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ABSTRACT Spiking neural network models characterize the emergent collective dynamics of circuits of
biological neurons and help engineer neuro-inspired solutions across fields.Most dynamical systems’models
of spiking neural networks typically exhibit one of two major types of interactions: First, the response of a
neuron’s state variable to incoming pulse signals (spikes) may be additive and independent of its current state.
Second, the response may depend on the current neuron’s state and multiply a function of the state variable.
Here we reveal that deterministic spiking neural network models with additive coupling are equivalent
to models with multiplicative coupling for simultaneously modified intrinsic neuron time evolution. As a
consequence, the same collective dynamics can be attained by state-dependent multiplicative and constant
(state-independent) additive coupling. Such a mapping enables the transfer of theoretical results between
spiking neural network models with different types of interaction mechanisms and at the same time extends
the option space for hardware implementation or modeling. By allowing to choose the coupling type or
neuron type that is the simplest one to implement in a given practical situation where a specific dynamic or
functionality is required, it potentially allows simpler or more effective engineering applications.

INDEX TERMS Nonlinear dynamics, spiking neural networks, pulse coupling.

I. BACKGROUND
Differential equations model the time evolution of a broad
range of natural and human-made systems with time-
continuous intrinsic dynamics and interactions [1], [2]. The
dynamics of systems with short-lasting interactions may be
modeled by networks of artificial pulse-coupled or spiking
neurons. They constitute hybrid dynamical systems where
the intrinsic continuous time-evolution of the units’ dynamics
are interrupted by time-discrete events. At these events, the
incoming pulses (spikes) deterministically change the state
variables of the units in the receiving end. The event times,
in turn, are determined by the state space trajectory passing
certain subsets, e.g., crossing some manifold or hitting
boundary points of state space. Since half a century, spiking
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and pulse-coupled network models play key roles in our
understanding of natural phenomena such as the emergence
of waves or synchrony [5], [6], [7]. They also help to design
appropriate collective dynamics for engineered systems
implementing desired functionalities such as distributed
sensing [8], [9], [10].

Due to their hybrid nature, spiking systems exhibit, and
thus capture, novel phenomena not present in systems of
smooth, time-continuous differential equations. Examples
include the emergence of linearly unstable attractors (in
the sense of Milnor) [11], [12], [13], the existence of
speed limits in the relaxation dynamics of networks of
spiking units [14], [15], the possibility of identical oscillators
overtaking each other even though they are symmetri-
cally coupled [16], and the emergence of isochronous
regions where multiple periodic orbits of the same period
coexist [17].
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These phenomena have been demonstrated for models
where the interactions are additive and the coupling strength
is constant, i.e., independent of the current state of the unit
that receives an interaction pulse signal.

However, several models of biological neural circuits
exhibit state-dependent, multiplicative coupling [18], [19]
and recent conceptual works on artificial computational
devices demonstrated that networks of pulse-coupled oscil-
latory neurons with multiplicative coupling give rise to
novel computational features such as reconfigurability and
improved robustness, see for example [22] and [23]. In addi-
tion, certain types of multiplicative coupling may be simpler
and more efficient to implement in hardware.

To date, the dynamics of systems with multiplicative
and additive pulse coupling are usually considered to
be disconnected phenomena, and it is not clear if there
exists any direct mathematical relation. By addressing this
open question, we enable an effective integration of both
theoretical results and implementation strategies for systems
with additive and multiplicative pulse coupling. Here we
demonstrate that under certain conditions, network models
with state-dependent, multiplicative coupling and models
with constant additive coupling are equivalent in the sense
that they exhibit identical deterministic spiking dynamics.
The implications of this result are twofold.

First, many theoretical and practical results on neuron
networks with additive coupling can be transferred to those
with multiplicative coupling and vice-versa, by transforming
the neuron model accordingly. In particular, the extensive
body of work on additive coupling systems can be carried
over effectively to multiplicative coupling systems, while
phenomena that have been described for systems with
multiplicative coupling, such as robust and reconfigurable
computation over a combinatorial number of inputs observed
in [22] should also be expected for classes of additive-
coupling systems.

Second, for technical applications such as the growing
field of analogue and spiking computation, depending on the
particular neuron model and the coupling network, usually
one type of coupling can be designed and implemented more
effectively. For example, systems with conductance-based
leaky integrate-and-fire (IF) neurons allow for straight-
forward multiplicative coupling. Using the connections
established in this paper, one can choose the coupling type
more freely by modifying the neuron model accordingly.

II. PULSE-COUPLED OSCILLATOR NETWORKS AND
PHASE FORMALISM
Consider an N -dimensional dynamical system with states
xi(t), i ∈ {1, . . . ,N }, with a deterministic dynamic defined
by N coupled ordinary differential equations

dxi
dt

= fi(xi) + Si({xj}, t) (1)

with continuous functions fi(xi) : R → R, and interactions
mediated by the terms Si({xj}, t), where {xj} = {x1, . . . , xN }.

In the following, we consider oscillatory neurons as one
core example [5], [12], [24], [25], [26], [27], [28], and [29],
where variables xi are typically interpreted as a potential.
For implementing periodic free dynamics we require that
fi(xi) : R → R+ is positive and state a reset mechanism

xi(t
+

i,m) := xreset ≡ 0, (2)

which sets the state variable xi to a reset value xreset := 0 at the
discrete times ti,m where it passes a threshold value x thri ≡ 1
for the m-th time (from below),

xi(ti,m) = x thr ≡ 1 ,
dxi(t)
dt

∣∣∣∣
t=ti,m

> 0. (3)

Together with the intrinsic dynamics defined by equation (1)
for Si = 0, the reset mechanism (2) creates a free period Ti for
each neuron. Note that the choice of x thr ≡ 1 and xreset ≡ 0
is made without loss of generality. The interaction between
different neurons, as described by the functions Si({xj}, t), can
take onmany forms. Short-lasting, momentary interactions as
found in biological systems such as populations of flashing
fireflies or networks of spiking neurons in the brain, are often
adequately captured in terms of pulse coupling. Within this
context, a neuron that reaches its threshold is said to “fire” or
“spike”, and sends a stereotyped short-lasting signal, which
mediates its effect on connected units. Such pulse coupling
between oscillatory neurons can generally be written as

Si(t) = −

N∑
j=1
j ̸=i

∞∑
m=−∞

ϵijKij(t − tj,m − τij) (4)

where ϵij ∈ R quantifies the strength of the coupling from
neuron j to neuron i and the response kernels Kij(t) satisfy
Kij(t) ≥ 0, Kij(t) = 0 for t < 0, and

∫
∞

−∞
Kij(t)dt = 1.

tj,m is the m-th time at which unit j reaches the threshold
xreset = 1, see equation (3) and τij ≥ 0 is the time
it takes for a pulse to travel from neuron j to neuron
i. Note that for τij > 0 additional rules regarding the
order of processing spiking events may be necessary. Often,
pulse-coupled systems exhibit a strong time-scale separation
between the interaction duration and the intrinsic time scales
of the neurons so that the kernels Kij in (4) may be idealized
as a Dirac distribution

Kij(t) = δ(t), (5)

such that the coupling (4) becomes discontinuous. In this
work, we focus on purely inhibitory coupling, i.e., ϵij ≥ 0 .
Also note that equation (1) implies deterministic dynamics.
In the conclusion we discuss briefly how our approach may
be applied to systems exhibiting noise. For simplicity of
presentation, in the following we set τij = 0 (instantaneous
interactions). However, we point out that our findings easily
generalize to delayed systems.

The effect of neuron j reaching threshold at time tj
(dropping the index m for sake of readability) can be
summarized as an instantaneous, discontinuous change of the
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other neurons’ states xi, i ̸= j, by a constant ϵij, which is
independent of both the time and the state xi itself:

xi(t
+

j ) = xi(tj) − ϵij, (6)

for illustration see figure 1a,b. Note that large coupling
strengths ϵij may lead to a negative potential xi(tj) − ϵ just
after a reset, requiring equation (1) to provide solutions with
xi < 0 for the non-interaction case S = 0. This may pose a
modeling problem, as naturally occurring neurons typically
have a finite lower boundary regarding their potential [29],
[30].

The resulting dynamical system is of hybrid type with
continuous-time free (uncoupled) time evolution of neuron
states interrupted by one of two types of events occurring
at discrete times, where maps are applied: i) reset (eq. (2)),
or ii) spike reception (eq. (6)). The hybrid nature enables
to transfer to new neuron state variables that are time-like
(phases), in terms of the phase formalism introduced by
Mirollo-Strogatz [5], which we review in the following.
Essentially a nonlinear transformation, it parametrizes the
free time evolution of the oscillatory neurons in terms
of time-like, but periodic, phases φi(t) that evolve with a
constant phase velocity dφi/dt = ωi until they reach the
threshold value φthr

i := 1 and are reset to 0. Within the
phase formalism, the interaction between different neurons
is mediated via a so-called rise function or neuron potential
Ui(φi) : φi → (−∞, 1], which is monotonically increasing,
twice continuously differentiable and typically normalized to
Ui(0) = 0 and Ui(1) = 1. Then, the response of unit i on
another unit j reaching the threshold value φj = 1 at time tj is
defined as

φi(t
+

j ) := Hϵ,i(φi(tj)), (7)

with transfer function

Hϵ,i(φi) := U−1
i [Ui(φi) − ϵ], (8)

with ϵ ≡ ϵij. For a free dynamic of the form dxi/dt = fi(xi),
as in equation (1), it is always possible to choose

Ui(φi) ≡ xi(φiTi), (9)

where xi(t) the free solution with period Ti. The phase
description of the free time evolution is then defined by

dφi(t)
dt

:=ωi =
1
Ti

, φi(t + Ti):=φi(t), (10)

where φi(t) is reset to 0 after reaching 1, φi(t
+

i ) := 0. For
illustration, see figure 1a-e.

As a standard example, consider leaky integrate-and-fire
neurons as described by

dx
dt

= I − γ x, (11)

(dropping the index i throughout, as we focus on one specific
neuron at a time here) with positive constants I and γ < I ,
giving the free time evolution

x(t) =
I
γ
(1 − e−γ t ) for 0 < t ≤ T (12)

FIGURE 1. Phase formalism for (a-e) additive and (f-j) multiplicative
inhibitory pulse coupling. (a,f) Reset event patterns of three-unit network
as function of time. (b,g) Rise function of first neuron x1(t) ≡ x(t). At t1,
there is a threshold-induced reset, and at t2 and t3 resets of other
neurons cause a discontinuous jump in x(t). (c,h) The same dynamics
represented in terms of the phase φ1(t) ≡ φ(t). It evolves with constant
velocity dω1/dt = 1/T1, interrupted by discontinuous reset and
interaction events. (d,i) Rise functions U(φ), Ũ(φ) as functions of the
phase φ. The phase jumps in blue and red are mediated in terms of jumps
in the rise functions U(φ), Ũ(φ), respectively. (e,j) Transfer functions Hϵ (φ),
H̃κ (φ) summarize the effect of an incoming pulse on the phase φ(t) of the
receiving neuron.

and x(t + nT ) = x(t) for n ∈ Z, with free period length
T = −γ −1ln(1 − γ /I ). According to equations (9) and (8)
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one finds the rise function

U IF(φ) =
I
γ

(
1 − e−γφT

)
=

I
γ

(
1 −

(
1 −

γ

I

)φ
)

, (13)

and the transfer function

H IF
ϵ (φ) =

ln
(
(1 − γ /I )φ + ϵγ /I

)
ln(1 − γ /I )

. (14)

Another common model class has been proposed by Mirollo
and Strogatz [5] directly in terms of a rise function

UMS,b(φ) ≡
1
b
ln(1 + (eb − 1)φ), b > 0. (15)

It is chosen such that, while UMS,b itself is nonlinear and
allows for realistic features such as down-concavity, the
resulting transfer function is affine,

HMS,b
ϵ (φ) = αϵφ + βϵ, (16)

with constants αϵ = e−bϵ and βϵ = (e−bϵ − 1)/(eb −

1), allowing for easy analytical treatment. Note that UMS,b

diverges already for a finite phase φ0 ≡ 1/(1 − eb):
limφ→φ+

0
UMS,b(φ) = −∞, whereas limφ→−∞ U IF(φ) =

−∞ for the integrate-and-fire neuron. Hence, the effect of
incoming pulses vanishes already at finite phases φ0, and
the permitted phases are bounded, φ ∈ (φ0, 1], instead of
φ ∈ (−∞, 1], as for leaky integrate-and-fire neurons.
We emphasize again that the coupling considered up to this

point is additive in the original potential-like variables xi.

III. MULTIPLICATIVE PULSE COUPLING
Although in many situations the additive pulse coupling,
as reviewed in the last section, is a fitting description, other
choices may capture underlying mechanisms in existing
systems better or can be implemented more effectively when
designing systems. In the following, we consider a type
of inhibitory pulse coupling between oscillatory neurons in
which the effect of an incoming pulse from neuron j at time
tj + τij is linearly related to the state x̃i(tj) of the receiving
oscillator,

Si (̃xi, t) = −x̃i(t)
N∑
j=1
j ̸=i

∞∑
m=−∞

κijKij(t − tj), (17)

where κij ∈ [0, 1]. Throughout we use a tilde to point
out multiplicative coupling, as opposed to additive coupling.
Again setting K (t) = δ(t), and assuming instantaneous
interactions, τij = 0, for simplicity of presentation, this leads
to an update rule

x̃i(t
+

j ) = (1 − κij) x̃i(tj), (18)

instead of the additive-coupling update rule (6).
In the followingwemodify theMirollo-Strogatz formalism

to also describe inhibitory multiplicative coupling. Given
the free neuron dynamics in terms of a rise function

Ũi(φi) : φi → (−∞, 1], we define a multiplicative-coupling
transfer function

H̃κ,i(φi) := Ũ−1
i [Ũi(φi)(1 − κ)], (19)

so that the effect of a neuron j resetting at time tj on the phase
of a connected neuron i is expressed as

φi(t
+

j ) := H̃κ,i(φi(tj)), (20)

with κ = κij, in analogy to equation (7) for standard additive
coupling. Now, the free time evolution is again defined by
dφi/dt = ωi and a reset to φi = 0 upon reaching the threshold
value φthr

i = 1, φi(t
+

i ) := 0. As with additive coupling,
for given free neuron dynamics x̃i(t), one can set Ũi(φi) ≡

x̃i(φiTi) and dφ/dt = 1/Ti, with the free period length Ti.
For multiplicative inhibitory pulse coupling, only neuron

potentials with Ũi(φi) ≥ 0 are sensible, such that Ũi(φi)(1 −

κij) ≥ 0, avoiding that the sign of the induced phase jump
changes in a physically implausible way. Other than that, the
requirements on Ũi are the same as for additive coupling,
that is, Ũi should be monotonically increasing and twice
continuously differentiable. Again, generalization to systems
with delayed coupling or inhomogeneous coupling strengths
are straightforward.

As an example, we again consider the common integrate-
and-fire model

Ũ IF(φ) =
I
γ

(
1 − e−γφT

)
=

I
γ

(
1 −

(
1 −

γ

I

)φ
)

, (21)

(again dropping the neuron index i throughout for sake
of readability) and find a multiplicative-coupling transfer
function

H̃ IF
κ (φ) =

ln
(
κ + (1 − κ)(1 − γ /I )φ

)
ln(1 − γ /I )

, (22)

for illustration, see figure 1f-j.
Note that theMirollo-Strogatz neuron potential ŨMS,b

ϵ (φ) =
1
b ln(1 + (eb − 1)φ) as discussed in the last section does
not lead to an affine transfer function anymore, if we apply
multiplicative coupling:

H̃MS,b
κ (φ) =

1
eb − 1

[
(1 + (eb − 1)φ)(1−κ)

− 1
]
. (23)

However, we here propose an alternative neuron potential,

ŨMS,c(φ) := φ1/c, c > 0, (24)

which indeed leads to an affine (and even linear) transfer
function

H̃MS,c
κ (φ) = (1 − κ)cφ (25)

for multiplicative coupling, see figure 2a,b.
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FIGURE 2. Nonlinear neuron with linear transfer function for
multiplicative coupling. (a) While the rise function ŨMS,c (φ) (see eq. (24))
itself is nonlinear, its respective transfer function for multiplicative pulse
coupling, H̃κ (φ), is linear and allows for easy analytical treatment. Shown
for different values of c , for fixed coupling strength κ = 0.25.

IV. EQUIVALENCE OF MULTIPLICATIVE AND ADDITIVE
COUPLING
While with additive inhibitory coupling (eqs. (6), (7)) the
state variable xi of a spike-receiving neuron i is shifted by
a constant value −ϵij, with multiplicative inhibitory coupling
(eqs. (18), (16)) the state variable x̃i experiences a relative
shift −x̃iκij. However, both interaction mechanism can be
transferred into each other by simultaneously modifying the
rise function accordingly. For sake of simplicity we focus
only on a single neuron i at a time and drop index i throughout,
and assume that all pulses arriving at neuron i have the same
strength: ϵij = ϵi ≡ ϵ or κij = κi ≡ κ . Below, we generalize
to arbitrary coupling strengths, and thus also sparse networks,
see section IV-C.

AgainwritingU (φ) and Ũ (φ) for rise functions for additive
and multiplicative coupling, respectively, we demand that the
corresponding transfer functions

Hϵ(φ) = U−1 [U (φ) − ϵ] (26)

and

H̃κ (φ) = Ũ−1 [
Ũ (φ)(1 − κ)

]
(27)

are equal, i.e.,

Hϵ(φ) ≡ H̃κ (φ) (28)

⇐⇒ U−1 [U (φ) − ϵ] = Ũ−1 [
Ũ (φ)(1 − κ)

]
, (29)

for all φ.
Main Claim: As a main statement of this article we

show the following: Given a rise function U (φ) for additive
inhibitory pulse coupling with coupling strength ϵ ≥ 0,
exactly the same spiking dynamics is realized by multiplica-
tive inhibitory pulse coupling with any specific coupling
strength κ ∈ [0, 1) and rise function

Ũ (φ) = (1 − κ)

(
1−U (φ)

ϵ

)
. (30)

This statement holds for any neuron model that is given by
a monotonously increasing and twice continuously differen-
tiable rise function U (φ), and that is coupled to the rest of
the system in terms of an inhibitory pulse coupling with an
(idealized) infinitely short pulse width. In the following we

show that the rise function Ũ (φ) as defined by equation (30)
indeed satisfies the equivalence requirement (29).

First, we calculate the inverse Ũ−1 of the rise function Ũ
(eq. (30)) with regard to variable φ, expressed in terms of the
inverse function U−1 and Ũ itself,

Ũ−1
= U−1 (

1 − ϵlog1−κ (Ũ )
)
, (31)

where log1−κ denotes the logarithm with base 1−κ . We then
use equations (30) and (31) to compute

Ũ−1 [
Ũ (φ)(1 − κ)

]
= U−1 (

1 − ϵlog1−κ (Ũ (φ)(1 − κ))
)

= U−1
(
1 − ϵlog1−κ

(
(1 − κ)

(
1−U (φ)

ϵ
+1

)))
= U−1

(
1 − ϵ

(
1 − U (φ)

ϵ
+ 1

))
= U−1 [U (φ) − ϵ] . (32)

Hence, indeed the transfer functions, and thus the spiking
dynamics, are identical, Hϵ(φ) = H̃κ (φ), see equation (28).
By solving equation (30) for U (φ), we get the inverse

transformation. Given a multiplicative-coupling rise function
Ũ (φ), the same system can be described in terms of additive
pulse coupling with rise function

U (φ) = 1 − ϵlog1−κ (Ũ (φ)). (33)

Equations (30) and (33) can be interpreted as families
of equivalent rise functions. For a given rise function
U (φ) for additive coupling and a given additive coupling
strength ϵ, the coupling strength κ of the transformed dynam-
ics can be chosen freely, when Ũ is chosen accordingly,
so that κ effectively parametrizes the possible equivalent
multiplicative-coupling rise functions Ũ . Inversely, possible
transformations to additive coupling are captured by different
choices of the new coupling strength ϵ, given a fixed original
multiplicative-coupling strength κ . For heterogeneous cou-
pling, we refer to section IV-C.

While transformations (30) and (33) are given in terms of
the rise functions U (φ) and Ũ (φ), they are easily transferred
to the actual neuron dynamics by letting x(t) = U (φ(t)),
x̃(t) = Ũ (φ(t)):

x̃(t) = (1 − κ)

(
1−x(t)

ϵ

)
, (34)

and

x(t) = 1 − ϵlog1−κ (̃x(t)), (35)

where we assume x(T ) = x̃(T ) = x thr = 1. We point out
that the period length T and hence also the phase velocity
dφ/dt = ω = 1/T is necessarily the same for equivalent rise
functions.

For implementation purposes (software or hardware),
one can consult equations (30) and (33) or equations
(34)-(35) to identify appropriate neuron potentials or free
time evolutions, respectively, for both additive and multi-
plicative coupling. Which type of neuron model and coupling
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type is the most advantageous one for a given situation will
strongly depend on the specific application. However with the
proposed transformation the option space is extended, which
potentially allows for more effective, more robust, or cheaper
implementations.

A. ADDITIVE TO MULTIPLICATIVE COUPLING
First we consider the transformation from additive to
multiplicative coupling via equation (30), as illustrated by
figure 3a-c for two standard neuron models. Note that for
the transformed neuron dynamics, Ũ (φ), we have Ũ (0) > 0.
Indeed, from equation (30) we find

ŨR = (1 − κ)
1−UR

ϵ , (36)

where we write ŨR = Ũ (0) and UR = U (0) for the
reset potentials of Ũ (φ) andU (φ), respectively. According to
equation (36) it is not possible to normalize both to U (0) =

0 and Ũ (0) = 0 at the same time. In fact, it is a necessary con-
dition for the equivalence between a multiplicative-coupling
rise function Ũ and an additive-coupling rise function U that
Ũ (φ0) = 0 and U (φ0) = −∞ for the same phase φ0, or in
the limit φ → −∞. Illustratively speaking, Ũ (φ0) = 0 and
U (φ0) = −∞ define the phase φ0 at which the effect of
multiplicative and additive coupling, respectively, vanishes,
which must be the same for equivalent dynamics.

If we require U (0) = 0, as is usually done for
additive-coupling rise functions, the reset value ŨR =

Ũ (0) = (1 − κ)1/ϵ > 0 is always larger than the minimally
allowed potential Ũ (φ) = 0. From a practical perspective, the
equivalent multiplicative coupling uses a baseline potential
ŨG = 0 lower than the reset potential ŨR > 0 (which
can be considered a natural generalization of the standard
multiplicative coupling as introduced in the last section).
In this case, UR = 0, ŨR > 0, we can also rewrite the
transformation (30) in terms of the reset voltage ŨR of the
multiplicative coupling,

Ũ (φ) = Ũ (1−U (φ))
R . (37)

While in equation (30) the family of equivalentmultiplicative-
coupling rise functions is parametrized in terms of the
coupling strengths κ of the new coupling, equation (37)
parametrizes the possible transformations in terms of ŨR,
from which the new coupling strength is found as κ =

1 − (ŨR)ϵ .
For example, consider the standard leaky integrate-and-fire

potential (eq. (13))

U IF,add.(φ) =
I
γ

(
1 − e−γφT

)
=

I
γ

(
1 −

(
1 −

γ

I

)φ
)

,

(38)

where T = −γ −1ln(1 − γ /I ), with an additive-coupling
transfer function

H IF,add.
ϵ (φ) =

ln
(
(1 − γ /I )φ + ϵγ /I

)
ln(1 − γ /I )

. (39)

As before, we use a tilde to differentiate between rise
functions for multiplicative or additive pulse coupling;
the superset “add.” denotes that the original model (here
integrate-and-fire, “IF”) was formulated for additive cou-
pling. Transforming via equation (30), we get an equivalent
rise function

Ũ IF,add.(φ) = (1 − κ)
1
ϵ

(
1− I

γ (1−(1− γ
I )

φ
)

(40)

= Ũ

(
1− I

γ (1−(1− γ
I )

φ
)

R (41)

for multiplicative coupling.
As another common example for additive coupling we

consider the rise function

UMS,b,add.(φ) =
1
b
ln

(
1 +

(
eb − 1

)
φ
)

, b > 0, (42)

(see eq. (15)) which diverges for a finite phase φ0 = 1/(1 −

eb) ∈ (−∞, 0] and corresponds to an additive-coupling
transfer function

HMS,b,add.
ϵ (φ) =

e−bϵ − 1
eb − 1

+ e−bϵφ, (43)

(see eq. (16)) and an equivalent multiplicative coupling rise
function

ŨMS,b,add.(φ) =

(
1 +

(
eb − 1)φ

)) ln (1−κ)
bϵ

=

(
1 +

(
eb − 1)φ

))b−1 ln ŨR
(44)

We point out that for practical applications, the offset
reset voltage ŨR > 0 might be avoided by modifying the
transformed rise function Ũ (φ) in an interval φ ∈ [0, δ]
arbitrary close to the reset phase φ = 0, such that Ũ (0) =

0 and Ũ (φ) is still strictly monotonous and continuous.While
doing somight slightly change the collective dynamics during
transients, for stable orbits in which neurons do not reach
non-positive phases via inhibition, δ can be chosen such
that the dynamics are completely equivalent to the original
additive-coupling case.

B. MULTIPLICATIVE TO ADDITIVE COUPLING
Figure 3d-f illustrates the transfer of multiplicative to additive
coupling via equation (33) in the case of Ũ (0) = ŨR ≡ 0.
This represents the most natural formulation for multiplica-
tive coupling (as described in the last section, also see
figure 2), where the reset potential ŨR is equal to the
ground potential ŨG = 0. In this case, the effect of
the coupling vanishes right at the reset phase φ = 0.
Hence, no negative phases are necessary, φ ∈ [0, 1].
However, multiplicative coupling with ŨR = 0 requires
a divergence of the additive-coupling rise function U (φ)
at φ = 0, limφ→0+ U (φ) = −∞, forbidding nor-
malization to UR = U (0) ≡ 0, or any other finite
value.

Note that the phase φ1, above which the neu-
ron potential for additive coupling becomes positive,
U (φ1) = 0, is connected to the coupling strength
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FIGURE 3. Transformation between additive and multiplicative pulse coupling. (a,d) Additive-coupling rise function U(φ). (b,e) Transfer function
Hϵ (φ) = H̃κ (φ). (c,f) Multiplicative-coupling rise function Ũ(φ). (red): Leaky integrate-and-fire neuron model with additive coupling (eq. (14) with I = 1,
γ = 0.9), ϵ = 0.2, κ = 0.3. (blue): Mirollo-Strogatz neuron potential with additive coupling (eq. (15), b = 2), ϵ = 0.4, κ = 0.4. (brown): Leaky
integrate-and-fire neuron model with multiplicative coupling (eq. (21) with I = 1, γ = 0.9), ϵ = 0.2, κ = 0.2. (green): Neuron potential ŨMS,c with linear
transfer function for multiplicative coupling (eq. (49) for c = 2), with ϵ = 0.2, κ = 0.3.

ϵ via (1−κ)1/ϵ = Ũ (φ1), so that it can be chosen freely within
(0, 1) by adjusting ϵ accordingly, in principle arbitrary close
to 0. Instead of ϵ, we can also use φ1 or Ũ (φ1) to parametrize
the family of equivalent additive-coupling transfer functions:

U (φ) = 1 − logŨ (φ1)Ũ (φ) = 1 −
ln Ũ (φ)

ln Ũ (φ1)
. (45)

Consider, for example, multiplicative coupling with a
standard leaky integrate-and-fire rise function

Ũ IF,mult.(φ) =
I
γ

(
1 −

(
1 −

γ

I

)φ
)

, (46)

and a corresponding transfer function

H̃ IF,mult.
κ (φ) =

ln
(
κ + (1 − κ)(1 − γ /I )φ

)
ln(1 − γ /I )

, (47)

wherewe use the superscript “mult.” to point out that the orig-
inal rise function is implemented for multiplicative coupling.
Via equation (33) we find an equivalent additive-coupling rise
function

U IF,mult.(φ) = 1 − ϵ log1−κ

(
1 − (1 − γ /I )φ

γ /I

)
= 1 − logŨ (φ1)

(
1 − (1 − γ /I )φ

γ /I

)
, (48)

see figure 3g-i.
As a second example we give

ŨMS,c,mult.(φ) = φ1/c, c > 0, (49)

with a linear multiplicative-coupling transfer function

H̃MS,c,mult.
κ (φ) = (1 − κ)cφ (50)
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and an equivalent additive coupling rise function

UMS,c,mult.(φ) = 1 −
ϵ

c
log1−κ (φ)

= 1 −
ln (φ)
ln (φ1)

, (51)

which is the Mirollo-Strogatz neuron potential UMS,b

(eq. (15)) shifted such that its divergence occurs at φ0 = 0.
Additive-coupling rise functions as created by the transfor-

mation (33) might be sufficiently approximated also by rise
functions without divergent behavior for φ → 0+, allowing
normalization to U (0) = 0. For a practical example, see
section V-A.

C. INHOMOGENEOUS COUPLING STRENGTHS
In the last sections we demonstrated a general approach
to transfer multiplicative pulse-coupling to additive pulse-
coupling and vice-versa. By setting ϵij ≡ ϵ and κij ≡ κ ,
we implicitly assumed that the coupling strengths do not
depend on the neuron jwhich is sending the pulse, but only on
the receiving neuron i (whose index iwe suppressed through-
out). However, the equivalence between multiplicative and
additive coupling holds also for inhomogenuous coupling
strengths and coupling topologies defined on networks.
In order to have equivalent dynamics for variable original
coupling strengths, not only the rise functions, but also the
coupling strengths itself are transformed via a mapping that
is uniquely determined by defining two values of ϵ and κ as
equivalent. Consider equation (30) again:

Ũ (φ) = (1 − κ)

(
1−U (φ)

ϵ

)
. (52)

The corresponding transfer functions for additive and multi-
plicative coupling are equal not only for the specific choice of
ϵ and κ used in the transformation (52) itself, but also for any
combination of additive andmultiplicative coupling strengths
ϵ′ and κ ′ that satisfies

κ ′
= 1 − (1 − κ)ϵ

′/ϵ, (53)

as can be verified in analogy to equations (26)-(32). Hence,
for each neuron i, a single choice of two equivalent coupling
strengths defines both the transformed rise functions as
well as the mapping between arbitrary equivalent coupling
strengths ϵij, κij.

For transforming standard additive coupling with UR =

U (0) = 0 to multiplicative coupling, the mapping between
equivalent coupling strengths may also be defined in terms
of the reset voltage ŨR = Ũ (0) of the new rise function,
not requiring an explicit choice of two equivalent coupling
strengths. The new multiplicative-coupling rise function is
then given in terms of

Ũ (φ) = Ũ (1−U (φ))
R , (54)

see equation (37), while the mapping between equivalent
coupling strengths ϵij, κij is given by

κij = 1 − Ũ
(ϵij)
R . (55)

Similarly, if the possible transformations of multiplicative
coupling with ŨR = 0 to additive coupling are parametrized
via the phase φ1 for which U (φ1) = 0,

U (φ) = 1 − logŨ (φ1)Ũ (φ) = 1 −
ln Ũ (φ)

ln Ũ (φ1)
, (56)

see equation (45), the transformation between equivalent
coupling strengths κij, ϵij is defined via

ϵij =
log (1 − κij)

log (Ũ (φ1))
. (57)

Interaction topologies defined on a directed graph can be
either implemented explicitly in terms of an adjacency matrix
Aij that defines which neurons i receive a pulse from another
neuron j or, implicitly, by setting ϵij = 0 or equivalently
κij = 0 for neurons that are not connected in the specific
direction. For an example of delayed heterogeneous coupling
on a directed network, see the next section.

V. EXAMPLE APPLICATIONS
A. NETWORK COMPUTING
To give a practical example for a transformation from
multiplicative to additive pulse-coupling, we consider an
implementation of a k-winners-take-all (k-WTA) computa-
tion based on an network ofN inhibitorily coupled oscillatory
neurons, as proposed in reference [22]. The free dynamic of
each neuron i ∈ {1, . . . ,N }, with state variable x̃i, is defined
by a differential equation

˙̃x i = (I − γ x̃i) ξi(t), (58)

with global constants I > γ , neuron-specific external input
ξi(t) : R → R+, and a reset rule, which sets x̃i(t

+

i ) := 0 for
each time ti where x̃i(ti) = x̃ thr ≡ 1. Assuming that the
input signals ξi(t) changemuch slower than the dynamic xi(t),
we get a free dynamic

x̃i(t) =
I

γ ξi(t)
(1 − e−γ t ) for 0 < t ≤ T , (59)

with free period length T = −(ξi(t)γ )−1ln(1 − γ /I ). The
interaction between different neurons is given in terms of all-
to-all inhibitory multiplicative pulse-coupling

x̃i(t
+

j ) = (1 − κ) x̃i(tj), (60)

(cf. eq. (18)) with global coupling strength κ .
Now, for performing k-WTA computations, the functions

ξi(t), which set the intrinsic frequencies ωi = 1/Ti ∝ ξi(t) of
the individual neurons, are interpreted as the time-dependent
input of the network, while the stream of reset events (i.e.,
the sent pulses) define the output space, see figure 4a. Upon
varying ξi(t), the system after a typically short transient
converges to a periodic orbit, in which only the k ≤ N
neurons with the largest intrinsic frequencies ωi spike,
thereby revealing the subset of the k largest input signals ξi.
The number of “winners” k is selected by adjusting the
global coupling strength κ accordingly, allowing for easy re-
configurability. The underlying mechanism is summarized
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FIGURE 4. Reconfigurable k-WTA computation via symmetrical inhibitory coupling for multiplicative and additive coupling. (a) All-to-all network of
N = 5 oscillatory neurons with time-dependent external inputs ξi (t) setting the intrinsic frequencies of the individual neurons. (b): Choice of ξi for the
illustrated dynamics. (c,f,i) Rise functions for multiplicative, additive, and approximated additive coupling with Uapp(0) = 0. In (i), The phase δ below
which Uapp(φ) (solid line) deviates from U(φ) (dotted line) is denoted by a blue line. The minimum phase φ that is reached via inhibition is marked by a
cross. (d,g,j) Equivalent dynamics with k = 2 spiking neurons for multiplicative, additive, and approximated additive coupling. κ = 2 for multiplicative
and ϵ = 0.1 for additive coupling. (e,h,k) Equivalents dynamics with k = 3 spiking neurons for multiplicative, additive, and approximated additive
coupling. κ ′ = 1.9 for multiplicative and ϵ′ ≈ 0.089 for additive coupling.

as follows: Upon receiving a pulse from a neuron i, due
to the multiplicative inhibitory coupling all other neurons
j ̸= i loose a certain share κ of their voltage, pushing their
voltages closer together on an absolute scale. Depending on
the inhibition strength, this allows faster neurons to overtake
slower ones repeatedly, potentially keeping the latter from
spiking altogether. Figure 4d,e illustrates typical dynamics
with k = 2 and k = 3, for a specific choice of input signals
ξi(t) ≡ ξi (fig. 4b), in the original multiplicative-coupling
formulation, with rise function

Ũi(φi) =
I
γ

(
1 −

(
1 −

γ

I

)φi
)

, (61)

(see fig. 4c) and transfer function

H̃κ,i(φi) =

ln
(

κ + (1 − κ)
(
(1 −

I
γ

)φi
)

ln
(
1 −

I
γ

) . (62)

The equivalent dynamics (fig. 4g,h) for additive coupling
are implemented via a free neuron dynamic given by

xi(t) = 1 − ϵ
log

(
I
γ

− ( I
γ

− (1 − κ)1/ϵe(tγ )
)

log (1 − κ)
, (63)

which corresponds to an additive-coupling rise function

Ui(φi) = 1 − ϵ

I
γ

(
1 −

(
1 −

γ
I

)φi
)

log (1 − κ)
, (64)

see figure 4f.

Note that neither Ũi(φi) nor Ui(φi) depend on ξi(t)
itself because for the specific free dynamics as given by
equation (58) the shape of the rise function itself does not
change with ξi(t), but only the intrinsic neuron frequency
ωi = 1/Ti. For the illustrated transformation, we required
that multiplicative coupling strength κ = 0.21 (for the first
orbit, with k = 2) is equivalent to additive coupling strength
ϵ = 0.1, so that κ ′

= 0.19 (for the second orbit, with k = 3)
is equivalent to ϵ′

= ϵ log (1 − κ ′)/ log (1 − κ) ≈ 0.089,
(cf. eq. (53)).

For practical implementation one could consider whether
the multiplicative-coupling version with neuron dynamics as
given by (58) or the additive-coupling version (63) would
be more straightforward or advantageous to implement,
as both produce equivalent spike sequences. Depending on
the application, it also might be acceptable if the actual
implementation only approximates these equations in a
reasonable manner.

Figure 4i-k illustrates how additive coupling with U (0) =

UR = −∞ can be effectively approximated by a modified
additional-coupling rise function U app(φ) which satisfies
U app(0) = 0 for a more practical implementation. Here,
we require that U app(φ) ≡ U (φ) for phases φ ≥ δ ≡

0.2 and define U app(φ) for φ < δ in terms of a cubic
extrapolation which satisfies U app(0) = 0. For our specific
choice of δ = 0.2, the illustrated spiking dynamics are
in fact fully equivalent to both the original multiplicative
and the exact additive transformation, because the minimal
phase reached upon inhibition is larger than δ = 0.2
(see fig. 4i).
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FIGURE 5. Topology-induced phase synchronization via inhibitory coupling with delay, for multiplicative and additive coupling. (a) Network of
N = 10 identical integrate-and-fire neurons, with interaction topology defined by graph G. Strongly connected components A and B affect C
independently from each other. (b) After addition of a directed link from node 1 to 5, A affects both B and C and acts as a single “source” of the new
interaction graph G′ . (c,g) Equivalent rise functions U(φ) and Ũ(φ) for additive and multiplicative pulse coupling. For additive coupling, we use standard
integrate-and-fire dynamics as described by eq. (13), with I = 1, γ = 0.9. (d,h) Equivalent coupling strengths ϵij and κij for additive and multiplicative
coupling, respectively, as given by eq. (73), for the interaction graph G. The matrix element corresponding to the added link is marked by a green square.
For the delay between all connected units we take τ = 1. (e,j) Phase lag of the individual units i relative to the period length T (periodic) collective
dynamic after a transient. Strongly connected components A and B act as individual sources of the directed interaction graph G, not allowing for global
phase synchronization. (f,g) Adding a single link makes A the only source in the new interaction graph G, leading to full phase synchronization.

B. TOPOLOGY-INDUCED SYNCHRONIZATION
As a second example, we consider a network with delayed,
heterogeneous coupling, implementing a phenomenon ini-
tially addressed in [31], which relates topological features of
directed interaction graphswith the degree of synchronization
in the resulting collective dynamics. Though originally
described for continuously coupled Kuramoto oscillators,
we here reproduce the effect for leaky-integrate and fire-
dynamics with delayed additive inhibitory pulse coupling
and then exemplarily transfer the dynamics to multiplicative
coupling.

Consider a network of N identical oscillatory neurons with
leaky integrate-and-fire dynamics

ẋi = I − γ xi, (65)

with I = 1, γ = 0.9, and a reset rule which sets xi(t
+

i ) = 0
for each time ti where xi(ti) = x thr ≡ 1, leading to a free time
evolution

xi(t) =
I
γ
(1 − e−γ t ) for 0 < t ≤ T , (66)

with period length T = −γ −1ln(1 − γ /I ). The interaction
between different units is given in terms of delayed inhibitory

additive pulse-coupling with

xi(t
+

j + τ ) = xi(tj + τ ) − ϵij, (67)

(cf. eq. (6)), where τ > 0. The coupling strengths ϵij are given
in terms of the adjacency matrix A of an directed graph with
matrix elements Aij ∈ {0, 1} as

ϵij = ϵAij/gi, (68)

where gi =
∑

j Aij is the in-degree of node i and
ϵ > 0 is a global constant. Figure 5a,b depicts two
interaction graphs, G and G′, which are identical except for an
additional directed link between neurons 1 and 5 in the second
graph.

Figure 5e,f shows for both network topologies the relative
time lag between reset events of the neurons after a periodic
orbit is reached, from the same random initial condition.
While the first interaction topology leads to only partial
phase synchronization (fig. 5e), adding a single link, A5,1 :=

1, leads to full synchronization with no phase lag at all
(fig. 5f). This is directly connected to the strongly-connected
components of the graphs G and G′, referred to as A, B, andC .
While in the first interaction topology, A and B independently
affect C , with no feedback from C back to A or B, and no
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interaction at all between A and B, in the second topology,
component A additionally affects B. While for G, A and B
synchronize independently to different phases depending on
the initial conditions and do not allow for C to synchronize
to a single phase, for G′, A acts as a single “source” of
the system, which synchronizes autonomously and forces its
phase upon the rest of the network via directed connections
to all other nodes.

In terms of the phase formalism, for the original additive
coupling (eq. (67)), we have rise functions

Ui(φ) =
I
γ

(
1 − e−γφiT

)
=

I
γ

(
1 −

(
1 −

γ

I

)φi
)

, (69)

and transfer functions

H IF
i,ϵij (φi) =

ln
(
(1 − γ /I )φi + ϵijγ /I

)
ln(1 − γ /I )

. (70)

Note that the neurons itself are identical in their free
dynamics, and only differ in their coupling strengths, and
hence their transfer functions, see figure 5c. Although it is
not strictly necessary, it is reasonable to maintain identical
free dynamics also when using multiplicative coupling, with
different coupling strengths κij for each neuron pair. We set
the reset voltage ŨR = Ũ (0) > 0 to be the same for each
neuron, ŨR ≡ 0.1, and use it to define the transformation to
multiplicative coupling (see eq. (37)), leading to free neuron
dynamics

x̃i(t) = Ũ

(
1− I

γ
(1−e−γ t )

)
R , (71)

or, equivalently, rise functions

Ũi(φi) = Ũ

(
1− I

γ (1−(1− γ
I )

φi
)

R , (72)

see figure 5g, with corresponding multiplicative coupling
strengths

κij = 1 − Ũ
(ϵij)
R = 1 − Ũ

ϵAij/gi
R , (73)

see figure 5d,h. Starting from equivalent initial conditions, the
resulting spiking dynamic and hence also the degree of phase
locking (see fig. 5j,i) is exactly the same as for the original
additive-coupling formulation.

As argued in section IV, for practical purposes, one could
choose whether to implement an additive-coupling system
with neuron dynamics as given by equation (65) or an
multiplicative-coupling system with neurons dynamics (71).
Which one is more advantageous will usually depend on the
specific circumstances.

VI. CONCLUSION
Basic standard models of spiking neural networks such
as networks of leaky integrate-and-fire neurons exhibit
additive interactions where the postsynaptic response of a
neuron is parametrized in terms of a coupling strength.
Other and more advanced models feature multiplicative
coupling where the state change of the postsynaptic neuron

depends on the state that neuron is in at the time of pulse
reception.

Here we have demonstrated for the first time that under
certain conditions, additive and multiplicative inhibitory
pulse coupling may be viewed as two mathematically
equivalent options for modeling. In particular, the phase
representation originally introduced by Mirollo and Strogatz
for additive coupling [5] is readily modified to equally
characterize dynamics of pulse-coupled systems with multi-
plicative coupling. To explicate the equivalence most clearly,
we analyze a simple class of systems with instantaneous
(delta-coupled) postsynaptic responses and homogeneous
inhibitory coupling. We find in particular that inhibitory
multiplicative coupling can be transferred to additive cou-
pling and vice-versa by simultaneously modifying the neuron
potential, that is, the free neuron dynamics, so that the
resulting spiking dynamics are identical. The coupling
parameter of the new coupling may be chosen freely, if the
neuron’s rise function is selected accordingly. We discuss
some peculiarities of the transformed neuron models in
detail, such as non-zero reset voltages, and suggest approx-
imations to avoid these. The equivalence between additive
and multiplicative coupling holds also for inhomogeneous
and delayed coupling as well as networked systems with
intricate interaction topology, if all coupling strengths are
transformed by the same mapping (for every receiving
neuron).

To illustrate the range of applicability, we simulate two
different collective phenomena both for models of additive
and multiplicative coupling. The first example supports
k-winner-takes-all computations via symmetrically all-to-all
coupled neuron networks; the second topology-dependent
synchronization for inhibitory pulse coupling with delays.
The findings explicate that indeed exactly the same collective
dynamics can be generated by models with either type of
coupling. Also, we exemplify that slight manipulations of
the transformed neuron potentials can allow more effective
realization, often without changing the resulting collective
dynamics at all.

In order to establish the general connection between
additive andmultiplicative pulse-coupled systemswe focused
on deterministic, i.e., noiseless dynamics. While an exact
equivalence only holds for deterministic systems, the pro-
posed transformations should be a good approximation for
systems under the influence of weak noise. For example,
the transformation could slightly change the noise level at
which noise may force the dynamics to leave a given attractor,
but not the set of mapped attractors itself. Then, at low
noise levels, the noise, whether additive or multiplicative,
acts by temporally perturbing the deterministic dynamics.
For noise amplitudes that do not change the spiking pattern
qualitatively, a deterministic description would serve as a
reasonable starting point to find hardware implementation
options, which require fine tuning anyways. Example systems
useful for modeling hardware implementations include
phase change neurons [38], [39], or diffusive memristor
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neurons [36], [37]. Hence, we expect our theoretical results
to qualitatively hold for stable orbits and small noise
levels, while details are system-dependent and will have
to be studied for each individual implementation with
noise.

Besides from a dedicated analysis of possible gen-
eralizations to neurons exhibiting stochastic noise [34],
other possible future paths could include generalizations to
neurons exhibiting partial resets [32], [33], interactions via
finite-width pulses as are commonly found in biological
systems, or more general phase reponse functions.

Apart from advancing the theoretical foundations for
modeling spiking neural networks, the established connection
between different types of pulse coupling has two main
implications. First, it allows an easy transfer of theoretical
results for additive pulse coupling to systems with multi-
plicative pulse coupling and vice-versa. Second, transforming
between different types of coupling extends the option space
for modeling and implementation, allowing to freely choose
the coupling type or neuron type that is the simplest one
to implement in a given practical situation where a specific
dynamic or functionality is required. For example, theoretical
results on multiplicative coupling could be ported to readily
available neuromorphic hardware optimized for additive
coupling [35].
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