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Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic

orbits in chaotic dynamical systems. Predictive feedback control is severely limited because

asymptotic convergence speed decreases with stronger instabilities which in turn are typical for

larger target periods, rendering it harder to effectively stabilize periodic orbits of large period.

Here, we study stalled chaos control, where the application of control is stalled to make use of the

chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation

and speed up convergence. This modified control scheme is not only capable of stabilizing more

periodic orbits than the original predictive feedback control but also speeds up convergence for

typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme

provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that

converges reliably, even for periodic orbits of large period. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4895848]

Chaos control underlies a broad range of applications

across physics and beyond. To successfully use chaos con-

trol schemes in applications, different robustness and

convergence properties need to be considered from a

practical point of view. For instance, for control to be

useful in praxis, a method does not only need to guaran-

tee convergence to the desired state, but convergence also

has to be sufficiently fast. Predictive feedback control

provides an easy-to-implement way to realize chaos con-

trol in discrete time dynamical systems (iterated maps).

However, periodic orbits of larger periods are typically

highly unstable, leading to slow convergence. Here, we

systematically investigate a recently introduced extension

of predictive feedback control obtained by stalling con-

trol and complement it with an adaptation mechanism.

The stalling of control, i.e., repeated transient interrup-

tion of control, takes advantage of the uncontrolled cha-

otic dynamics, thereby speeding up convergence.

Adaptation provides a way to tune the control parame-

ters online to values which yield optimal speed.

Specifically, we show how the efficiency of stalling control

depends on both the local stability properties of the peri-

odic orbits to be stabilized and the choice of control pa-

rameters. Furthermore, we derive conditions for

stabilizability of periodic orbits in systems of higher

dimensions. In addition to speeding up convergence, the

gradient adaptation scheme presented also further

increases the overall convergence reliability. Hence,

adaptive stalled predictive feedback control yields an

easy-to-implement, noninvasive, fast, and reliable chaos

control method for a broad scope of applications.

I. INTRODUCTION

Typically, chaotic attractors contain infinitely many

unstable periodic orbits.1 The goal of chaos control is to

render these orbits stable. After first being introduced in the

seminal work by Ott et al.2 about two decades ago, it has not

only been hypothesized to be a mechanism exploited in bio-

logical neural networks3 but it has found its way into many

applications,4,5 including chaotic lasers, stabilization of car-

diac rhythms, and more recently into the control of autono-

mous robots.6

Predictive Feedback Control (PFC)7,8 is well suited for

applications: little to no prior knowledge about the system is

required, it is non-invasive, i.e., control strength vanishes

upon convergence, and it is very easy to implement due to

the nature of the control transformation. In PFC, a prediction

of the future state of the system together with the current

state is fed back into the system as a control signal, similar

to time-delayed feedback control.9 In fact, it can be viewed

as a special case of a recent effort to determine all unstable

periodic points of a discrete time dynamical system10,11

which has been studied and extended12–15 for its original

purpose.

In any real world application not only the existence of

parameters that lead to stabilization, but also the speed of

convergence is of importance. Speed is crucial, for example,

if a robot is controlled by stabilizing periodic orbits in a cha-

otic attractor,6 since the time it needs to react to a changing

environment is bounded by the time the system needs to

converge to a periodic orbit of a given period. In most of the

literature, however, speed of convergence has been
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overlooked. Stabilizing periodic orbits of higher periods

becomes quite a challenge; due to the increasing instability

of the orbits, the PFC method yields only poor performance

in terms of asymptotic convergence speed even when the

control parameter is chosen optimally. Any method optimiz-

ing speed within the PFC framework16 therefore is subject to

the same limitation.

In this article, we investigate Stalled Predictive

Feedback Control (SPFC), a recently proposed extension of

predictive feedback control that can overcome this “speed

limit.”17 Here, we derive conditions for the local stability

properties of periodic orbits that imply stabilizability.

Furthermore, we propose an adaptation mechanism that is

capable of tuning the control parameter online to reach

optimal asymptotic convergence speed within the regime of

convergence. The resulting adaptive SPFC method is an

easy-to-implement, non-invasive, and broadly applicable

chaos control method that stabilizes even periodic orbits of

large periods reliably without the need to fine-tune parameter

values a priori.

This article is organized as follows. In Sec. II, we

formally introduce the PFC method, briefly discuss its limita-

tions and present SPFC as an alternative. Section III is dedi-

cated to an in-depth look at the SPFC method; we identify

regimes in parameter space in which stabilization is success-

ful. In Sec. IV, we apply our algorithm to “typical” maps

with chaotic dynamics and calculate and compare conver-

gence speeds. Adaptive methods for the control parameter

are explored in Sec. V before giving some concluding

remarks.

II. PRELIMINARIES

Suppose f : RN ! RN is a differentiable map such that

the iteration given by the evolution equation xkþ1¼ f(xk)

gives rise to a chaotic attractor A � RN with a dense set of

unstable periodic orbits. We refer to such a map as a chaotic
map. Let Fixðf Þ ¼ fx� 2 RN j f ðx�Þ ¼ x�g denote the set of

fixed points of f and id the identity map on RN . The main

result of Schmelcher and Diakonos11 reads as follows.

Proposition II.1. Suppose Fix�ðf Þ � Fixðf Þ is the set of
fixed points such that both df jx� and df jx� � id are nonsingu-
lar and diagonalizable (over C). Then there exist finitely
many orthogonal matrices Mk 2 O(N), k¼ 1, … ,K, such that
we have

Fix�ðf Þ ¼
[K
k¼1

Cðf ;MkÞ;

where the sets Cðf ;MkÞ are characterized by the property
that for x� 2 Cðf ;MkÞ there exists l 2 (0, 1) such that x* is a
stable fixed point of the map gl,1 obtained by the transforma-
tion Sðl;MkÞ : f 7! idþ lMkðf � idÞ ¼ gl;1.

A. Predictive feedback control

This result may be cast into a control method. Let N

denote the set of natural numbers. A periodic orbit of period

p 2N is a fixed point of the pth iterate of f denoted by

fp :¼ f �p ¼ f � � � � � f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p times

;

and therefore we use the terms fixed point and periodic orbit

interchangeably depending on what is convenient in the con-

text. Let Perðf Þ ¼ [p2N FixðfpÞ denote the set of all periodic

points of f. Define the set of periodic orbits of minimal period

p as Fixðf ; pÞ ¼ fx� 2 FixðfpÞ j f �qðx�Þ 6¼ x� for q < pg.
Furthermore, we define Fix�ðf ; pÞ ¼ Fixðf ; pÞ \ Fix�ðfpÞ.
Predictive feedback control is now a consequence of

Proposition II.1 by replacing f with fp.

Corollary II.2. Let p 2N. For every x� 2 Fix�gðf ; pÞ :¼
Fix�ðf ; pÞ \ ðCðfp; idÞ [ Cðfp;�idÞÞ there exists a l 2 (�1, 1)

such that x* is a stable fixed point of the predictive feedback

control method given by the iteration

xkþ1 ¼ gl;pðxkÞ :¼ fpðxkÞ þ gðxk � fpðxkÞÞ

with g¼ 1�l and control perturbation cl,p(x)¼ g(xk� fp(xk)).

The elements of Fix�gðf ; pÞ are referred to as PFC-stabi-
lizable periodic orbits of period p. The cardinality of the set

Fix�gðf ; pÞ depends on the chaotic map f and contains roughly

half of the periodic orbits of a given period in two-

dimensional systems.11,12

Fix x� 2 Fix�ðf ; pÞ. Local stability of gl,p at x* is readily

computed. Let df jx denote the total derivative of f at x and

suppose that kj, j¼ 1, …, N are the eigenvalues of the lineari-

zation. The derivative of gl,p at x* evaluates to

dgl;pjx ¼ idþ lðdfpjx � idÞ. Hence, stability is determined

by the eigenvalues of dgl;pjx� given by

jjðlÞ ¼ 1þ lðkj � 1Þ (1)

for j¼ 1, … , N. Hence, x� 2 Fix�gðf ; pÞ iff there exists a l0 2
(�1, 1) such that the spectral radius .ðdgl0;pjx� Þ ¼
maxj¼1;…;Njjjðl0Þj is smaller than one. In particular, for a

two-dimensional system, these are the periodic orbits of sad-

dle type12 with stable direction k1 2 (�1, 1) and k2<�1.

Note that optimal convergence speed is achieved for the

value of l which corresponds to the minimal spectral radius.

B. Speed limit of predictive feedback control

For increasing instability, however, the optimal conver-

gence speed becomes increasingly slow.17 This applies, in

particular, to periodic orbits of larger periods as the periodic

orbits become increasingly unstable on average18 and as-

ymptotic convergence speed decreases. Let .g
minðx�Þ ¼

infl .ðdgl;pjx� Þ denote the spectral radius of the linearization

at a periodic orbit x* for the optimal parameter value and #

the cardinality of a set. The slowdown of PFC can be explic-

itly calculated by evaluating the functions

q
g
ðpÞ ¼ 1� min

x�2Fix�gðf ;pÞ
.g

minðx�Þ; (2a)

qg pð Þ ¼ 1� 1

# Fix�g f ; pð Þ
� � X

x�2Fix�g f ;pð Þ
.g

min x�ð Þ; (2b)

�qgðpÞ ¼ 1� max
x�2Fix�gðf ;pÞ

.g
minðx�Þ; (2c)
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that quantify to the best, average, and worst asymptotic con-

vergence speed for all periodic orbits of a given period,

respectively.

The slowdown becomes explicit in specific examples.

We evaluated these functions for a map which describes the

evolution of an artificial neural network referred to as a neu-

romodule.19 For a two dimensional neuromodule, let

l11¼�22, l12¼ 5.9, l21¼�6.6, and l22¼ 0 and define the

sigmoidal function rðxÞ ¼ ð1þ expð�xÞÞ�1
. The dynamics

are given by the map f : R2 ! R2 where

f ðx1; x2Þ ¼ ðl11rðx1Þ þ l12rðx2Þ � 3:4;

l21rðx1Þ þ l22rðx2Þ þ 3:8Þ: (3)

The values of the functions (2) are depicted in Figure 1. One

can clearly see that even the lower bound on asymptotic con-

vergence speed for the PFC method, corresponding to the

smallest spectral radius as determined by 1� q
g
, approaches

one exponentially on average for increasing periods. This

scaling of convergence speed of PFC is quite typical; other

maps with chaotic attractors, such as the H�enon map, exhibit

a similar behavior when subject to PFC.17

C. Stalled predictive feedback chaos control

By making use of the uncontrolled dynamics, i.e., “stalling

control,” it was recently shown that this speed limit may be

overcome.17 Stalled predictive feedback control scheme is an

extension of standard predictive feedback control. For a map

w : RN ! RN , define the “zeroth iterate” by w80:¼ id.

Definition II.3. Suppose that the iteration of F : RN !
RN defines a dynamical system. For Mk 2 f6idg and l 2 R

let Sðl;MkÞðFÞ ¼ idþ lMkðF� idÞ ¼: Gl denote the map
obtained by applying the predictive feedback control trans-
formation; cf. Proposition II.1. For parameters m; n 2N0 ¼
N [ f0g and l 2 R, the iteration of

Hðm;nÞl ¼ ðFÞ�n � ðGlÞ�m (4)

is referred to as stalled predictive feedback control.

The function Hðm;nÞl defined above stalls predictive feed-

back control in the following sense. In the PFC method, the

control signal is applied at every point in time. By iterating

Hðm;nÞl we “stall” the application of the control perturbation by

adding extra evaluations of the original, uncontrolled map F.

Henceforth, we adopt the period-dependent notation

introduced above: the uncontrolled dynamics were given by

iterating f : RN ! RN and the PFC transformed map is

denoted by gl,p. Stalled predictive feedback control is given

by the iteration of

hl;p ¼ hðm;nÞl;p :¼ ðfpÞ�n � ðgl;pÞ�m; (5)

where m; n 2N0 are parameters. By definition, we have

h
ð0;1Þ
l;p ¼ fp and we recover the original PFC method for

h
ð1;0Þ
l;p ¼ gl;p. In general, we will omit the superscript (m, n)

unless the choice is important.

III. STABILITY OF STALLED PREDICTIVE FEEDBACK
CHAOS CONTROL

The stability of a periodic orbit in the controlled system

depends on its stability properties for the uncontrolled dy-

namics. In this section, we derive criteria for a periodic orbit

to be stabilizable for stalled predictive feedback control.

A. Local stability of periodic orbits for hl,p

The local stability properties of hl,p can be calculated

from fp and gl,p. By definition, we have FixðfpÞ � Fixðhl;pÞ.
Suppose that x� 2 Fix�ðf ; pÞ and the eigenvalues of dfpjx� are

given by kj where j¼ 1, … , N. Note that the eigenvectors of

dgl;pjx� and dfpjx� are the same. Hence, the local stability

properties of hl,p are readily computed from the kj and the

local stability properties of the PFC transformed map gl,p as

given by (1). The eigenvalues of the Jacobian of hl,p at x*
evaluate to

Kj ¼ kn
j jjðlÞm ¼ kn

j ð1þ lðkj � 1ÞÞm

for j¼ 1, … , N. Hence, local stability at x* is given by the

spectral radius

.ðdhl;pjx� Þ ¼ max
j¼1;…;N

jKjj:

If all eigenvalues are of modulus smaller than one, the fixed

point x* is stable for hl,p. In other words, a periodic orbit

x� 2 Fix�ðf ; pÞ is called SPFC-stabilizable if there are

parameters m; n 2N0 and l 2 (�1, 1) such that

.ðdhðm;nÞl;p jx� Þ < 1:

Let Fix�hðf ; pÞ denote the set of SPFC-stabilizable peri-

odic orbits and, clearly, Fix�gðf ; pÞ � Fix�hðf ; pÞ; that is, every

PFC-stabilizable periodic orbit is also SPFC-stabilizable.

To compare the “performance” of stalled predictive

feedback control with that of original predictive feedback

control, we have to rescale the stability properties. Since

h
ðm;nÞ
l;p contains nþm evaluations of fp, we take the (mþ n)th

root to obtain functions

FIG. 1. Since the minimal spectral radius converges to 1, the best, average,

and worst asymptotic convergence speeds over all periodic points of a given

period decrease with increasing period. Here, the values of

q
g
ðpÞ; qgðpÞ; �qgðpÞ are plotted for the two-dimensional map (3). To visualize

the decrease, we fit qg(p) (average minimal spectral radius; solid line) and

best �qgðpÞ (best minimal spectral radius; dotted line) spectral radius with an

exponential function; cf. Sec. IV A.
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l̂j m; n; lð Þ ¼ jkn
j 1þ l kj � 1

� �� �mj
1

mþn;

where j¼ 1, … , N. With the parameter a ¼ n
mþn, we thus

obtain an equivalent set of functions

ljða; lÞ ¼ jkjjajð1þ lðkj � 1ÞÞj1�a
(6)

for j¼ 1, … , N which determine the local stability proper-

ties of hl,p rescaled to a single evaluation of fp.

Conversely, for any rational a 2 ½0; 1� \Q, we obtain a

pair (m, n). In the following, we refer to both a and the pair

m, n as stalling parameters, depending what is convenient

in the context. When using the stalling parameter a, we

may also write ha
l;p.

Rescaled local stability of stalled predictive feedback

control for a given periodic orbit x� 2 Fix�ðf ; pÞ of period p
is hence determined by the stability function

.x� ða; lÞ ¼ max
j¼1;…;N

ljða; lÞ: (7)

In comparison with the original predictive feedback control,

stalled predictive feedback control depends on two parame-

ters: the control parameter l and the stalling parameter a.

B. Conditions for stabilizability

To derive conditions for SPFC-stabilizability, consider

some general properties of functions of type (6). Fix

w 2 C
� :¼ Cnf0g. Let S1 :¼ fz 2 C j jzj ¼ 1g ffi R=2pZ

denote the unit circle. We will choose a realization to

describe elements of S
1 depending on what is convenient in

the context. Consider the function Lw : R2 ! R given by

Lwða; lÞ :¼ jwjaj1þ lðw� 1Þj1�a:

By definition, we have Lw(0, 0)¼ 1 and in a sufficiently

small open ball V around (0, 0), the function Lw is differen-

tiable and the derivative is bounded away from zero. Hence,

in this ball the curve defined by

V0 :¼ fða; lÞ 2 V j Lwða; lÞ ¼ 1g

is a one-dimensional submanifold of R2. If V is chosen small

enough, it may be written as a disjoint union

V ¼ V0 [ Vþ [ V�;

where Vþ ¼ fða; lÞ 2 V j Lwða; lÞ > 1g and V� ¼ fða; lÞ
2 V j Lwða; lÞ < 1g.

The goal is to get a linearized description close to the or-

igin. Let grad denote the gradient and h � ; � i the usual

Euclidean scalar product. Define the line

cðwÞ ¼ fx 2 R2 j hgradðLwÞjð0;0Þ; xi ¼ 0g; (8)

which is tangent to V0 at the origin. Let

H :¼ fx 2 R2jhgradðLwÞjð0;0Þ; xi < 0g

denote one of the half planes defined by the line c(w).

Moreover, the sets Qj :¼ ðj�1Þp
2

; jp
2

� �
for j 2 {1, 2, 3, 4}

denote the open segments of S1 that lie in one of the four

quadrants of R2.

Definition III.1. Suppose that w 2 C
�. The connected

subset Cw :¼ H \ S1 is called the domain of stability of w.
For a tuple ~w ¼ ðw1;…;wNÞ 2 ðC�ÞN define the domain of
stability to be

C~w :¼
\N
k¼1

Cwk
: (9)

If C~w \ ðQ1 [ Q4Þ 6¼1 then the tuple ~w is called
stabilizable.

In a sufficiently small neighborhood U � V of the origin,

the “linearized” version of V� is given by the set H\ U.

Lemma III.2. If the domain of stability Cw of a tuple w ¼
ðw1;…;wNÞ 2 ðC�ÞN is nonempty then there exist (l0, a0)
such that Lwj

ðl0; a0Þ < 1 for all j¼ 1, … , N. If the tuple w is

stabilizable then a0 may be chosen such that a0 
 0.
Proof. Suppose that V� and H are defined as above.

Because of continuity, for every w 2 C
�

there exists an open

ball Bw � V� \ H that is tangent to the origin. If a tuple

~w ¼ ðw1;…;wNÞ has nonempty domain of stability C~w then

B :¼
\N
j¼1

Bwj
6¼1:

By construction, any (l0, a0) 2 B has the desired property.

If in addition, w is stabilizable then the intersection B \
fðx; yÞ 2 R2 j x 
 0g is not empty. This proves the second

assertion. �

The domain of stability is determined by the gradient of

Lw at the origin. Let ln denote the (real) natural logarithm.

We have gradðLwÞjð0;0Þ ¼ ðlnjwj;ReðwÞ � 1Þ. Define

R1 :¼ fz 2 C jReðzÞ > 1g;
R2 :¼ fz 2 C j jzj < 1g;
R3 :¼ fz 2 C j jzj > 1; ReðzÞ < 1g:

These regions are sketched in Figure 2(a). If w 2 R1 then

kgradðLwÞjð0;0Þk
�1 � gradðLwÞjð0;0Þ 2 Q1 and therefore Q3 �

Cw. Similarly, if w 2 R2 then Q1 � Cw and if w 2 R3 then Q2

� Cw (Figures 2(b)–2(d)). For w on the boundary of the Rk,

the gradient lies on one of the coordinate axes and we obtain

similar conditions.

These observations have implications for stabilizability

for a tuple (w1,…, wN): if for any fixed k 2 {1, 2, 3} all wj 2
Rk for j¼ 1,…,N then the tuple is stabilizable. Furthermore,

if either wj 2 R1 [ R3 or wj 2 R2 [ R3 for all j¼ 1, … , N
then the tuple is stabilizable. For any other combination, the

condition of stabilizability is more difficult; in two dimen-

sions linear dependence of the gradients tells us for (w1, w2)

with w1 2 R1 and w2 2 R2 the tuple is stabilizable iff

lnðjw2jÞReðw1Þ 6¼ lnðjw1jÞReðw2Þ: (10)

Note that this condition is satisfied for a set of full Lebesgue

measure.

Remark III.3. Note that stabilizability is not affected by
taking the complex conjugate. Hence, stabilizability of a
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tuple of nonzero complex numbers as defined in Definition
III.1 does not change when an entry of the tuple is replaced
by its complex conjugate.

For w¼ 0, the function L0 has a discontinuity at a¼ 0.

In case a> 0, we have L0(a, l)¼ 0 and for a¼ 0 and l 2
(�1, 1), we have L0 (0, l)¼ 1� l. Therefore, define the do-

main of stabilizability of zero to be C0 ¼ 0; p
2

� �
[ Q1 [ Q4.

For a> 0, stabilizability of a tuple with one component equal

to zero may be reduced to stabilizability of the “reduced”

tuple where the zero entry is omitted.

With the notation as above, we are now able to relate

these general results to the local stability properties of a

given periodic orbit.

Definition III.4. Suppose that x� 2 Fix�ðf ; pÞ is a peri-
odic orbit of f and suppose that the eigenvalues of dfpjx� are
given by kj with j¼ 1, … , N. The periodic orbit is called
locally stabilizable if the tuple k¼ (k1, … ,kN) is stabilizable
as a tuple, as defined in Definition III.1.

This definition links the notion of stabilizability of a

tuple defined above and the local dynamics close to a peri-

odic orbit. Recall the notion of uniform hyperbolicity.1

Suppose that a differentiable function f defines a discrete

time dynamical system on RN . We call an f-invariant set

A � RN hyperbolic if for every x 2 A no eigenvalue of df jx
is of absolute value one.

Proposition III.5. Suppose that the chaotic map f :
RN ! RN gives rise to a hyperbolic attractor and for x*2
Fix*(f, p) let k¼ (k1,…,kN) denote the eigenvalues of dfpjx� .
If x* is locally stabilizable then x* is SPFC-stabilizable.
Moreover, if the domain of stability Ck satisfies

p
2
;
3p
2

	 

\ Ck 6¼1;

then x* is PFC-stabilizable.
Proof. If a periodic orbit x* is locally stabilizable, then

tuple k is stabilizable. Thus, according to Lemma III.2, there

are parameters (a0, l0) such that Lkj(a0, l0)< 1 for all j¼ 1,

… , N simultaneously. Recall that local stability of ha0
l0;p

at x*
is given by ljða; lÞ ¼ Lkj

ða; lÞ according to Eq. (6).

Therefore, local stability of a periodic orbit is equivalent to

the existence of parameters (a0, l0) with a0
 0 and

.ðdha0
l0;p
jx� Þ < 1;

which proves the first statement.

If p
2
; 3p

2

� �
\ Ck 6¼1 then there exists a parameter l0

such that .ðdh0
l0;p
jx� Þ < 1. Since stalled predictive feedback

control reduces to classical predictive feedback control for a

stalling parameter of a¼ 0, the claim follows. �

The conditions derived for stabilizability of tuples trans-

late directly into conditions on the local stability properties

of a periodic orbit. For dynamics in two dimensions, we

obtain the following immediate consequence.

Corollary III.6. Suppose that f : R2 ! R2 is a chaotic
map where all periodic orbits x*2 Per(f) are of saddle type
with eigenvalues k1, k2 that satisfy condition (10), i.e., we have

lnðjk2jÞReðk1Þ 6¼ lnðjk1jÞReðk2Þ:

Then all periodic orbits x*2 Per(f) are SPFC-stabilizable.
Note that the number of constraints for stabilizability

grows with increasing dimension of the dynamical system.

In order to determine the absolute number of periodic orbits

which are stabilizable for higher dimensional systems, a

more detailed knowledge about the “average” local stability

properties of periodic orbits is needed.

Since the system is real, complex eigenvalues of the de-

rivative will always come in complex conjugate pairs.

According to Remark III.3 above, this actually results in an

effective decrease in the number of constraints.

C. A geometric interpretation

The local stability considerations also explain why

stalled predictive feedback control increases asymptotic con-

vergence speed.17 Consider a periodic orbit x* of saddle type

in a two-dimensional system where contraction along the sta-

ble direction is given by k1 2 (�1, 1) and expansion along

the unstable manifold by k2<�1. As discussed above, these

are the PFC-stabilizable periodic orbits. Suppose that

lopt> 0 is the value of the control parameter for which the

spectral radius of the linearization of the PFC-transformed

map gl,p takes its minimum. For k2� �1, we have lopt� 0

and therefore j1 (lopt)� 1 determines the asymptotic conver-

gence speed of the dominating direction if the periodic orbit

is stabilized. Therefore, the trajectory will approach the peri-

odic orbit along the direction corresponding to k1; cf. Figure

3. The slowdown of predictive feedback control is caused by

the fact that for highly unstable periodic orbits, the trajecto-

ries converge to the originally stable manifold along which

convergence is slow in the transformed system.

FIG. 2. Stabilizability regions for w 2 C are shown in panel (a) and the corresponding domains of stability Cw, as given by (9), for the three cases in panels

(b)–(d). Here, grLw ¼ gradðLwÞjð0;0Þ.
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Stalling PFC exploits exactly this property. First, itera-

tion of gl,p takes the trajectory closer to the stable manifold.

Second, iteration of fp leads to fast convergence along the

stable manifold while diverging from the stable manifold; cf.

Figure 3. Thus, asymptotic convergence speed of hl,p is

increased by making use of the (increasing) stability of the

stable direction. For given stalling parameters m, n, the opti-

mal value of the control parameter l is close to the zero of

j2(l). For this value, convergence to the stable direction is

strongest, taking full advantage of the fast convergence given

by k1 along the stable manifold of the chaotic map f. The

question of how to choose the stalling parameters m, n will

be addressed in Sec. IV.

IV. CONVERGENCE SPEED FOR CHAOTIC MAPS

In Sec. III, we analyzed the stability properties of the

SPFC method for periodic orbits in dependence of their sta-

bility properties. The improvements due to stalling can be

calculated explicitly for some “typical” two and three-

dimensional chaotic maps.

With .h
minðx�Þ ¼ infl;a .x� ða; lÞ denoting the rescaled

stability of the linearization for the optimal parameter values,

we calculated the functions

�qhðpÞ ¼ 1� min
x�2Fix�hðf ;pÞ

.h
minðx�Þ; (11a)

qh pð Þ ¼ 1� 1

# Fix�h f ; pð Þ
� � X

x�2Fix�h f ;pð Þ
.h

min x�ð Þ; (11b)

q
h
ðpÞ ¼ 1� max

x�2Fix�hðf ;pÞ
.h

minðx�Þ (11c)

numerically in the same fashion as (2) to assess the scaling

of optimal asymptotic convergence speed of stalled predic-

tive feedback control for a given chaotic map across dif-

ferent periods. That is, for every periodic orbit of f of

minimal period p, we calculated the spectral radius at the

optimal parameter values and then took the minimum,

maximum, and mean of these values. In particular, 1� q
h

is the upper limit and 1� �qh is the lower limit for the best

asymptotic convergence speed of all SPFC-stabilizable

periodic orbits of a given period p rescaled to one evalua-

tion of fp.

The increase in the number of stabilizable orbits for

PFC and SPFC can be quantified by looking at the fractions

of stabilizable periodic orbits that are given by

�h pð Þ ¼
# Fix�h f ; pð Þ
� �
# Fix f ; pð Þð Þ and �g pð Þ ¼

# Fix�g f ; pð Þ
� �
# Fix f ; pð Þð Þ ;

(12)

respectively.

A. Stabilizability for chaotic maps

Consider the two-dimensional neuromodule (3) dis-

cussed above and let x* be some periodic orbit. The stability

function describes local stability at x*; cf. Figure 4. The

region of stability in (a, l)-parameter space is bounded by

the lines lj(a, l)¼ 1 where j¼ 1, 2. The intersection of the

half planes defined by the lines (8) gives the sector Ck that

describes stability around (a, l)¼ 0 where k¼ (k1, k2) are

the eigenvalues of dfpjx� ; cf. Sec. III. Note that for fixed a,

FIG. 3. Why stalling chaos control speed up convergence. Iteration of gl,p takes a trajectory to the periodic orbit x* slowly along the direction of the originally

stable manifold (panel (a)). Stalling control accelerates convergence by taking advantage of the fast convergence speed along the stable manifold (panel (b))

leading to fast overall convergence speed. The length of the gray arrows illustrates convergence speed as they scale inversely with the corresponding value of

the eigenvalue.

FIG. 4. Stability analysis for a periodic

orbit of period p¼ 5 of the map (3)

with local stability given by k¼ (k1,

k2)¼ (1.46 � 10�9, 16.698) yields a

region in parameter space in which it

is stable. Panel (a) shows the stability

function (7) and the lines defined by

lj(a, l)¼ 1 with lj as given by (6).

The domain of stability Ck around

(a, l)¼ 0 is depicted in panel (b). Note

that this periodic orbit cannot be stabi-

lized using the PFC method.
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the range of l which yields stability becomes smaller for

larger a.

To compare the scaling of the spectral radius across

periods, we plotted the functions (2) and (11) in Figure 5.

The original PFC method exhibits asymptotic convergence

speeds that approach one exponentially for increasing period.

A fit of q, corresponding to the best asymptotic convergence

speed, by a function /ðxÞ ¼ a expð�bxÞ yields a slope of

b¼ 0.1334. By contrast, stalling the control significantly

improves this scaling. We obtain values close to zero for all

periods p 2 {1, … , 20} and hence period-independent as-

ymptotic convergence speed in terms of evaluations of fp. A

fit with an exponential function of q
h
ðpÞ, i.e., the worst con-

vergence speed, yields an exponent of b¼ 3.8112 � 10�8.

Qualitatively similar results are obtained for other two-

dimensional chaotic maps,17 such as the H�enon map20 and

the Ikeda map21 (not shown).

As an example of a three-dimensional system, we analyzed

a three-dimensional extension of the H�enon map22 given by

f ðx1; x2; x3Þ ¼ ða� x2
2 � bx3; x1; x2Þ (13)

with parameters a¼ 1.76, b¼ 0.1. Stability properties of a

periodic orbit of period p¼ 6 are depicted in Figure 6.

Due to additional constraints on stabilizability, the

situation is different compared with the two-dimensional

example above. In our example, the periodic orbits have a

two-dimensional unstable manifold. If both eigenvalues cor-

responding to that manifold are real, the regime of stability

depends on their sign and distance. If they have opposite

signs, the periodic orbit cannot be stabilized, neither with

nor without stalling. In case both eigenvalues have the same

sign, the situation is depicted in Figure 6; there is a maximal

value for a beyond which stabilization fails. For a pair of

complex conjugate eigenvalues, the stability properties

depend on the quotient of the real and imaginary part; cf.

Figure 9. In particular, if the imaginary part is large, optimal

asymptotic convergence speed is achieved for the PFC

method, i.e., for a choice of n¼ 0.

When looking at the scaling of optimal asymptotic con-

vergence speed across periods, we have to distinguish

between even and odd periods (Figure 7). For even periods,

we obtain a period-invariant scaling of both the mean and

the best optimal asymptotic convergence speed similar to the

two-dimensional system. While the upper bound on conver-

gence speed will also increase to one due to the existence of

periodic orbits with complex conjugate pairs, it will typically

stay above the best convergence speed for the original PFC

method. For odd periods, the number of periodic orbits with

complex conjugate pairs of eigenvalues corresponding to the

unstable directions is large. Therefore, we see the same per-

formance as for the PFC method. Interestingly, for larger

odd periods of p> 10 stalling becomes more effective at

increasing optimal asymptotic convergence speed, boosting

the best speed close to one.

A similar scaling behavior is present in other three-

dimensional examples; period-independent scaling for even

periods p is observed for a three-dimensional neuromodule19

(not shown).

B. Convergence speed in applications

The scaling of the spectral radius indicates only the best

possible asymptotic convergence speed for stalled predictive

feedback control, i.e., the speed for the linearized dynamics.

We ran simulations to compare the convergence speed for

the full nonlinear system with the theoretical results for the

linearized dynamics. In order to approximate a real-world

implementation where control is turned on at a “arbitrary

point in time,” initial conditions were distributed randomly

on the attractor according to the chaotic dynamics.

To evaluate convergence speed of stalled predictive

feedback control, we compared the speed of gl;p ¼ h0
l;p with

FIG. 6. Stability properties for a fixed

point of period p¼ 6 of the three-

dimensional H�enon map (13) with

local stability given by k¼ (k1, k2, k3)

¼ (3.1125� 10�8, �4.6072, �6.9734)

show a region where stabilization is

successful. The stability function (7) is

depicted in panel (a) and the domain of

stability Ck in panel (b), cf. Figure 4.

FIG. 5. Stalling PFC increases optimal asymptotic convergence speed for

the 2D-neuromodule (3). SPFC yields period-independent asymptotic con-

vergence speed. The shading indicates that more periodic orbits can be stabi-

lized. The fraction of stabilizable orbits is shaded in gray; dark indicates

stabilizability for both with and without stalling, light indicates stabilizabil-

ity for SPFC only.
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ha
l;p for both a¼ 3�1 and a¼ (pþ 1)�1. In terms of the pa-

rameters m, n, a value of a¼ 3�1 corresponds to m¼ 2,

n¼ 1, and a¼ (pþ 1)�1 to m¼ p, n¼ 1. In our implementa-

tion, convergence time is the time T for the dynamics to

satisfy

kxT � wðxTÞk 
 hconv; (14)

where w is one of the functions above. Convergence was

only achieved if the criterion was fulfilled before a timeout

of Ttimeout¼ 3000 iterations. The convergence times were

rescaled to evaluations of fp to make them comparable. To

calculate the best theoretical convergence time, we calcu-

lated the smallest spectral radius

qaðpÞ ¼ min
x�2Fix�hðf ;pÞ

inf
l

.ðdha
l;pjx� Þ

for all periodic orbits of a given period p with variable l
while keeping the stalling parameter a(m, n) fixed. By assum-

ing kx� � xsk ¼ kx� � x0kðqaðpÞÞs for the linear system, we

have that for an initial separation of kx� � x0k ¼ dini, the con-

vergence criterion (14) is satisfied for

sa pð Þ ¼ ln
hconv

dini

� �
� ln 1� qa pð Þ

� �� �
ln qa pð Þ
� ��1: (15)

Thus, sa(p) is the convergence time of the linearized system

for an initial condition x0 with (period-independent) initial

separation dini. For the simulations presented here, we chose

hconv¼ 10�13 and dini¼ 0.1.

The results are shown in Figure 8. The errorbars

depict mean and standard deviation for all 500 runs with

initial conditions given by transient iteration of random

length on the attractor. The value of the control parameter

l in the numerical simulations was chosen for each pe-

riod to be the optimal value that yielded at least a frac-

tion of 0.95 of convergent initial conditions. In other

words, l was chosen to yield the optimal speed with at

least 95% reliability.

As predicted by the calculation of the spectral radius,

stalling PFC leads to an increase in convergence speed

across all periods. A scaling of convergence times (scaling

is indicated by dashed lines) which is almost period-

independent as observed in the theoretical calculations

cannot be achieved in our simulations. This is due to sev-

eral factors. First, in contrast to the linearized dynamics,

the numerical simulations take the full nonlinear system

into account. This includes the influence of the transient

dynamics and the increasing complexity of the phase space

(the number of fixed points increases with increasing pe-

riod) on convergence times. Second, in the theoretical cal-

culations, we consider only the fixed point for which

convergence is fastest. However, even in our simulations,

stalling improves both absolute convergence times was

well as their scaling across periods compared with classical

PFC. Furthermore, it increases the number of periods that

can be stabilized. For some periods, only stalled predictive

feedback control yields convergence within a reasonable

time. The scaling of the convergence speeds is independent

of whether the stalling parameter is fixed or scales with p.

However, a period-dependent stalling parameter will gen-

erally reduce the standard deviation of the different con-

vergence times.

FIG. 7. Stalling predictive feedback control yields period-independent scal-

ing for periodic orbits of even period for the three-dimensional H�enon gener-

alization (13). Effectivity of stalling for odd periods increases with

increasing period. The number of stabilizable periodic orbits (12) roughly

doubles for higher periods as indicated by the shading, cf. Figure 5.

FIG. 8. Although the best convergence times obtained from numerical simulations as shown in panel (b) cannot match the theoretical values of the linearized

system given by (15), shown in panel (a), stalling PFC increases both the overall convergence times as well as the scaling across periods. Numerical simula-

tions for the two-dimensional neuromodule (3) were performed with initial conditions distributed randomly on the chaotic attractor. Dashed lines represent an

approximate exponential fit to indicating the overall scaling behavior.
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C. Relation to earlier results

Stalled predictive feedback control as defined in

Definition II.3 is a proper extension of the PFC method. In

fact, the iteration of h
ð1;1Þ
l;1 has been considered before in the

context of predictive feedback control when trying to over-

come the odd number limitation23,24 as well as in the context

of an experimental setup where measurements are time-

delayed.25 These studies were only concerned with whether

or not fixed points can be stabilized, completely ignoring the

aspect of convergence speed. Although for systems of

dimension N< 3, stalling control increases the number of

fixed points that can be stabilized; even for N¼ 3 there are

points that can be stabilized using PFC but not using SPFC

when the stalling parameter a is as large as in Refs. 23–25

(Figure 9). Hence, the introduction of an arbitrary stalling

parameter is the key to both maximizing the number of fixed

points subject to stabilization through PFC as well as mini-

mizing the convergence speed.

The idea of periodically turning control on and off has

been mentioned before in the literature on control theory;

both “act-and-wait” control26 and “intermittent” control27

are stated for linear control problems in discrete and con-

tinuous time. At the same time, for linear control problems

with many control parameters, “pole placement” techni-

ques28 are used to control the eigenvalues of the lineariza-

tion. By contrast, SPFC aims at stabilizing many unstable

periodic orbits of a given nonlinear system maintaining the

simplicity of the simple one-parameter feedback control

scheme. The situation where control is turned on at an

arbitrary point in time as described above is of particular

interest; here, the system is likely to be far from the linear

regime. As shown above, stalling PFC improves perform-

ance even in this situation.

Stalling predictive feedback control is also related to

a recent application of chaos control.6 Because of imple-

mentation restraints, Steingrube et al. effectively iterated

f � gl,p. In some sense, this is similar to iterating h
ðp;1Þ
l;p ,

but the stability analysis is not straightforward since one

has to keep track of the (changing) point on the periodic

orbit to be stabilized when iterating f � gl,p. Moreover,

both this control and SPFC are related to an effort by

Polyak8 to introduce a generalized PFC method, which is

capable of stabilizing periodic orbits with an arbitrary

small perturbation. This method, however, is limited in

applicability, because the control perturbation depends on

predictions of the state of the system many time steps in

the future.

V. ADAPTIVE CONTROL

In Secs. III and IV, we showed that for an optimal

choice of parameters, the asymptotic convergence speed of

predictive feedback control can be significantly increased

when stalling control. This speedup is not only of theoretical

nature, but also persists in an implementation with random

initial conditions. But how does one find the set of optimal

parameter values for a given chaotic map f? If no a priori
estimates are available, adaptation methods provide a way to

tune the control parameters online for optimal convergence

speed.

Here, we consider the case where the stalling parameter

a (corresponding to some choice of m, n) is fixed and l
 0

is subject to adaptation. We explore different adaptation

mechanisms and propose a hybrid gradient adaptation

approach that leads to fast and highly reliable adaptation

across different periods for initial conditions distributed ran-

domly on the chaotic attractor.

A. Simple and gradient adaptation

First, recall a simple adaptation scheme.6 We assume

that the period p is fixed within this subsection. A suitable

objective function for finding a periodic point of period p is

given by

G1ðx; pÞ ¼ kfpðxÞ � xk2

for some vector norm k � k on RN . For l¼ 0, the map h0,p

as defined in (5) reduces to some iterate of f and adaptation

should lead to sequences xk ! x* and lk ! l* with x*2
Fix(fp) and .h(a, l*)< 1. The objective function above sug-

gests a simple adaptation rule (SiA) rule with

Dlk ¼ �ðpÞG1ðxk; pÞ; (16)

where �(p) is the (possibly period-dependent) adaptation

parameter and dynamics of l given by

l0 ¼ 0; lkþ1 ¼ lk þ Dlk: (17)

This adaptation rule increases the control parameter l
monotonically. Suppose that x* is a fixed point of f, i.e.,

FIG. 9. For a period p¼ 5 orbit of the

three-dimensional H�enon map (13)

with local stability properties k¼ (k1,

k2, k3)¼ (0.0933þ 4.6673i, 0.0933

� 4.6673i, 0) with unstable directions

given by a pair of complex conjugated

eigenvalues, only few choices of the

stalling parameter allow for stabiliza-

tion (in particular, m � 1), cf. Figures

4 and 6. Optimal performance is

achieved for the PFC method, i.e., with

n¼ 0.
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fp(x*)¼ x*. If we have a converging sequence xk ! x* as

k!1 then the sequence Dlk tends to zero. In other words,

adaptation stops in the vicinity of a fixed point x* of fp.

For this adaptation mechanism, the quantity Dlk is

extremely easy to calculate and yields decent results in appli-

cations.6 Adaptation, however, strongly depends on the

choice of the adaptation parameter �(p). If �(p) is too small,

it will take a long time to reach a regime in which conver-

gence takes place. On the other hand, if �(p) is too large and

the interval M of possible values of l in which convergence

takes place is rather narrow, it is possible that lk> sup M for

some k, even if ll 2 M for some values l< k. Hence, it is

possible for the control parameter to “jump out of” the range

of stability. Also, note that by construction, this simple adap-

tation will not optimize for asymptotic convergence speed.

For small �(p), adaptation will stop close to the boundary of

the convergent regime, leading to slow asymptotic conver-

gence speed; cf. Figure 11(a).

Adaptation may be improved, if the objective function

takes local stability into account. For some matrix norm

k � k, such an objective function is given by

G2ðx; l; pÞ ¼ kdhl;pjxk:

Since any matrix norm is an upper bound for the spectral

radius .ðAÞ of a matrix A, that is, .ðAÞ 
 kAk, minimizing

the norm potentially leads to increased convergence speed.16

At the same time, for a generic point on the attractor, this

objective function is highly nonconvex with steep slopes

(Figure 10) making straightforward minimization through,

for example, gradient descent29 difficult.

We therefore propose an adaptation rule that combines

aspects of simple adaptation as reviewed above and the objec-

tive function G2. Let @l denote the derivative with respect to

l and define HðxÞ ¼ tanhððpG1ðx; pÞÞ�1Þ. Consider the modi-

fied gradient adaptation rule (GrA) rule given by (17) with

Dlk ¼ kðpÞðG1ðx; pÞ � p tanhðHðxkÞ@lG2ðhl;pðxkÞ; l; pÞÞÞ:
(18)

This adaptation rule has the following properties. Far away

from a period p orbit x*2 Fix(fp), i.e., for G1(x, p) � 0, we

have H(x)� 0. Therefore, adaptation is dominated by the

first term and leads to adaptation as given by the simple

adaptation rule (16) to increase l to reach a regime of con-

vergence. On the other hand, in the vicinity of a fixed point,

we have H(x)� 1 and G1(x, p)� 0. Hence, adaptation occurs

by bounded gradient descent and the dynamics of the control

parameter l are perpendicular to the level sets of the objec-

tive function G2 towards a (local) minimum. The bound

induced by the tanh prevents large fluctuations of the objec-

tive function G2 from leading to a too large change of the

control parameter l.

The adaptation parameter �(p) again determines the size

of the adaptation steps. In contrast to the simple adaptation

method, the modified gradient adaptation adapts bidirection-

ally in order to minimize both objective functions G1 and G2

as depicted in Figure 11(a). Clearly, the control parameter is

adapted to the regime of stability of a periodic orbit by the

modified gradient adaptation and Dlk! 0 as optimal asymp-

totic convergence speed is achieved. Statistics for a large

number of initial conditions show that the population mean

hlki for many runs is already close to the optimal value after

only 70 iterations; cf. Figure 11(b).

B. Convergence reliability

To assess the performance of the adaptive stalled predic-

tive feedback chaos control algorithm in a real-world appli-

cation, we performed large scale numerical simulations for

the two-dimensional neuromodule (3). Periodic orbits were

stabilized using SPFC (5) with the incorporation of the adap-

tation mechanisms given by (16) and (17). The scaling of the

FIG. 11. In contrast to simple adaptation, gradient adaptation tunes the control parameter to the value where optimal convergence speed is achieved. The dy-

namics for a single run are shown in panel (a) and the dotted lines depict the value of the objective function G2. Statistics for 1000 initial conditions on the

attractor after a transient of random length are shown in panel (b). The shading indicates values of the stability function smaller than one and the dashed line

its minimum (optimal asymptotic convergence speed). The target period was p¼ 2 for the two-dimensional map (3) with adaptation parameter �¼ 10�3 and

n¼ 1, m¼ 2. Here, h � i denotes the population mean.

FIG. 10. The objective function G2(x, l, p) is nonconvex for a generic point

x on the attractor leading to a difficult optimization problem.
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adaptation parameter was given by �ðpÞ ¼ �0

p and for every

�0, we iterated for 500 initial conditions distributed ran-

domly on the chaotic attractor by iterating for a transient of

random length. To determine reliability, i.e., the fraction of

runs where the trajectory converged to a periodic orbit of the

desired period, we checked the period of the limiting peri-

odic orbit (if any) to a threshold of h¼ 10�6.

As discussed above, the adaptation parameter �0 influen-

ces both speed and reliability. The results for period p¼ 5

are plotted in Figure 12. We find that gradient adaptation not

only decreases the total number of time steps needed to ful-

fill the convergence criterion but it also decreases the overall

variation across runs (the standard deviation is depicted as

an error bar). Of particular interest for applications is the

range where convergence is highly reliable. In contrast to the

simple adaptation scheme, for gradient adaptation, the range

of adaptation parameter values leading to highly reliable

convergence is broadened. On the one hand, the gradient ad-

aptation method optimizes for convergence speed, thereby

increasing the chance that the convergence criterion is ful-

filled before the timeout. At the same time, the bidirectional

adaptation decreases the likelihood of the control parameter

leaving the regime of convergence. Gradient adaptation

therefore improves both overall convergence speed while

reducing its variation and increasing the reliability of

control.

The improvement of reliability compared with the sim-

ple adaptation scheme can be seen across all periods; cf.

Figure 13. The broad range of adaptation parameters giving

highly reliable convergence allows for the choice of an adap-

tation parameter �0 that will lead to reliable convergence

across different periods, effectively eliminating this

parameter.

Similar results are obtained for numerical simulations

for other two- as well as three-dimensional chaotic maps

(not shown). These include the H�enon map17 and a three-

dimensional neuromodule.19 Convergence speed of lk to the

optimal parameter value can be further increased by using

higher order methods, such as Newton’s method (not

shown). The use of higher order methods (also with respect

to comparing simple and gradient adaptation) comes with a

higher absolute computational cost. For any implementation,

the improvement always needs to be related to the effective

improvement.

FIG. 12. Gradient adaptation (panel (b)) decreases the overall convergence times and the variation thereof compared with simple adaptation (panel (a)) for tar-

get period p¼ 5. Furthermore, the range of reliable convergence, depicted by the shading in the background, is broadened. The fraction of convergent runs to a

periodic orbit of the correct period is shaded in dark gray (reliable convergence) and to an incorrect period in light gray.

FIG. 13. Gradient adaptation (panel (b)) increases the overall reliability of convergence across periods compared with simple adaptation (panel (a)).

Reliability, i.e., the percentage of convergent runs to periodic orbits of the target period p, is depicted by the color of the shading for the adaptation parameter

�0 and hence more dark areas correspond to higher overall reliability. For gradient adaptation, there exist parameter values which yield reliable convergence

across all periods (�0¼ 10�3.5 is depicted by a red line).
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VI. DISCUSSION

In this article, we studied the effect stalling has on pre-

dictive feedback control. By stalling control, the inherent

speed limit of standard predictive feedback control may be

overcome. We highlighted that only by taking all possible

stalling parameters into account, the maximum number of

periodic orbits can be stabilized. The conditions on stabiliz-

ability that we derived show that stabilizability is reduced to

the conditions imposed by the eigenvalues corresponding to

the unstable directions. Stalling is very easy to implement

and, in addition to increasing convergence speed, the result-

ing chaos control method is capable of stabilizing more peri-

odic orbits. Combined with targeting algorithms,30 SPFC can

also be used to stabilize specific periodic orbits. Using nu-

merical simulations, we showed that in applications where

chaos control is turned on at a random point in time, conver-

gence speed is greatly improved across all periods. Although

our method was stated in terms of discrete time dynamical

systems, it also applies to continuous time dynamics if dis-

cretized, for example, through a Poincar�e map.

As examples, we studied “typical” low-dimensional cha-

otic systems. In higher dimensions, for example, when study-

ing chaotic collective effects in networks, we expect our

method to behave qualitatively similar as in the three-

dimensional case, although an increase in dimension of the

unstable manifold of periodic orbits places additional con-

straints on stabilizability. A priori estimates of the local

stability properties of the periodic orbits embedded in the

attractor yield an estimate of how many periodic orbits can

be stabilized. This limitation could be overcome by tuning

the eigenvalue corresponding to some eigenvector sepa-

rately. From a mathematical point of view, a different

approach would be to allow the control parameter to take

complex values, turning the problem into one of complex

dynamics in several complex variables.16 On the other hand,

the local stability property conditions provide design princi-

ples for attractors to contain many unstable periodic orbits

that our stalled predictive feedback control method is capa-

ble of stabilizing. These important questions, however, are

beyond the scope of the current article and will have to be

addressed in further research.

Conversely, the local stability properties and the narrow-

ing of the regime of stability for the control parameter l
while a> 0 is fixed can actually be exploited. Different local

stability properties of the unstable periodic orbits allow for

stabilization of a specific set of periodic orbits. Hence,

through the choice of parameters, the targeted periodic orbits

can become stable periodic orbits of the dynamics.

Adaptation mechanisms not only provide a way to tune

the adaptation parameter to a suitable value, but they also

allow for an increase in both speed and reliability. In contrast

to previously proposed adaptation,6,31 the proposed hybrid

algorithm also adapts for optimal convergence speed. A

broad range of parameters allows for a period-independent

choice of adaptation parameter, hence giving a chaos control

method with a set of parameters for which it stabilizes many

periodic points of most periods quickly and reliably.

Adaptation using the objective function (16) also prevents

the system from converging to one of the periodic orbits

potentially induced by stalling control. However, as our

adaptation method merely serves as a proof of concept, it

still leaves room for improvement. In particular, the cap of

adaptation speed through the sigmoidal function is a major

source of slowdown. Moreover, adaptation could be

extended to the stalling parameter a.

Since stalling PFC increases the number of evaluations

of fp needed for a single iteration of hp,l, it would be desira-

ble to extend the theory to a “fractional stalling parameter,”

i.e., to allow for stalling by composing with f�q where q< p.

With such stalling, however, one needs to track the point of

the periodic orbit, as discussed in Sec. IV C, rendering the

theoretical analysis more subtle.

In conclusion, stalled predictive feedback control of

chaos together with a suitable adaptation scheme is a step

towards a fast, reliable, easy-to-implement, and broadly

applicable chaos control method. It would be interesting to

see it applied in experimental setups in the future.
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18P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos:

Classical and Quantum (Niels Bohr Institute, Copenhagen, 2012).
19F. Pasemann, “Complex dynamics and the structure of small neural

networks,” Network 13, 195 (2002).
20M. H�enon, “A two-dimensional mapping with a strange attractor,”

Commun. Math. Phys. 50, 69 (1976).
21K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: Chaotic behavior

of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709 (1980).
22G. Baier and M. Klein, “Maximum hyperchaos in generalized H�enon

maps,” Phys. Lett. A 151, 281 (1990).
23H. G. Schuster and M. Stemmler, “Control of chaos by oscillating

feedback,” Phys. Rev. E 56, 6410 (1997).
24O. Morg€ul, “Stabilization of unstable periodic orbits for discrete time cha-

otic systems by using periodic feedback,” Int. J. Bifurcation Chaos Appl.

Sci. Eng. 16, 311 (2006).

25J. C. Claussen and H. G. Schuster, “Improved control of delayed measured

systems,” Phys. Rev. E 70, 056225 (2004).
26T. Insperger and G. St�ep�an, “Act-and-wait control concept for discrete-

time systems with feedback delay,” IET Control Theory Appl. 1, 553

(2007).
27P. Gawthrop, “Act-and-wait and intermittent control: Some comments,”

IEEE Trans. Control Syst. Technol. 18, 1195 (2010).
28E. D. Sontag, Mathematical Control Theory (Springer-Verlag, New York,

1998), p. xviþ 531.
29A. L. Fradkov and A. Y. Pogromsky, Introduction to Control of

Oscillations and Chaos (World Scientific, 1998), p. 391.
30E. J. Kostelich, “Targeting in chaotic dynamical systems,” in Handbook of

Chaos Control, edited by Heinz G. Schuster (Wiley-VCH Verlag, 1999),

pp. 141–156.
31J. Lehnert, P. H€ovel, V. Flunkert, P. Y. Guzenko, A. L. Fradkov, and E.

Sch€oll, “Adaptive tuning of feedback gain in time-delayed feedback con-

trol,” Chaos 21, 043111 (2011).

033138-13 Bick, Kolodziejski, and Timme Chaos 24, 033138 (2014)

http://dx.doi.org/10.1088/1367-2630/15/6/063038
http://dx.doi.org/10.1080/net.13.2.195.216
http://dx.doi.org/10.1007/BF01608556
http://dx.doi.org/10.1103/PhysRevLett.45.709
http://dx.doi.org/10.1016/0375-9601(90)90283-T
http://dx.doi.org/10.1103/PhysRevE.56.6410
http://dx.doi.org/10.1142/S0218127406014824
http://dx.doi.org/10.1142/S0218127406014824
http://dx.doi.org/10.1103/PhysRevE.70.056225
http://dx.doi.org/10.1049/iet-cta:20060051
http://dx.doi.org/10.1109/TCST.2009.2034403
http://dx.doi.org/10.1063/1.3647320

	s1
	l
	n1
	s2
	s2A
	d1
	s2B
	d2
	d2a
	d2b
	d2c
	d3
	s2C
	d4
	d5
	s3
	s3A
	f1
	d6
	d7
	d8
	d9
	s3B
	d10
	s3B
	s3C
	f2
	s4
	d11
	d11a
	d11b
	d11c
	d12
	s4A
	f3
	f4
	d13
	s4B
	f6
	f5
	d14
	s4B
	d15
	f7
	f8
	s4C
	s5
	s5A
	d16
	d17
	f9
	s5A
	d18
	s5B
	f11
	f10
	f12
	f13
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31



