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Abstract
Inferring direct interactions in complex networked systems from time series data constitutes a
challenging open problemof current research.Major obstacles include the often limited number of
time points accessible, unknown or inaccurate dynamical systemsmodels inmany practical
applications, the impossibility to infer topological information from invariant collective dynamics
such as synchronized states, and the required computational effort. Here, we propose and analyze a
mathematical scheme that transforms observed transient dynamics towards invariant states in to
accelerated reference frames to reveal network interactions. The transformation yields simple linear
constraints relating a number of short observed time series (of only a few data points) of the dynamics
to estimates the absence, presence and strength of direct physical interactions in a computationally
efficient way. Aswe illustrate numerically, the scheme applies across transient dynamics towards
periodic and chaotic, phase-locked and other synchronized states. Reconstruction robustly reveals the
entire connectivity of network dynamical systemswith increased reconstruction quality for large and
for sparse networks.

The collective dynamics of a networked system is shaped by its underlying interaction topology [1–8]. Yet,
whereas recording the dynamics of individual units of networks is becomingmore accessible in experimental
settings, directlymeasuring the physical interaction topology of networks is often infeasible. Researchers
routinely resort to indirectmethods to infer the physical interactions from the networks’ collective dynamics [9].
State-of-the-art approaches infer physical interactions viaODEmodeling using large repertoire of functions
[10–14]. Such approaches require the entire dynamics to admit a sparse representation in the chosen repertoire,
which is difficult to satisfy if no prior information is provided.More recent approaches bypass the need for
sparsity and reconstruct the full interaction topology by either imposing functional decompositions in grouped
variables [15], or by driving the network dynamics with known constant signals [16].While the former strategy
carries along a high computational complexity thatmay become intractable in large networks, the latter
demands an accurate (and often infeasible) control of network dynamics.

Moreover, the dynamics of systems in invariant sets (such as synchronized states), formathematical reasons,
is generically not capable of revealing complete topological interaction patterns [17–19]. This constraint comes
about because in invariant states, the dynamics of each unit exhibits a strict functional dependence on the
dynamics of the other units in the system such that the information contained in observed time series is
insufficient for inferring interactions, nomatter howmany time series and howmany data points per series are
observed. As a consequence, practical approaches [14, 20–24] exploit transient dynamics towards synchronized
or locked states such that the dynamics are not exactly invariant and do contain sufficient information for
inferring network interactions, at least in principle. For simple classes of phase oscillators with constant, state-
independent frequencies exhibiting exactly phase-locked or fully synchronous dynamics, transforming time
series to a frame of reference that is co-movingwith the dynamics is often possible by subtracting a term
−Ωt, containing the collective frequencyΩ of the phase dynamics of each oscillator. However, such simple
transformations are useless if intrinsic oscillator frequencies and collective frequencies are state-dependent, if
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individual oscillators havemore than one variable and in particular if collective dynamics is non-periodic and
for instance chaotic.

In this article, we propose a tractable andmodel-free approach for inferring the interaction topology of
networks relying only on transient dynamics towards stable attractors such as synchronized or phase-locked
states. Specifically, we introduce the concept of accelerated reference frames (ARFs) in network dynamical
systems and showhow a nonlinear transformation of time series by subtracting reference variables that are
accelerated and state-dependent themselves can reveal direct physical (as opposed to correlative statistical)
interactions. Reconstruction is feasible for dynamics towards phase-locked or otherwise synchronized states
with periodic or aperiodic and chaotic collective dynamics. Transformations in to co-moving ARFs enables
linearizations aboutfixed points in the transformed dynamics, and thusmapping of the original inference
problem to one for transient relaxations towards linearly stablefixed points. TheARF transformation thereby
opens up solving a previously hardly accessible range of inference problems in a computationally effective,
model-independent way.

1.Network inference on accelerated reference frames

Tounderstand howARFs aid in revealing the connectivity of networked systems, considerN coupled dynamical
units of the form

x f x , 1i i
i= L˙ ( ) ( )

where x ti Î( ) represents the state of unit i N1, 2, ,Î ¼{ }at time t, x x td di i=˙ denotes time derivative,
f :i

N  is an unknown continuously differentiable function determining the dynamics of i and
x x xx , , , N

N
1 2

T ¼ Î≔ [ ] is a vector containing the state of all units in the network. The explicit dependency
matrices 0, 1i N NL Î ´{ } for i N1, ,Î ¼{ }, introduced in [15], are diagonal and their entries indicate which
other units in the network directly affect the dynamics of unit i [15]. Specifically, if a unit j does not directly affect
the dynamics of i, we have f x 0i j¶ ¶ º for all times t, and define 0j

iL = and if it does, we have f x 0i j¶ ¶ ≢ and

define 1j
iL = . Thus the diagonal entries j

iL are non-zero if and only if the elementAij of an adjacencymatrixA,
defining the dependency structure in a graph-theoretic setting, is non-zero.

Our aim is to transform the dynamics (1) to new variables ty( ) such that these exhibit convergence to afixed
point if the original variables tx( ) exhibit convergence to some formof synchronized state (see below for details).
We propose to represent the dynamical units in (1) by subtracting anARF as

y x g x , 2i i i= - ( ) ( )

where g :i
N  indicates the location of ith component of the reference frame. Especially, the function

g g gg x x x x, , , N
N

1 2
T ¼ Î( ) ≔ [ ( ) ( ) ( )] represents an accelerated frame because itmoves in dependencewith the

network state x.We note that the reference frame is ‘accelerated’with acceleration identically zero if
g t x 0d di

2 2 º( ) for all times t.
The time evolution of units in the accelerated frame is then given by

y x g x x, 3i i i= -˙ ˙ ( ) ˙ ( )

where  is the gradient operator, and it follows that

y f hx x , 4i i
i

i= L -˙ ( ) ( ) ( )

with
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Assuming that y is sufficiently small, wemay approximate (4) around g x( ) tofirst order in the yi as

y f h C yg x g x g x , 6i i
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Thefirst two terms on the right hand side of (6) define the intrinsic local dynamics of the transformed
variables yi, whereasCij, appearing in the third term and defined via (7), quantifies the effective coupling strength
fromunit j to i in the accelerated frame.
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Our goal is to identify which of the j
iL are zero and thuswhere there is no direct physical interaction from j

onto i andwhich j
iL are one, indicating a direct interaction.We remark that the quality of the inference options

discussed below depend on the resulting transformation of interactions (7), as it depends on the degree the
relative influence of thefirst term versus that of the second term in (7). This quality thus depends on the
dynamics of the accelerated frame also set by properties of the systemdynamics fi, the ARF transformation
functions gi and on the actual size and sparsity of the network, as wewill discuss shortly. Independent of those
details, the connectivity properties of the original system (1) should be identifiable if the second term in (7) is
sufficiently small.We need to carefully choose a reference frame to enforce a (ideally very strong) correlation
between Cij (·) and j

iL , reflecting the coupling between the accelerated and original dynamical variables.
The long termbehavior of a range of systems exhibiting attractors with oscillatory, periodic or chaotic

dynamics,may be transformed to relaxations towards fixed points if appropriate reference frames are chosen.
For instance, phase oscillators evolving towards phase-locked states (x t x ti j ij- = D( ) ( ) ) or identically
synchronizing oscillators (x t x t 0i j- =( ) ( ) )may be considered as relaxing towards afixed point if we subtract
the average state variable across all oscillators from each individual oscillator’s state, see figure 1 below. In such
ARFs, differences with respect to the average phase change as the system evolves towards the phase-locked state
and remain constant once the system reaches suchfinal state, see figure 1 for illustration.

Inmathematical terms these propertiesmean that for such attractors there are functions g : N N (·)
that satisfy x t g t yxi i i

*- ( ) ( ( )) for all i as t  ¥. Thus, we propose that an analogous system

y t f tyi i=˙ ( ) ˜ ( ( )) evolving towards afixed point in the accelerated framemay be approximated around that point

y y yy , , ,
N

N
1 2

T* * * * ¼ Î≔ [ ] as

y t A y t y , 8i
j

N

ij j j
1

*å -
=

˙ ( ) [ ( ) ] ( )

where f :i
N ˜ is an unknown function determining the evolution of yi and A f yyij i j*¶ ¶≔ ˜ ( ) may be used

as a proxy for a interaction strength fromunit j to i.
So, given a collection ofM transient states t ty y,m m{ ( ) ˙ ( )} towards y*, we pose the reconstruction problem as

the errorminimization

y t A y t yJ arg min , 9i
J m

M

i m
j
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ij j m j
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where J J JJ , , ,i i i iN
N

1 2 ¼ Îˆ ≔ [ˆ ˆ ˆ ] represent the inferred incoming links to unit i. In particular,minimization (9)
may be efficiently solved using theMoore–Penrose pseudoinverse [25] ifM>N, and it can be solved for
different units in parallel [9].

Figure 1.Variable transformation through accelerated reference frames (ARFs). ARFsmaymap (a), transient dynamics towards a
chaotic synchronized state to (b), transient dynamics towards a (co-moving)fixed point. The original unit variables xi (t) are
transformed to new variables y t x t g txi i i= -( ) ( ) ( ( ))with theARF defined via the functions g. For setting (b), the deviation yi of
every unit’s state with respect to the ensemble average (here by example defining theARF, via (10) below) becomes a zero constant,
y t 0i ( ) as t  ¥.
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2. Average network states as examples of AcceleratedReference Frames (ARFs)

As an illustrative example, consider the average over the units’ states to define an appropriate ARF for a class of
systems exhibiting transient dynamics towards phase-locked or otherwise synchronous dynamics.We start
focusing on phase-lockingwhere x t x tj i ij-  D( ) ( ) for all i j, as t  ¥ and illustratemore complex
collective dynamics below. Examples of phase-locking systems are networks of phase oscillators and other
network dynamical systems exhibiting collective synchronization (whereΔij=0 for all i, j in case of identical
synchronization).

We compute the average network state as

t
N

tg x 11 x
1

, 10T=( ( )) ( ) ( )

where 1 1 NÎ { } is a vector full of ones, and T denotes transpose. This definitionwith components

g
N

xx
1

11i
j
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j
1

å=
=

( ) ( )

provides a reference frame that is accelerated, because

g
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which in general is non-constant in time. The units’ state and rate of change defined through (2) and (3) yield

y t x t
N

x t
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, 13i i
j
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j
1

å= -
=

( ) ( ) ( ) ( )

y t x t
N

x t
1

. 14i i
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In particular, in locked-like states, all unitsmove together with the same collective velocity, thereby y t yi i
*º( )

for all t (see figure 1(b)). So, any perturbation that evolves towards such statemay be seen as a relaxation towards
afixed point in the yi variables, where y t ylim 0t i i

*- =¥( ( ) ) for all i.
How can the optimization (9) reveal network links considering transformed variables in this ARF?We gain

insights about the effects of the frame on the proxies Jî of (9) by evaluating (7) on (10) to result in

C t
f t

x N

f t

x
g x

g x g x1
. 15ij
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To obtain an intuition about the conditionswhen inference of a present versus absent original connection
( j

iL )may be feasible, assume for the sake of argument that the derivatives are of the same order ofmagnitude a,

a
f t

x

g x »¶

¶ ¢

( ( ( )))ℓ

ℓ
for all , ¢ℓ ℓ , if they are non-zero. Then for a given link (i, j)we have

C a
n

N
a 16ij j

i j» L -
+

( )

where nj k
N

j
k

1= å L+
= is the number of outgoing connections fromunit j, i.e. its node degree in a graph-theoretic

perspective. Now the task is to distinguish the case where the link is actually present in the network, 1j
iL = and

thus C a aij
n

N

j» -
+

∣ ∣ , from the case where it is absent, 0j
iL = and thus C aij

n

N

j»
+

∣ ∣ . Thus, the formof

(15) intuitively suggests that the distinction between present and absent links is simpler if the network is sparser
(and thus the nj are smaller) and, intriguingly, if the network is larger. The above analysis together with the
intuitive arguments suggest that the average network state indeed is an appropriate ARF, at least for systems
exhibiting synchronizing and locked-like dynamics. The numerical analyses presented below confirm this
picture.

3. Reconstructing networks of phase-locking and synchronizing oscillators

To test our theory practically, we reconstructed the connectivity of coupled oscillators from their transient time
evolution towards some locked or synchronizing states. to start simple, wefirst reconstructed directed networks
of Kuramoto oscillators, figure 3, [26, 27]with dynamics
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x
n

J x x
1

sin , 17i i
i j

N

ij j i
1

åw= + --
=

˙ ( ) ( )

where J N NÎ ´ is given by J=LeA, the operatore stands for entry-wise-matrix product,A is the adjacency
matrix, and both theωi and Lij are randomly drawn fromuniformdistributions on the intervals 0, 1iw Î ( ]and
L 0.5, 1ij Î [ ], and the initial conditions xi (0) of the system are taken from the uniformdistribution
x 0 0.5, 0.5i Î -( ) [ ].Moreover, ni

- as above indicates the number of incoming connections to unit i,figure 3.
To also assess the generality of our theory beyond phase-locking dynamics of one-dimensional (phase)

oscillators, we inferred the connectivity of networks of synchronizing Roessler oscillators [28] in periodic and
chaotic regimes, of synchronizing chaotic Lorenz oscillators [29] and of periodic Goodwin oscillators [30]
serving as simple paradigmaticmodels of gene regulatory circuits. EachRoessler oscillatory unit evolves
according to a network of three-dimensional dynamical units defined as

x x x
n

J x x a
1

, 18i i i
i j

N

ij j i
1 2 3

1

1 1å= - - + --
=

˙ ( ) ( )( ) ( ) ( ) ( ) ( )

x x ax b, 18i i i
2 1 2= +˙ ( )( ) ( ) ( )

x b x x c c, 18i i i
3 3 1= + -˙ ( ) ( )( ) ( ) ( )

where the entries of J are set as before. The periodic and chaotic dynamics were generatedwith parameters
(a, b, c)=(0.2, 1.7, 4.0) and (0.1, 0.1, 18.0), respectively, and the initial conditionswere drawn from the uniform
distribution x x x0 , 0 , 0 5, 5i i i

1 2 3 Î -( ) ( ) ( ) [ ]( ) ( ) ( ) .
The dynamics of each Lorenz oscillator is determined by

x x x
n

J x x a
1

, 19i i i
i j

N

ij j i
1 2 1

1

1 1ås= - + --
=

˙ ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

x x x x b, 19i i i i
2 1 3 2r= - -˙ ( ) ( )( ) ( ) ( ) ( )

x x x x c, 19i i i i
3 1 2 3b= -˙ ( )( ) ( ) ( ) ( )

with (σ,ρ,β)=(10.0, 28.0, 2.5) and initial conditions selected fromtheuniformdistribution x x0 , 0 ,i i
1 2( ) ( )( ) ( )

x 0 5, 0i
3 Î -( ) [ ]( ) .
The dynamics of eachGoodwin oscillator is given by

x x ax a1 , 20i i
p

i
1 3 1 1= + --˙ [ ( ) ] ( )( ) ( ) ( )

x x bx
n

J x x b
1

, 20i i i
i j

N

ij j i
2 1 2

1

2 2å= - + --
=

˙ ( ) ( )( ) ( ) ( ) ( ) ( )

x x cx c, 20i i i
3 2 3= -˙ ( )( ) ( ) ( )

where p=17 and (a, b, c)=(0.4, 0.4, 0.4)with initial conditions drawn from the uniformdistribution x 0 ,i
1 ( )( )

x x0 , 0 0, 3i i
2 3 Î( ) ( ) ( ]( ) ( ) .
To emulate perturbations away from the locked-like state, we started the systems from random initial

conditions and recordedR different transient trajectories towards synchrony. All simulationswere performed in
a time interval t 0, 10Î [ ]withΔt=0.1. Only thefirstM=5 time points per relaxationwere used for
reconstruction. Thus, the total number of time points used for reconstruction is

T MR. 21= ( )

Simulations of phase-locking oscillators (17) confirm that (10) transforms their dynamics in to relaxations
towardsfixed points, figure 2. Inferring links from such relaxations via (9)demonstrates that our theory fully
distinguishes between existing and absent interactions, figure 3(a).Moreover, our results indicate that the
proxies obtained for the coupling strengths are strongly correlatedwith the actual coupling strengths employed
in simulations, figure 3(b).

To study the effects of network sparsity on our framework, we systematically reconstructed networks of
different levels of sparsity s n N1 i- -≔ solving (9) via theMoore–Penrose pseudoinverse [25] and LASSO
[31]. The latter is a standard regularization technique forfitting sparsemodels to data. In our context, the
network connectivity represents the sparsemodel tofit. Furthermore, to compare bothmethods, we evaluated
the quality of reconstructions in terms of the AreaUnder theReciver-Operating Curve (AUC score)which is
equal to 1 for perfect reconstruction and equal to 1/2 for reconstructions equivalent to randomguessing [32].

Our numerics show that the quality of reconstruction increases with networks of greater sparsity for both
Moore–Penrose pseudoinverse and LASSO, figures 4(a)–(b). However, the former shows best performance
for increasing number of trajectories (especially for dense networks),figures 4(a)–(c).Moreover, the
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Moore–Penrose pseudoinverse shows superior performance at separating existing from absent connections,
despite not being an approach specifically designed for variable selection as LASSO [31].

Can our theory reveal the connectivity of networks showingmore complicated dynamics?Networks of
synchronizing dynamical systemsmay evolve in timewith a common yet variable rate of change once the
network has relaxed back to the synchronized (locked-like) state.

Simulations of networks of synchronizing Rössler oscillators (18a)whose rate of change on the synchronized
state changes in time show again that (9) and (10) are effective atmapping the network evolution as fixed point
dynamics and reveal the full network topology regardless of whether the oscillators operate in periodic or chaotic
regimes1,figure 5. These results are further supported by simulations of networks of Lorenz (19a) andGoodwin
(20a) oscillators. Specifically, we compared the reconstruction quality on such systems usingARF and using the
model-free algorithm for InferringNetwork Interactions (ARNI) [15],figure 6. The results show that the ARF-
based theory proposed here requires smaller data sets thanARNI to reveal the full topology of both systems.
These results highlight the advantage of ARFs for inferring the structural connectivity of synchronizing network
dynamical systems.

Figure 2.Average state transforms transient dynamics towards phase-locked state in to transient dynamics towardsfixed point. Phase
(blue) and frequency (red) of a single oscillator (17) (a) in x x,i i( ˙ ), and (b) in y y,i i( ˙).Whereas the phasemonotonically increases and
the frequency saturates, i.e. x ti( ) stays time dependent, the transformation effectivelymaps such dynamics as a relaxation towards a
fixed pointwhere y y y, , 0i i i

*=( ˙) ( ) as t  ¥ for all i.

Figure 3.Proxies Jij
ˆ accuratelymapnetwork connectivity. Reconstruction of a network ofN=50 phase-locking oscillators (17)with

ni=10 andR=70. (a)Reconstructed proxies Jij
ˆ versus j for a single oscillator show that our theory distinguishes existing (green)

from absent (orange) interactions. The dashed lines illustrate threshold to distinguish both groups. (b)Reconstructed Jij
ˆ versus

original Jij show that the proxies are strongly correlatedwith original values.

1
To transform the synchronizing dynamics in to fixed point dynamics, we computed averages for x(1), x(2) and x(3) separately. In general, the

reconstruction processmay be performed in all components.We here selected the component showing a clear distinction between groups of
existing and absent connections.
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Summary andConclusions.Wepresented amodel-independent theory for inferring the interaction topology
of synchronizing networks from solely recording their transient collective dynamics. Specifically, we introduced
and exploited the concept of ARFs in the general context of network dynamical systems to reveal their full
interaction topology under sufficiently weak, otherwise uncontrolled external perturbations. In particular, we
demonstrated that accelerated framesmay transform the dynamics of networked systems in to transient
relaxation dynamics towards fixed points, which can readily be used for network inference.We illustrated this
idea on networks exhibiting phase-locking and synchronization and showed that our theory is robust to non-
trivial dynamical features such as periodic orbits with position-dependent velocities and collective chaos. For the
specific ARF defined through network-wide state averages, the scheme exhibits optimal performance in the limit
of large sparse networks, i.e. n N 0i - .

Whereas exactly synchronous or phase-locked dynamics in principle can generally not reveal the complete
network topology, inferring from transient dynamics towards synchrony or lockingwas so far restricted to
driving-response settings with known signals [16] or to generalmodel-free approaches using a large repertoire of
functions [11, 12, 14, 15].While the former strategy allows to create linearmappings from recorded dynamics to
network topology, the latter allows to infer links from transient dynamics following an unknowndriving or
perturbation.

Figure 4. Increasing number of trajectoriesR reveal network topology regardless of sparsity level. Quality of reconstruction of
networks ofN=50 phase-locking oscillators (17) versus sparsity level for differentR via (a)Moore–Penrose pseudoinverse, and
(b)LASSO. (c)Quality of reconstruction versusR for networks ofN=50 and ni=10. (d)Reconstructed Ĵ withR=60 for both
approaches, colors stand for Jij=0 (orange) and J 0ij ¹ (green).
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Figure 5.Revealing the full connectivity of synchronizing oscillators in periodic and chaotic regimes. Reconstruction of networks
Roessler oscillators (18a) ofN=50with ni=10. y ti

1( ) (blue) and y ti
1˙ ( ) (red) represent the dynamics of a single oscillator (a) in

periodic, and (c) in chaotic regimes. The evolution towards the synchronized state is effectivelymapped asfixed point dynamics.
Reconstructed Jij

ˆ versus original Jij for oscillators (b) in periodic, and (d) chaotic regimes.

Figure 6.ARF-based scheme requires smaller data sets than alternativemodel-free ARNI-based approach. Reconstruction of
networks synchronizing (a) Lorenz (19a) and (b)Goodwin oscillators (20a) ofN=50with ni=10 by our approach (ARF) and the
model-free algorithm for InferringNetwork Interactions (ARNI) [15].
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The theory presented in this article combines the advantages of both strategies simultaneously (i) allowing to
create linearmappings fromdynamics to topology, and (ii) allowing toworkwith transients generated by
unknowndrivings. It also refines the settings (ii) in the sense that fewer data points on trajectories are needed and
simultaneously less computational efforts. These advantagesmaymake the ARF scheme a promising concept for
network inference in its own right.

Given that the theory only requires networks to operate around a steady state in some appropriate reference
frame, this techniquemaywell be transferable to other systems if functions g(·) are appropriately designed. For
generalized settings such as delayed of generalized synchronization as well as other forms of spatio-temporally
ordered dynamics, such transformation functions need to be identified in the future and perhaps be constructed
on demand depending on the type of attractor the networked systemdescribes, for instance bymeans of
expansions in basis functions or other techniques ofmodel selection. The proposed theorymay thus pave a novel
way for network inference applicable to a range of time series data obtained in systemswhere controlled driving
is infeasible, only short transients are available, or individualmeasurements are costly.
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