Þ, x2 ¼ sinð’1 � ’3Þ, and x3 ¼ jRj.
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FIG. 4. Overlapping regions where the maximal Lyapunov
exponent is greater than 0.01 for N 2 f4; 5; 7g. The darker the
color, the more N for which the condition holds. For parameter
values around (0.115, 0.06) there is a region where there is chaos
for all these three N.
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FIG. 5. Positive maximal Lyapunov exponents for asymmetric
4-cluster states for large systems, N ¼ KMþ Lðq;MÞ � 4.
Here q parametrizes the deviation from the symmetric cluster
state and L is the corresponding integer dimension (coupling
function (7) with �1 ¼ 0:1104 and �2 ¼ 0:5586).
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jPjj=N ¼ 1=4� q=3 for j 2 f2; 3; 4g as depicted in Fig. 5.
However, these chaotic invariant sets in invariant subspa-
ces close to the symmetric cluster state may be transversely
repelling, possibly yielding nonchaotic long-term
dynamics.

Discussion.—Inhomogeneities or asymmetries are thus
not necessary for collective chaotic dynamics to appear in a
system (1), and even chaotic order parameter fluctuations
emerge in the presence of full SN � T symmetry. We high-
lighted that for certain coupling functions chaotic attrac-
tors exist for several N. However, the regions in parameter
space for which chaotic attractors exist vary drastically,
cf. Fig. 4. For certain coupling functions there are chaotic
invariant sets lying in flow-invariant subspaces that corre-
spond to the symmetric and near-symmetric cluster states
but these may not be transversely attracting. The question
remains whether there are coupling functions giving rise to
chaotic sets that are actually attracting for N ¼ 6 and
N � 8. Moreover, is there a ‘‘universal chaos function’’
in the sense that there is a coupling function for which there
is some N0 2 N such that there exists a chaotic attractors
for all (or at least an infinite number of) N >N0?

For coupling functions with only one Fourier compo-
nent, finite-dimensional systems and the continuum limit
are related; the dynamics for both finite N and in the
continuum limit reduces to effectively two-dimensional
dynamics [7,8] preventing the occurrence of chaotic tra-
jectories. Is chaos possible in the continuum limit for more
complicated coupling functions? If so, how would such a
result relate to chaos in the finite-dimensional systems we
have studied here?

For finite systems, attracting chaos in the system does
not necessarily imply chaotic dynamics of the order pa-
rameter since there could be chaotic fluctuations, for ex-
ample, in an ‘‘antiphase state.’’ The converse, however,
holds. Additionally, observed chaotic fluctuations of the
order parameter cannot necessarily be traced back to in-
homogeneity in the system (possibly through an experi-
mental setup, cf. [19]) because, as shown above, even fully
symmetric systems can support such dynamics. When
considering the continuum limit, the problem of these
implications becomes more subtle and will require further
investigation.

The coupling function we considered above is written in
terms of a truncated Fourier series. As discussed above, the
number of Fourier components is relevant for the dynam-
ics. An alternative approach would be to consider suitable
piecewise linear functions. ForN ¼ 4, we find that systems
with piecewise linear g also exhibit positive maximal
Lyapunov exponents (not shown). Finding a suitable basis
for the space of coupling functions might be a way to
explain some of the dynamical features that were observed.

Coupled phase oscillators are a limit of weakly coupled
limit cycle oscillators [2]. In globally coupled identical
Ginzburg-Landau oscillator ensembles, chaotic dynamics

can be observed [20,21]. However, it was thought that the
amplitude degree of freedom is crucial for the emergence
of such dynamics. Our results show that this is not the case
and, moreover, suggest that chaotic mean field oscillations
are also present in a large class of higher-dimensional
symmetrically coupled limit cycle oscillators with a rich
possible range of chaotic dynamics.
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(Birkhäuser Verlag, Basel, 2002).

[19] H. Kori, C. G. Rusin, I. Z. Kiss, and J. L. Hudson, Chaos
18, 026111 (2008).

[20] V. Hakim and W.-J. Rappel, Phys. Rev. A 46, R7347
(1992).

[21] N. Nakagawa and Y. Kuramoto, Physica D (Amsterdam)
75, 74 (1994).

PRL 107, 244101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

244101-4

http://dx.doi.org/10.1007/BF02429852
http://dx.doi.org/10.1016/0167-2789(92)90057-T
http://dx.doi.org/10.1016/0167-2789(92)90057-T
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.3247089
http://dx.doi.org/10.1063/1.3247089
http://dx.doi.org/10.1137/070683969
http://dx.doi.org/10.1103/PhysRevE.71.065201
http://dx.doi.org/10.1103/PhysRevE.71.065201
http://dx.doi.org/10.1103/PhysRevLett.105.158104
http://dx.doi.org/10.1103/PhysRevLett.105.158104
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.2307/2373135
http://indy.cs.concordia.ca/auto/
http://indy.cs.concordia.ca/auto/
http://dx.doi.org/10.1023/A:1009046621861
http://dx.doi.org/10.1023/A:1009046621861
http://dx.doi.org/10.1063/1.2927531
http://dx.doi.org/10.1063/1.2927531
http://dx.doi.org/10.1103/PhysRevA.46.R7347
http://dx.doi.org/10.1103/PhysRevA.46.R7347
http://dx.doi.org/10.1016/0167-2789(94)90275-5
http://dx.doi.org/10.1016/0167-2789(94)90275-5

