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We analyze a general class of reversible aggregate-reorganization processes. These processes are
shown to exhibit globally attracting equilibrium distributions, which are universal, i.e., identical for
large classes of models. Furthermore, the analysis implies that, for studies of equilibrium properties
of any such process, computationally expensive reorganization dynamics such as random walks can be
replaced by more efficient yet simpler methods. As a particular application, our results explain the recent
observation of the formation of similar fractal aggregates from different initial structures by diffusive
reorganization [M. Filoche and B. Sapoval, Phys. Rev. Lett. 85, 5118 (2000)].
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Many complex systems such as microbial colonies,
colloidal aggregates, or particle-adsorbate structures
are composed of a large number of similar units [1].
For the growths of such particle clusters, the model of
diffusion-limited aggregation (DLA) has been introduced
[2] and intensively investigated in several generalizations
[1,3,4]. In these nonequilibrium models, particles are per-
manently injected into the system and stick irreversibly to
an existing cluster which grows towards a fractal structure.
In real systems, however, particles are often rearranged,
dynamically transforming the aggregate structure. This
rearrangement is appropriately modeled by processes
exhibiting reversible dynamics [1,3,5].

Recently, Filoche and Sapoval have proposed a specific
model of diffusion-reorganized aggregation (DRA) [5] in
which particles detach from the boundary of a given clus-
ter of fixed size and reaggregate after a random walk on
the underlying square lattice. In numerical simulations,
they observe the formation of fractal structures similar to
those found in various irreversible models. The DRA pro-
cess transforms different initial aggregates, e.g., simple
one-dimensional and two-dimensional structures, into sta-
tistically similar fractal aggregates after many reorganiza-
tion steps.

In this Letter, we analyze a general class of reversible
processes that dynamically reorganize a fixed number of
particles constituting one connected aggregate on some lat-
tice. Particles are allowed to reorganize by any reversible
process that retains a connected aggregate, including dif-
fusion as a particular case. We prove that all these pro-
cesses exhibit equilibrium distributions that are globally
attracting. Our general mathematical perspective reveals
that such attractors are universal, i.e., independent of the
dynamical model details: In discrete-time models, this
distribution depends only on the mechanism of particle
disaggregation but is independent of the subsequent par-
ticle repositioning dynamics. In particular, this implies
that ordinary diffusion and different mechanisms such as
surface diffusion [1] or Lévy flights [6] are equivalent in
this context. Furthermore, we show that in continuous-
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time models equilibria are independent of both the mecha-
nism of repositioning and that of disaggregation. On a d-
dimensional cubic lattice, if all connected aggregates are
accessible by the repositioning dynamics, this leads to
the uniform distribution that is known as the ensemble of
lattice animals (cf. [7–9]), currently also investigated in
number theory under the name polyominoes ([10] and ref-
erences therein).

In addition to these analytical results, we present strong
numerical evidence that, for sufficiently large aggregates,
there is no significant difference between equilibrium dis-
tributions obtained from discrete- or continuous-time mod-
els. Our results are valid for a general class of processes,
including reorganization of aggregates consisting of dif-
ferent kinds of particles as well as repositioning of whole
clusters instead of single particles. Here, for simplicity of
presentation, we focus on processes in which single, iden-
tical particles are reorganized.

We consider reorganization processes of aggregates —
certain connected collections of a fixed number N of par-
ticles on some lattice. Starting from an aggregate A, one
step of the discrete-time dynamics is defined by the fol-
lowing two rules (Fig. 1).

(i) Randomly select a particle from a set of free particles
F�A� with equal probability, where F�A� is chosen such
that the aggregate remains connected.

(ii) Reposition this particle by a reversible process at
some site x of possible aggregation sites D�A, B� of an
intermediate object. By reversibility, this particle is again
a free particle of the new aggregate B.

The above two rules are repeatedly applied to the evolv-
ing aggregate. Note that physically the step-by-step appli-
cation of the two rules reflects a separation of time scales
that is realized in many processes [1]: The disaggregation
of a particle occurs much slower than its repositioning. To
model a specific reorganization process, the sets F�A� of
free particles (i), the repositioning (ii), as well as the un-
derlying lattice can be defined as desired as long as every
aggregate under consideration can be reached iterating the
above two rules.
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FIG. 1. Model of a specific reversible aggregate-reorganiza-
tion process: One particle (checkered) is selected from a set
of free particles F�A� (gray) of aggregate A according to rule
(i) and detaches from the aggregate. By a reversible process,
e.g., diffusion, it is repositioned at one �3� of the free aggre-
gation sites D�A, B� �≤� of the intermediate object according to
rule (ii). Reversibility requires that the deposited particle (check-
ered) is again a free particle in F�B� (gray) and may be selected
in the next reorganization step.

To be specific, we focus on d-dimensional cubic lattices,
but the analysis can be analogously applied for arbitrary
lattices. We fix aggregates on a lattice of �N 1 1�d sites
with periodic boundary conditions and view translated ag-
gregates of the same shape as different states. A given pro-
cess is identified as a Markov chain [11] with state space
SN consisting of all connected aggregates of N particles,
which have at least one free particle, i.e., nonempty F�A�.
The state of this discrete-time process is then described by
the distribution pt �A�, giving the probability that after t re-
organization steps the aggregate A is present. Starting with
initial distribution p0�A�, a transition matrix T specifies the
time evolution,

pt � Tpt21 � Ttp0 , (1)

of the state vector pt :� �pt�A1�, . . . , pt�AjSN j��T. As SN is
finite, the long-time �t ! `� behavior of the discrete-time
Markov chain is determined by a steady state distribution
p�

d � Tp�
d . If the chain is irreducible, i.e., every aggregate

A [ SN can be reached by the process from every other,
p�

d is the global attractor towards which every initial distri-
bution converges [11]. This uniqueness property depends
on the choice of free particles F�A�. In general, one rea-
sonably restricts the state space SN to an appropriate subset
of aggregates consistent with F�A�. For instance, if F�A�
is the set of all one-bond particles [8], only treelike aggre-
gates are considered. In such cases, our analysis applies
to the respective irreducible subset of SN (also simply de-
noted by SN in the following). With this convention, the
stationary distribution p�

d is the unique attractor for every
initial distribution p0 on SN . We now specify the transition
matrix T which completely determines the dynamics of the
process.

If a one-step transition from aggregate A to B is possible,
denoted by A $ B, the particle which is disaggregated and
its reaggregation site are determined uniquely [12]. Thus,
the underlying lattice does not explicitly enter the analy-
sis. The transition probabilities are given by the matrix
elements,

TBA �

Ω
1

jF�A�j rBA if A $ B
0 otherwise ,

(2)
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which, if nonzero, consist of two factors: According to
rule (i) a free particle is randomly selected from F�A� with
uniform probability 1�jF�A�j. Then, the particle is repo-
sitioned at the intermediate aggregate with probability rBA

to obtain aggregate B according to rule (ii). The reversibil-
ity of the repositioning procedure is characterized by the
symmetry rBA � rAB. Thus, the dynamics is described by
the master equation,

pt11�A� 2 pt�A� �
X

B[SN

�TABpt�B� 2 TBApt�A��

�
X

B[SN

∑
pt�B�
jF�B�j

2
pt�A�
jF�A�j

∏
rAB . (3)

A steady state solution of this equation is obviously given
by the equilibrium distribution,

p�
d�A� � jF�A�j�

X
B[SN

jF�B�j , (4)

which fulfills the condition of detailed balance, i.e.,
p�

d�B��jF�B�j � p�
d�A��jF�A�j for all A, B [ SN . From

the above, we know that p�
d is the unique attractor of

the dynamics (3). Hence, in equilibrium the probability
to observe an aggregate A is proportional to its number
jF�A�j of free particles.

It seems natural to realize repositioning by a random
walk of the disaggregated particle, because it models dif-
fusion in real systems [5,8]. This random walk determines
the transition probabilities rAB � rBA between aggregates
A and B. However, independent of the actual values of rAB,
and, hence, the repositioning procedure (ii), the process
leads to the same equilibrium distribution p�

d. Thus, to
study the equilibrium properties of the reorganization pro-
cess, one can replace the random walk in numerical simu-
lations: For instance, after selection of a particle, it may
just be repositioned at every aggregation site with equal
probability rAB � 1�jD�A, B�j, where D�A, B� is the set
of possible aggregation sites of the intermediate aggregate
(cf. Fig. 1 and Ref. [7]). This straightforward procedure
is much simpler to implement than random walks and sig-
nificantly reduces the computational effort. Furthermore,
one expects a faster convergence to the equilibrium dis-
tribution [13]: While for diffusive repositioning the par-
ticle reaggregates with high probability near or even at its
disaggregation site, the alternative process leads to a fast
spreading of particles so that the state space is likely to
be sampled faster. Moreover, diffusing particles in d $ 2
dimensions have an infinite average return time leading to
computational complications [5,8] that can be avoided us-
ing alternative processes.

Until now, we have considered discrete-time evolution
rules, which arise when performing computer simulations.
However, for real reorganization processes, continuous-
time modeling, where the free particles F�A� disaggregate
independently at a rate g, often seems more appropriate.
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This leads to a continuous-time Markov chain with com-
pletely symmetric transition rates grAB occurring in the
master equation,

d
dt

pt�A� �
X

B[SN

g�pt �B� 2 pt�A��rAB . (5)

Thus, the attractor of these continuous-time processes is

p�
c �A� � 1�jSN j . (6)

This is a universal equilibrium distribution which is inde-
pendent of all dynamical model details. It is important to
note that, although F�A� does not enter (6), it implicitly de-
termines the set SN of accessible aggregates. In the case of
d-dimensional cubic lattices and for every choice of F�A�
for which the process can reach all possible connected ag-
gregates of N particles (cf. our simulations below), this
uniform distribution p�

c is known as the ensemble of lat-
tice animals [9,10].

The question arises, how relevant the differences be-
tween discrete- and continuous-time modeling are. To an-
swer this question, we consider the fraction,

fN �A� � jF�A�j�N , (7)

of free particles of an aggregate A of N particles. This
observable determines the difference in the equilibrium
distributions of discrete-time and their associated continu-
ous-time models because it directly enters (4) in the form
p�

d�A� � fN �A��
P

B fN �B�. In equilibrium, the average
fractions of free particles obviously satisfy the inequality,

� fN �p�
d

�
X
A

fN �A�p�
d�A� �

P
A f2

N �A�P
B fN �B�

$ � fN �p�
c
, (8)

because � fN �p�
c

�
P

B fN �B��jSN j by definition. Nev-
ertheless, Monte-Carlo simulations of a specific process
[14] show that the averages � fN � clearly converge towards
the same value for discrete- and continuous-time mod-
els (Fig. 2). Differences become insignificant already for
moderately sized aggregates.
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FIG. 2. Comparison of average fractions � fN � of free particles:
discrete-time �3� and its associated continuous-time model ���.
Error bars denote standard error of sample mean. Inset: Widths
s� fN � for both time scales.
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This is quantified by considering the widths of the
equilibrium distributions s� fN � :� ���� fN 2 � fN ��2���1�2

(Fig. 2, inset). We find a power law decay s� fN � � N2a

with a � 0.50 6 0.02 for both time scales as would be
expected for large random structures. This has important
consequences: Calculations similar to the above (8) show
immediately that

�gN �p�
d

� �gN �p�
c
�1 1 O �N2a�� , (9)

for every observable gN �A�. Thus, for sufficiently large
aggregates, measurements of arbitrary observables, and,
equivalently, the equilibrium distributions, in discrete- and
continuous-time models cannot be distinguished. This re-
flects the fact that the number jF�A�j of free particles
of almost all aggregates A [ SN is close to its uniform
ensemble average �jF�A�j� for sufficiently large N. Since
this fact is of purely configurational origin, we expect a
similar convergence (9) for other models, also in d . 2
dimensions.

As one important observable, we have studied the frac-
tal dimensions of aggregates from both processes. Sample
aggregates as well as box-counting dimensions �DN � are
shown in Fig. 3. Even for moderately sized aggregates, no
significant differences have been observed. With increas-
ing aggregate sizes, the �DN � approach from below [15]
the well-estimated fractal dimension D 	 1.56 [9,10] of
square-lattice animals.

The above results predict that the uniform distribution
among all connected aggregates which can be reached by
a specific process is the globally attracting, unique equi-
librium distribution for a wide class of models. In particu-
lar, our results explain the recent observation that fractal

FIG. 3. (a),(b) Equilibrium fractal aggregates of N � 10 000
particles, started from a 100 3 100 square, after 109 particle
rearrangements [14]. (a) Discrete-time model, (b) associated
continuous-time model. (c) Box-counting dimensions �DN� for
both time scales are indistinguishable and approach from below
[15] the fractal dimension D 	 1.56 (dashed line) [9,10].
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aggregates are reached from arbitrary initial structures by a
certain diffusive reorganization process [5]. Nevertheless,
our results strongly indicate that the equilibrium aggre-
gates from that study are in the same universality class as
lattice animals and thus have a fractal dimension D 	 1.56
and not, as suggested, D � 1.74 6 0.02 [5]. A possible
explanation of this discrepancy is that simulations in that
study did not reach equilibrium at the time of measure-
ment, despite a huge number of simulation steps. In fact,
in our simulations [14] aggregates of N � 10 000 particles
only reached equilibrium after about 2 3 108 particle re-
arrangements.

It is important to note that in certain systems such a slow
convergence may imply that the equilibrium state is not
reached during the time of real or numerical experiments
(cf. [5]). Thus, although an equilibrium distribution is
guaranteed to be reached, the long-term behavior of such
systems may be governed by transient states with long
lifetimes and nonuniversal statistical properties.

In summary, we have shown that large classes of
reversible aggregate-reorganization processes possess
universal attractors which are independent of the model
details but may, in general, depend on whether discrete- or
continuous-time modeling is used. Furthermore, our
numerical investigations indicate that statistical properties
are essentially identical for both time scales. These results
imply that commonly used diffusion modeling can be
replaced by computationally fast methods which in addi-
tion lead to a faster convergence towards the (identical)
equilibrium distribution. In general, one specific process
of aggregate reorganization can be investigated in a
number of different alternative models. Which alternative
is used can be freely chosen depending on which one
is more convenient to study analytically or by computer
simulations.

In particular, our results explain the recently discovered
“statistical attractors” in diffusive reorganization processes
[5] but predict a different final equilibrium state. More
generally, the results can serve as a basis for investigating
equilibrium statistical properties of a general class of ag-
gregate-reorganization processes. Reversible reorganiza-
tion is always characterized by the symmetry rAB � rBA,
which, in turn, has been the main requirement for uni-
versality. In particular, aggregates consisting of different
kinds a of particles disaggregating with particle-specific
rates ga are also described because a transition A $ B de-
termines the disaggregating particle uniquely. Moreover,
the theory may be generalized to reorganization of whole
subclusters rather than just single particles (cf. also [3,7]).
Hence, more complex models of aggregate reorganization
can also be captured.

We have imposed only a small number of requirements
on the dynamics which appear to be natural assumptions
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in many physical situations, in particular, reversibility of
repositioning and separation of time scales. Thus, our
main results might not only be of importance to aggregate-
reorganization processes. We hope that the basic ideas can
also find applications in studies of other complex systems
exhibiting reversible reorganization.
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