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Irregular dynamics in multidimensional systems is commonly associated with chaos. For infinitely large
sparse networks of spiking neurons, mean field theory shows that a balanced state of highly irregular
activity arises under various conditions. Here we analytically investigate the microscopic irregular
dynamics in finite networks of arbitrary connectivity, keeping track of all individual spike times. For
delayed, purely inhibitory interactions we demonstrate that any irregular dynamics that characterizes the
balanced state is not chaotic but rather stable and convergent towards periodic orbits. These results
highlight that chaotic and stable dynamics may be equally irregular.
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Highly irregular dynamics is a prominent feature of
multidimensional complex systems and often attributed
to chaos [1,2]. Networks of spiking neurons, which inter-
act by sending and receiving electrical pulses (spikes),
exhibit very irregular dynamics for a wide range of con-
ditions [3–8]. For instance, networks of sparse random
connectivity may display a balanced state [3] in which
excitatory (positive) and inhibitory (negative) inputs to
each neuron balance on average and only the fluctua-
tions create spikes at irregular times [3,4]. Their dy-
namics resemble random (e.g., Poisson) processes with
low correlations across different neurons. Mean field
theory [4] shows that such irregular balanced activity
occurs in networks with excitatory and inhibitory re-
current feedback as well as in networks that receive
external excitatory inputs and exhibit recurrent inhi-
bition only [4,5]. Interestingly, for inhibitory networks
recent work [9,10] suggests that this irregular dy-
namics is stable in globally coupled and slightly diluted
networks without delay. In particular, Zillmer et al. [10]
numerically measured a negative maximal Lyapunov ex-
ponent of the irregular, seemingly chaotic spiking
dynamics.

In this Letter, we analytically investigate the micro-
scopic spiking dynamics in finite neural networks with
delayed inhibitory interactions [11] and arbitrarily compli-
cated connectivity [Fig. 1(a)]. We show that any spiking
dynamics characterizing the irregular balanced state in any
of the above networks is stable, i.e., two close-by trajecto-
ries converge towards each other over time. Moreover, we
show that any generic periodic orbit is stable [13]. In
particular, this excludes generic unstable periodic orbits
and indicates that the typical irregular dynamics is not
chaotic in any of these systems.

Consider N neurons that interact on a directed network
by sending and receiving spikes. The subthreshold dynam-
ics of the neurons’ membrane potentials Vi�t� at time t are
given by

 

d
dt
Vi � fi�Vi� �

XN
j�1

X
k2Z

"i;j��t� t
s
j;k � �i;j�; (1)

where a smooth function fi specifies the internal dynamics,
"i;j � 0 is the inhibitory coupling strength and �i;j > 0 the
delay time of a synaptic interaction from neuron j to neu-
ron i, and tsj;k determines the time of the kth spike sent by
neuron j. Here ���� is the Dirac delta function. If a neuron j
reaches the threshold potential, Vj�t�� � V�;j, it generates
a spike at t �: tsj;k for some k and is reset, Vj�tsj;k� � 0. We
require here that the fj for all j satisfy fj�Vj�> 0 and
f0j�Vj�< 0 for all Vj � V�;j such that in isolation each
neuron exhibits oscillatory dynamics. Sending and receiv-
ing of spikes are the only events occurring in these systems
that interrupt the continuous time evolution.

The neurons are equivalently described [14] by a phase-
like variable �j�t� 2 ��1; ��;j� satisfying the linear dif-
ferential equation

 d�j=dt � 1 (2)

at all nonevent times. Upon reaching a phase threshold
�j�t

s�
j;k � � ��;j, this phase is reset, �j�t

s
j;k� � 0, and a

spike is generated. After a delay time �i;j that spike is
received by postsynaptic neuron i of neuron j and its phase
changes according to

 �i�t
s
j;k � �i;j� � H�i�"i;j��i��t

s
j;k � �i;j�

���: (3)

This interaction is mediated by the transfer function

 H�i�" ��� � U�1
i 	Ui��� � "�; (4)

where Ui�t� is the free (all "i;j � 0) solution of (1) through
the initial condition Ui�0� � 0, yielding U0i > 0 and U00i <
0, and ��;j � U�1

j �V�;j�; cf. [15]. We remark that for
these systems there is a one-to-one mapping between the
potential representation (1) and the phase representation
(2)–(4) that is specified by Vi � Ui��i�; cf. also [14]. For
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instance, for standard leaky integrate-and-fire neurons,
where fi�V� � Ii � �iV with time scale ��1

i > 0 and
equilibrium potential ��1

i Ii > V�;i, we have Ui��� �
��1
i Ii�1� exp���i���. Whereas the analysis below is

valid for general Ui���, all numerical simulations are
presented for leaky integrate-and-fire neurons. In the fol-
lowing we consider arbitrary generic spike sequences in
which all neurons are active [i.e., there is a finite constant
T > 0, arbitrarily large, such that in every time interval
	t; t� T�, t 2 R, every neuron fires at least once] and no
two events occur at the same time.

Highly irregular spiking sequences [cf. Fig. 1(a)] con-
stitute a typical form of activity in these networks, suggest-
ing that the underlying dynamics may be chaotic. However,
as we show below for networks of arbitrary connectivity,
this dynamics generically is stable and not chaotic. To
show this, we first analytically study the exact microscopic
dynamics of an original trajectory, as defined by the (arbi-
trarily irregular) sequence of events generated by the net-
work, and a slight perturbation to it that keeps the order of
events as in the original.

The time of the nth event (sending or receiving) occur-
ring in the entire network is denoted by tn in the original
sequence, and by ~tn in the perturbed sequence. Here simul-
taneous reception of the same spike at different neurons
constitutes one event. Analogously, at a given time t, we
denote the phases of neuron i by �i�t� and ~�i�t�, respec-
tively. Let

 ��n�i � 	�i�tn� � ~�i�~tn�� � �tn � ~tn� :� ��n�i � �t
�n� (5)

denote the difference of the phases of neuron i between the
two sequences after the nth and before the (n� 1)st event,
corrected for the time shift �t�n� � tn � ~tn between the
sequences. If at the (n� 1)st event some neuron j
 sends
a spike, the phase shifts

 ��n�1�
i � ��n�i (6)

of all neurons i stay unchanged. Because of the linear
phase dynamics (2) between the spikes, ��n�1�

j
 � ��n�j
 �

��t�n�1� also specifies the temporal shift of the (n� 1)st
event. At some tl � tn�1 � �i;j
 postsynaptic neuron i
receives the spike sent by j
. The resulting phase shifts
are given by

 ��l�i � H�i�"i;j
 ��i�t
�
l ���H

�i�
"i;j
 �

~�i�~t
�
l ��� �t

�l�; (7)

where �i�t�l � � �i�tl�1� � tn�1 � �i;j
 � tl�1 and
~�i�~t�l � � ~�i�~tl�1� � ~tn�1 � �i;j
 � ~tl�1 are the phases

just before spike reception. Using the identities �i�t�l � �
~�i�~t

�
l � ���l�1�

i � �t�n�1� and �t�l� � �t�n�1� � ���n�j
 ,
we apply the mean value theorem to Eq. (7) and obtain

 ��l�i � c�l�i ��l�1�
i � �1� c�l�i ��

�n�
j
 ; (8)

where c�l�i is given by the derivative c�l�i � dH�i�"i;j
 ���=d�

for some � between �i�t
�
l � and ~�i�~t

�
l �. If neuron j
 is not

connected to neuron i, "i;j
 � 0, the function H�i�"i;j
 ��� �

H�i�0 ��� � � is the identity map, such that the phase shift
stays unchanged, ��l�i � ��l�1�

i ; indeed c�l�i � dH�i�0 ���=
d� � 1, independent of �. If neuron j
 is connected to i
we find c�l�i bounded by

 cmn :� inf
�;k
f�H�k�"mn�

0���g � c�l�i � sup
�;k
f�H�k�"mx�

0���g �: cmx;

(9)

where "mx�maxi;j:"i;j�0f"i;jg and "mn � mini;j:"i;j�0f"i;jg.
The phases are confined to certain finite intervals, �i 2
	�mn; ��;i�, which depend on the network parameters.
Given that dH�i�" ���=d� � U0i���=U

0
i�U

�1
i �Ui��� � "��

and using the monotonicity U0i > 0 and concavity U00i <
0, we find cmn > 0 and cmx < 1, independent of the se-
quence and of the network realization (including its con-
nectivity). Thus the phase shift after receiving a spike is a
weighted average of earlier shifts.

Consider that the perturbed sequence differs from the
original one by perturbations of the phases of all neurons

FIG. 1 (color). Stable irregular dynamics in a random network
(N � 400, ��1

i � 1:0, Ii � 4:0,��;i � 1, �i;j � 0:1, connection
probability p � 0:2,

P
j"i;j � �16). (a) Upper panel displays

the spiking times (blue lines) of the first 50 neurons. Lower panel
displays the membrane potential trajectory of neuron i � 1
(spikes of height �V � 2 added at firing times). Inset shows a
histogram of the coefficients of variation CVi :� �i=�i, �i :�
htsi;k�1 � t

s
i;ki, �

2
i :� h�tsi;k�1 � t

s
i;k ��i�

2i averaged over time.
(b) Exponential decay of the maximal perturbation maxij�

�n�
i j

(blue dots) and the minimal margin ��n� (gray line) for one given
microscopic dynamics. (c) Algebraic decay of the average
minimal margin, ��n� (green dashed line, averaged over 250
random initial conditions), and the analytical prediction (no
free fit parameter) of ��n� (black solid line). We also show the
minimal margin ��n� for three exemplary initial conditions (gray
lines), including that of (b).
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and the sending times of all spikes sent but not received at
time t � 0. (We denote the maximum of these perturba-
tions after the event at tn by ��n�mx and the minimum by
��n�mn.) Since the maximum phase shift cannot increase and
the minimum cannot decrease according to (8) and (9), the
dynamical trajectories are Lyapunov stable. In particular, it
follows that generic irregular dynamics cannot be unstable
and thus not chaotic.

For strongly connected networks [16] where every neu-
ron can be reached by following a sequence of presynaptic
connections from any other neuron, the averaging (8) that
yields Lyapunov stability leads also to exponential con-
vergence between the perturbed and original trajectory:
Briefly, the relations (8) and (9) already imply that the
maximum perturbation cannot increase and the minimum
cannot decrease. So the difference ��n�mx ���n�mn decreases
(by a factor smaller than 1 dependent on cmx < 1 and 1�
cmn < 1) or it stays unchanged during an event. For the
perturbation to stay unchanged when neuron i receives a
spike from neuron j
, both its previous perturbation ��l�1�

i

and the perturbation ��n�j
 of the sending neuron at sending

time need to be identical, i.e., ��l�i � ��l�1�
i � ��n�j
 in

Eq. (8). Following this argument throughout the network
(to the presynaptic neurons of the presynaptic neurons,
etc.) implies that before some finite time the perturbations
of all neurons must have been identical. Because of time
translation invariance, a globally identical (trivial) pertur-
bation is equivalent to a time shift of the original orbit. So
any nontrivial perturbation converges to a trivial one be-
cause the difference ��n�mx � ��n�mn converges to zero expo-
nentially. Thus the considered trajectory is exponentially
asymptotically stable; cf. also [5,17].

A main condition for stability of trajectories was that the
order of events stays the same in the perturbed and original
trajectories, a condition that was already found useful to
assume in globally coupled systems [9]. In the system
considered here, for arbitrary generic spike sequences,
there is a nonzero perturbation size keeping the order
unchanged in any finite time interval. However, the re-
quirement of an unchanged event order yields more and
more conditions over time such that the allowed size of a
perturbation could decay more quickly with time than the
actual perturbation. This will be excluded if the temporal
margin��n� (cf. also [9]) between two subsequent potential
future events stays larger than the dynamical perturbation
for infinite time. Specifically, after time tn denote the kth
potential future event time (of the original trajectory) that
would arise if there were no future interactions by �n;k, k 2
N, and the temporal margin by ��n� :� �n;2 � �n;1. A
sufficiently small perturbation, satisfying ��n�mx ���n�mn <
��n�, cannot change the order of the (n� 1)st event.

This directly implies that all generic periodic orbits (all
those with nondegenerate event times tn) consisting of a
finite number of P events are stable because there is a
minimal margin

 ��P� :� min
n2f1;...;Pg

��n� > 0: (10)

To further analyze stability properties of irregular non-
periodic spike sequences, we consider the minimal margin
��n� over the first n events. For simplicity, we here consider
delays �ij independent of i. In the balanced regime the
spiking activity is well modeled by a Poisson point process
[4]. Assuming that, along with the irregular dynamics, the
temporal margins are generated by a Poisson process with
rate 	, the distribution function of margins is given by
P���n� � �� � 1� e�	�. The probability that the mini-
mal margin ��n� after n events is smaller or equal to � is
determined by the probabilities that not all individual
margins ��n� are larger than � such that

 P���n� � �� � 1�
Yn
m�1

P���m� >�� � 1� e�n	� (11)

with density 
n��� :�dP���n����=d��n	exp��n	��.
This implies an algebraic decay with the number n of
events for the expected minimal margin

 ��n� �
Z 1

0
�
n���d� � �n	��1 (12)

that depends only on the network event rate 	 and is in-
dependent of the specific network parameters. Numerical
simulations [cf. Fig. 1(c)] confirm this algebraic decay
(12) of the expected minimal margin with the number of
network events n. Similarly, we find that the distributions
of the margins ��n� are indeed exponential such that the
margins’ fluctuations are sufficiently small [17]. Together

FIG. 2 (color). Convergence towards a periodic orbit in a
random network (N � 40, ��1

i � 1:0, Ii � 3:0, ��;i � 1:0,
�i;j � 0:1, p � 0:2,

P
j"i;j � �3:3). (a) The average minimal

margin ��n� [as in Fig. 1(c)] decays as a power law (region A) and
saturates after about 107 events (region B) when the periodic
orbit is reached. Inset: Margin ��n� (black) and minimal margin
��n� (gray) for a trajectory started from one specific initial
condition. The margin ��n� fluctuates strongly on the transient;
after the sequence becomes periodic the minimal margin ��n�

does not decrease further for future events n. (b),(c) Snapshots of
(b) irregular spike sequences after n � 2
 104 events on the
transient and (c) after n � 108 events on the periodic orbit.
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with the exponential decay of dynamical perturbations in
strongly connected networks this indicates that for a suffi-
ciently small perturbation the order of events stays un-
changed for infinite time.

Interestingly, arbitrary irregular spike sequences con-
verge to a periodic orbit after finite time (cf. Fig. 2) because
(i) there is some finite number E such that two sequences
that share the same order of E events are equally ordered
for all future events because any initial difference decays
exponentially and (ii) there is only a finite number of
orderings of events in a finite network such that a given
sequence of length E repeats after finite time. Nevertheless,
we find that the transient time until a periodic orbit is
reached rapidly increases with network size N and with
the interaction strengths, in agreement with observations in
Ref. [10]; cf. also [17].

In summary, we analytically studied the microscopic dy-
namics of inhibitory networks of spiking neurons with
arbitrarily complicated connectivity and delayed interac-
tions. We showed that all generic trajectories in the bal-
anced regime are stable, even though they generate highly
irregulardynamics. Curiously, theassumptionofeventsgen-
erated by a maximally irregular (Poisson) random process
led us to show stability of the deterministic trajectories.

These results analytically confirm recent numerical find-
ings [10] that irregular dynamics in spiking neural net-
works may exhibit stable behavior. Moreover, as for glo-
bally coupled systems without delay [9] our results show
that also networks with more complex structure and de-
layed interactions exhibit stable periodic orbits. However,
highly irregular yet stable transient trajectories dominate
the dynamics in all large and nonglobally coupled net-
works, in stark contrast to the fast convergence to attractor
dynamics found recently in globally coupled networks [9]
and also opposite to the long chaotic (and thus unstable)
transients in randomly diluted networks of excitatory neu-
rons [6]. Interestingly, the above analysis also indicates
that the numerically found spike timing sequences [18] are
generated by stable trajectories; in particular, the systems
considered in that work do not exhibit chaotic (unstable)
dynamics for any delays and the phase switching observed
for long delays is predictable and occurs at well-defined
times.

More generally, our results underline that multidimen-
sional deterministic dynamics with statistical properties
close to that of a random system need not be generated by
deterministic chaos. As we have shown analytically for
spiking neural networks with delayed interactions, dy-
namical irregularity may well be generated by stable tra-
jectories, in particular on the transient. This is in stark con-
trast to the dynamics on chaotic attractors and chaotic
transients [19] that is often irregular as well but induced
by unstable periodic orbits. In the systems studied here
the irregularity is not induced by unstable periodic or-
bits but generated due to the coaction of complicated net-
work connectivity, interaction delays, and heterogeneity.

Understanding the details of the dynamical origin of long
stable transients in such high-dimensional systems consti-
tutes a challenging open problem.

Future work also needs to investigate closer the key
consequences for systems in which irregular dynamics is
stable. For instance, stable irregular dynamics may lift the
important practical constraint of long-term unpredictabil-
ity that irregular dynamics bears if it is generated by chaos.
Stable irregular dynamics, even in multidimensional sys-
tems, may well be predictable in practice. For the networks
of spiking neurons studied above, this has the astounding
consequence that the dynamics in only a small time win-
dow, even in the presence of some errors, defines the entire
future of the highly irregular spiking dynamics.
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